Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2019

Unsaturated Vicinal Frustrated Phosphane/Borane Lewis Pairs as Ligands in Gold(I) Chemistry

Atsushi Ueno, Kohei Watanabe, Constantin G. Daniliuc, Gerald Kehr, and Gerhard Erker*

Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40,48149 Münster, Germany mail: erker@uni-muenster.de

Supporting Information

General Information	S2
Preparation of compound 9a	S 3
Preparation of compound 9b	S 8
Preparation of compound 10a	S13
Preparation of compound 10b	S18
Preparation of compound 12a	S23
catalyst scope	S23
Preparation of compound 12b	S27
Preparation of compound 12c	S28
Preparation of compound 12d	S 30
Preparation of compound 12e	S 31
Preparation of compound 12f	S 33
Preparation of compound 12g	S 33
Preparation of compound 12h	S35
Preparation of compound 12i	S35
Preparation of compound 12j	S 37
Reaction of benzylamine	S 37
Time-conversion curve	S38
Control reaction: hydroamination reaction starting from AuPPh ₃ Cl	S39

General Information: all syntheses involving air- and moisture sensitive compounds were carried out using standard Schlenk-type glassware (or in a glovebox) under an atmosphere of argon. Solvents were dried and stored under an argon atmosphere. NMR spectra were recorded on a Varian Inova 500 (¹H 500 MHz, ¹³C 126 MHz, ¹⁹F 470 MHz, ¹¹B 160 MHz, ³¹P 202 MHz, ²⁹Si 99 MHz) and on a Varian UnityPlus 600 (¹H 600 MHz, ¹³C 151 MHz, ¹⁹F 564 MHz, ¹¹B 192 MHz, ³¹P 243 MHz). ¹H NMR and ¹³C NMR: chemical shifts δ are given relative to TMS and referenced to the solvent signal. ¹⁹F NMR: chemical shifts δ are given relative to CFCl₃ (external reference, $\delta = 0$), ³¹P NMR: chemical shifts δ are given relative to BF₃·Et₂O (external reference, $\delta = 0$). NMR assignments were supported by additional 2D-NMR experiments. The isotope-induced chemical shift (IECS) was calculated by using $\Delta\delta^{31}P(^{10/11}B) = \delta^{31}P(^{10}B)$ and given in ppb [B. Wrackmeyer, G. Seidel, R. Köster, *Magn. Reson. Chem.* 2000, **38**, 520-524. See also: P. E. Hansen, *Prog. NMR Spectrosc.* 1988, **20**, 207-255]. Elemental analyses: Foss–Heraeus CHNO-Rapid.

X-Ray diffraction: For compounds 9b (erk9092) and 10a (erk9204) data sets were collected with a Nonius Kappa CCD diffractometer. Programs used: data collection, COLLECT (R. W. W. Hooft, Bruker AXS, 2008, Delft, The Netherlands); data reduction Denzo-SMN (Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307-326); absorption correction, Denzo (Z. Otwinowski, D. Borek, W. Majewski, W. Minor, Acta Crystallogr. 2003, A59, 228-234); Data sets for compounds 9a (erk8894) and 10b (erk9161) were collected with a D8 Venture CMOS diffractometer. Programs used: data collection: APEX3 V2016.1-0 (Bruker AXS Inc., 2016); cell refinement: SAINT V8.37A (Bruker AXS Inc., 2015); data reduction: SAINT V8.37A (Bruker AXS Inc., 2015); absorption correction, SADABS V2014/7 (Bruker AXS Inc., 2014); structure solution SHELXT-2015 (Sheldrick, 2015); structure refinement SHELXL-2015 (Sheldrick, 2015) and graphics, XP (Bruker AXS Inc., 2015). R-values are given for observed reflections, and wR^2 values are given for all reflections. *Exceptions and special features*: For compound **10b** (erk9161) the –NTf₂ group and for compound **10a** (erk9204) two CF₃ groups were found disordered over two positions in the asymmetric unit. Several restraints (SADI, SAME, ISOR and SIMU) were used in order to improve refinement stability. For compounds 10a (erk9204) and 10b (erk9161) a badly disordered half pentane molecule and for compound 9b (erk9092) probably a mixture of a half pentane molecule and a small amount of dichloromethane molecule were found in the asymmetrical unit and could not be satisfactorily refined. The program SQUEEZE (Spek, A.L. Acta Cryst. 2015, C71, 9-18) was therefore used to remove mathematically the effect of the solvent. The quoted formula and derived parameters do not include the squeezed solvent molecule.

Materials: Compound **6** and **8** were synthesized according to procedures described in the following literature [A. Ueno, X. Tao, C. G. Daniliuc, G. Kehr, G. Erker, Unusual 1,1-Hydroboration Route to a Reactive Unsaturated Vicinal Frustrated Phosphine/Borane Lewis Pair, *Organometallics*, 2018, **37**, 2665].

Note: p-toluidine is toxic by inhalation, in contact with skin and if swallowed.

Preparation of compound 9a:

Scheme S1

A solution of compound **6** (180 mg, 0.25 mmol) and (Me₂S)AuCl (80 mg, 0.26 mmol) in CH₂Cl₂ (3 mL) was stirred for 18 hours at room temperature. Then, all volatiles were removed *in vacuo* and *n*-pentane (2 mL) was added. The bright yellow precipitate of the resulting suspension was collected, washed with *n*-pentane (2 mL \times 2) and dried *in vacuo* to give compound **9a** as a bright yellow powder (186 mg, 0.20 mmol, 79%).

Elemental Analysis calcd for C₃₅H₃₂AuBClF₁₀PSi (944.91 g/mol): C, 44.49; H, 3.41. Found: C, 44.70; H, 3.21.

¹**H NMR** (600 MHz, CD₂Cl₂, 299 K): δ = 7.29 (md, ³*J*_{PH} = 96.2 Hz, 1H, BCH=), 6.88 (m, 4H, *m*-Mes), 2.45 (br, 12H, *o*-Me^{Mes}), 2.31 (s, 6H, *p*-Me^{Mes}), 0.04 (s, ²*J*_{SiH} = 6.6 Hz, 9H, SiMe₃).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, 299 K): $\delta = 178.3$ (br, BCH=),147.5 (dm, ${}^{1}J_{FC} \sim 242$ Hz, C₆F₅), 143.17 (d, ${}^{4}J_{PC} = 2.2$ Hz, *p*-Mes), 143.15 (dm, ${}^{1}J_{FC} \sim 257$ Hz, C₆F₅), 142.7 (d, ${}^{2}J_{PC} = 24.3$ Hz, PC=), 141.9 (d, ${}^{2}J_{PC} = 9.9$ Hz, *o*-Mes), 137.5 (dm, ${}^{1}J_{FC} \sim 252$ Hz, C₆F₅), 131.8 (d, ${}^{3}J_{PC} = 9.9$ Hz, *m*-Mes), 123.8 (d, ${}^{4}J_{PC} = 55.7$ Hz, *i*-Mes), 116.0 (br, C₆F₅), 24.9 (d, ${}^{3}J_{PC} = 9.4$ Hz, *o*-Me^{Mes}), 20.9 (*p*-Me^{Mes}), 0.35 (SiMe₃).

¹¹**B** NMR (192 MHz, CD₂Cl₂, 299 K): δ = 34.2 (v_{1/2} ~ 1000 Hz).

¹¹**B**{¹**H**} **NMR** (192 MHz, CD₂Cl₂, 299 K): $\delta = 34.2 (v_{1/2} \sim 1000 \text{ Hz}).$

³¹**P NMR** (243 MHz, CD₂Cl₂, 299 K): δ = 43.9 (d, ³*J*_{PH} ~ 98 Hz).

³¹**P**{¹**H**} **NMR** (243 MHz, CD₂Cl₂, 299 K): $\delta = 43.9165 ({}^{31}P({}^{10}B), 18 \text{ mol}\%), 43.9007 ({}^{31}P({}^{11}B), 82 \text{ mol}\%), [\Delta^{10/11}B({}^{31}P) = -15.8 \text{ ppb}].$

¹⁹**F NMR** (564 MHz, CD₂Cl₂, 299 K): δ = -125.8 (m, 4F, *o*-C₆F₅), -152.1 (m, 2F, *p*-C₆F₅), -163.4 (m, 4F, *m*-C₆F₅), [Δδ¹⁹F_{m, p} = 11.2].

²⁹Si{¹H} DEPT (99 MHz, CD₂Cl₂, 299 K): δ = -0.7 (d, ²J_{PSi} = 14.3 Hz).

Figure S2 $^{13}C\{^{1}H\}$ NMR (151 MHz, CD₂Cl₂, 299 K) spectrum of compound **9a**

Figure S3 (1) ${}^{11}B{}^{1}H$ and (2) ${}^{11}B$ NMR (192 MHz, CD₂Cl₂, 299 K) spectra of compound 9a

Figure S4 (1) ${}^{31}P{}^{1}H$ and (2) ${}^{31}P NMR$ (243 MHz, CD₂Cl₂, 299 K) spectra of compound 9a

Figure S5 $^{19}{\rm F}$ NMR (564 MHz, CD₂Cl₂, 299 K) spectrum of compound 9a S5

Figure S6 ²⁹Si{¹H} DEPT (99 MHz, CD₂Cl₂, 299 K) spectrum of compound 9a

Crystals suitable for the X-ray crystal structure analysis were obtained from slow diffusion of pentane into a saturated solution of compound **9a** in CH₂Cl₂ at -35 °C.

X-ray crystal structure analysis of compound 9a (8894.ERK): A colorless prism-like specimen of C₃₅H₃₂AuBClF₁₀PSi, approximate dimensions 0.113 mm x 0.118 mm x 0.121 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 505 frames were collected. The total exposure time was 3.71 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 44054 reflections to a maximum θ angle of 25.03° (0.84 Å resolution), of which 6160 were independent (average redundancy 7.152, completeness = 99.7%, R_{int} = 16.59%, R_{sig} = 8.62%) and 4508 (73.18%) were greater than $2\sigma(F^2)$. The final cell constants of a = 13.168(3) Å, b = 13.267(3) Å, c = 20.346(4) Å, $\beta = 100.339(6)^{\circ}$, volume = 3496.7(12) Å³, are based upon the refinement of the XYZ-centroids of 9924 reflections above 20 $\sigma(I)$ with 5.075° < 2 θ < 51.36°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.740. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.6150 and 0.6340. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $P2_1/n$, with Z = 4 for the formula unit, $C_{35}H_{32}AuBClF_{10}PSi$. The final anisotropic full-matrix least-squares refinement on F^2 with 460 variables converged at R1 = 7.68%, for the observed data and wR2 = 16.94% for all data. The goodness-of-fit was 1.198. The largest peak in the final difference electron density synthesis was 1.904 $e^{-}/Å^{3}$ and the largest hole was -3.035 $e^{-}/Å^{3}$ with an RMS deviation of 0.247 $e^{-}/Å^{3}$. On the basis of the final model, the calculated density was 1.795 g/cm³ and F(000), 1848 e⁻.

Figure S7 (Thermal ellipsoids are shown with 15% probability)

Scheme S2

A mixture of compound **8** (100 mg, 0.14 mmol) and (Me₂S)AuCl (42 mg, 0.14 mmol) in CH₂Cl₂ (1 mL) was stirred for 18 hours at room temperature. Then, all volatiles were removed *in vacuo* and *n*-pentane (2 mL) was added and stirred for 10 minutes. The white precipitate of the resulting suspension was collected, washed with *n*-pentane (2 mL \times 2) and dried *in vacuo* to give compound **9b** as a white powder (102 mg, 0.11 mmol, 77%).

Elemental Analysis calcd for C₃₅H₃₂AuBClF₁₀PSi (944.91 g/mol): C, 44.49; H, 3.41. Found: C, 44.30; H, 3.25.

¹**H** NMR (600 MHz, CD₂Cl₂, 299 K): δ = 7.06 (d, ²*J*_{PH} = 24.0 Hz, 1H, PCH=), 6.88 (m, 4H, *m*-Mes), 2.38 (s, 12H, *o*-Me^{Mes}), 2.30 (s, 6H, *p*-Me^{Mes}), 0.07 (s, ²*J*_{SiH} = 7.2 Hz, 9H, SiMe₃).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, 299 K): $\delta = 174.6$ (br, BC=), 148.5 (dm, ¹*J*_{FC} ~ 253 Hz, C₆F₅), 144.6 (dm, ¹*J*_{FC} ~ 260 Hz, C₆F₅), 142.34 (d, ²*J*_{PC} = 9.9 Hz, *o*-Mes), 142.27 (d, ⁴*J*_{PC} = 2.7 Hz, *p*-Mes), 139.5 (d, ¹*J*_{PC} = 48.8 Hz, PCH=), 137.7 (dm, ¹*J*_{FC} ~ 250 Hz, C₆F₅), 131.8 (d, ³*J*_{PC} = 9.3 Hz, *m*-Mes), 124.9 (d, ¹*J*_{PC} = 55.3 Hz, *i*-Mes), 114.0 (br m, C₆F₅), 24.5 (d, ³*J*_{PC} = 8.9 Hz, *o*-Me^{Mes}), 20.9 (m, *p*-Me^{Mes}), -0.69 (SiMe₃).

¹¹**B** NMR (192 MHz, CD₂Cl₂, 299 K): $\delta = 54.8$ (br, $v_{1/2} \sim 1000$ Hz).

¹¹**B**{¹**H**} **NMR** (192 MHz, CD₂Cl₂, 299 K): $\delta = 54.8$ (br, $v_{1/2} \sim 1000$ Hz).

³¹**P NMR** (243 MHz, CD₂Cl₂, 299 K): $\delta = 19.8$ (d, ²*J*_{PH} ~ 24 Hz).

³¹**P**{¹**H**} **NMR** (243 MHz, CD₂Cl₂, 299 K): $\delta = 19.7980 ({}^{31}P({}^{10}B), 19 \text{ mol}\%), 19.7505 ({}^{31}P({}^{11}B), 81 \text{ mol}\%), [\Delta^{10/11}B({}^{31}P) = -47.5 \text{ ppb}].$

¹⁹**F NMR** (564 MHz, CD₂Cl₂, 299 K): δ = -123.0 (m, 4F, *o*-C₆F₅), -146.8 (mt, ³*J*_{FF} = 21.7 Hz, 2F, *p*-C₆F₅), -162.1 (m, 4F, *m*-C₆F₅), [Δδ¹⁹F_{m,p} = 15.3].

²⁹Si{¹H} DEPT (99 MHz, CD₂Cl₂, 299 K): δ = -0.6 (d, ³J_{PSi} = 32.3 Hz).

Figure S9 ¹³C{¹H} NMR (151 MHz, CD₂Cl₂, 299 K) spectrum of compound 9b

Figure S10 (1) ${}^{11}B{}^{1}H$ and (2) ${}^{11}B$ NMR (192 MHz, CD₂Cl₂, 299 K) spectra of compound 9b

Figure S11 (1) ³¹P{¹H} and (2) ³¹P NMR (243 MHz, CD₂Cl₂, 299 K) spectra of compound **9b**

Figure S12 $^{19}\!F$ NMR (564 MHz, CD₂Cl₂, 299 K) spectrum of compound 9b

Figure S13 ²⁹Si{¹H} DEPT (99 MHz, CD₂Cl₂, 299 K) spectrum of compound 9b

Crystals suitable for the X-ray crystal structure analysis were obtained from slow diffusion of pentane into a saturated solution of compound **9b** in CH_2Cl_2 at -35 °C.

X-ray crystal structure analysis of compound 9b (9092.ERK): A colorless plate-like specimen of C₃₅H₃₂AuBClF₁₀PSi, approximate dimensions 0.030 mm x 0.090 mm x 0.120 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. The integration of the data using a monoclinic unit cell yielded a total of 12002 reflections to a maximum θ angle of 25.00° (0.84 Å resolution), of which 6700 were independent (average redundancy 1.791, completeness = 98.6%, R_{int} = 2.75%, R_{sig} = 3.23%) and 6010 (89.70%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 12.6704(2) Å, <u>b</u> = 14.3614(2) Å, <u>c</u> = 21.8280(3) Å, $\beta = 103.7170(10)^{\circ}$, volume = 3858.64(10) Å³, are based upon the refinement of the XYZ-centroids of reflections above 20 $\sigma(I)$. Data were corrected for absorption effects using the multi-scan method (SADABS). The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.6440 and 0.8890. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $P2_1/c$, with Z = 4 for the formula unit, C₃₅H₃₂AuBClF₁₀PSi. The final anisotropic full-matrix least-squares refinement on F^2 with 460 variables converged at R1 = 3.35%, for the observed data and wR2 = 9.14% for all data. The goodness-of-fit was 1.043. The largest peak in the final difference electron density synthesis was 0.711 e⁻/Å³ and the largest hole was -1.662 e⁻/Å³ with an RMS deviation of 0.112 $e^{7}/Å^{3}$. On the basis of the final model, the calculated density was 1.627 g/cm³ and F(000), 1848 e⁻.

Figure S14 (Thermal ellipsoids are shown with 15% probability)

Preparation of compound 10a:

Scheme S3

A mixture of compound **9a** (94 mg, 0.10 mmol) and AgNTf₂ (39 mg, 0.10 mmol) in CH₂Cl₂ (1 mL) was stirred for 1 hour at room temperature. After removal of generated AgCl with Celite, all volatiles were removed *in vacuo* and *n*-pentane (2 mL) was added and the mixture stirred for 10 minutes. The white precipitate of the resulting suspension was collected, washed with *n*-pentane (2 mL \times 2) and dried *in vacuo* to give compound **10a** as a pale yellow powder (103 mg, 0.087 mmol, 87%).

Elemental Analysis calcd for C₃₇H₃₂AuBF₁₆NO₄PS₂Si (1189.60 g/mol): C, 37.36; H, 2.71; N, 1.18. Found: C, 37.55; H, 2.72; N, 1.09.

¹**H NMR** (600 MHz, CD₂Cl₂, 273 K): δ = 7.31 (dm, ³*J*_{PH} = 92.7 Hz, 1H, BCH=), 6.89 (m, 4H, *m*-Mes), 2.40 (br, 12H, *o*-Me^{Mes}), 2.31 (s, 6H, *p*-Me^{Mes}), 0.04 (s, ²*J*_{SiH} = 6.2 Hz, 9H, SiMe₃).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, 273 K): $\delta = 174.0$ (br, BC=), 147.8 (dm, ¹*J*_{FC} ~ 260 Hz, C₆F₅), 145.0 (d, ¹*J*_{PC} = 25.0 Hz, PC=), 144.1 (dm, ¹*J*_{FC} ~ 260 Hz, C₆F₅), 143.4 (d, ⁴*J*_{PC} = 2.2 Hz, *p*-Mes), 141.9 (d, ²*J*_{PC} = 10.3 Hz, *o*-Mes), 137.4 (dm, ¹*J*_{FC} ~ 259 Hz, C₆F₅), 131.8 (d, ³*J*_{PC} = 9.7 Hz, *m*-Mes), 122.8 (d, ¹*J*_{PC} = 60.0 Hz, *i*-Mes), 119.6 (q, ¹*J*_{FC} ~ 323 Hz, CF₃), 113.2 (br, C₆F₅), 24.7 (d, ³*J*_{PC} = 9.4 Hz, *o*-Me^{Mes}), 20.8 (*p*-Me^{Mes}), 0.43 (SiMe₃).

¹¹**B** NMR (192 MHz, CD₂Cl₂, 273 K): $\delta = 51.0 (v_{1/2} \sim 1000 \text{ Hz}).$

¹¹**B**{¹**H**} **NMR** (192 MHz, CD₂Cl₂, 273 K): $\delta = 51.0 (v_{1/2} \sim 1000 \text{ Hz}).$

³¹**P NMR** (243 MHz, CD₂Cl₂, 273 K): δ = 32.9 (d, ³*J*_{PH} ~ 93 Hz).

³¹**P**{¹**H**} **NMR** (243 MHz, CD₂Cl₂, 273 K): $\delta = 33.0102 ({}^{31}P({}^{10}B), 22 \text{ mol}\%), 32.9335 ({}^{31}P({}^{11}B), 78 \text{ mol}\%), [\Delta^{10/11}B({}^{31}P) = -76.7 \text{ ppb}].$

¹⁹**F NMR** (564 MHz, CD₂Cl₂, 273 K): δ = -73.1 (s, 6F, CF₃), -123.5 (m, 4F, *o*-C₆F₅), -147.9 (m, 2F, *p*-C₆F₅), -162.0 (m, 4F, *m*-C₆F₅), [Δδ¹⁹F_{m, p} = 14.0].

²⁹Si{¹H} **DEPT** (99 MHz, CD₂Cl₂, 273 K): $\delta = 1.1$ (d, ²*J*_{PSi} = 14.5 Hz).

S14

Figure S18 (1) ${}^{31}P{}^{1}H$ and (2) ${}^{31}P NMR$ (243 MHz, CD₂Cl₂, 273 K) spectra of compound **10a**

Figure S19 ¹⁹F NMR (564 MHz, CD₂Cl₂, 273 K) spectrum of compound 10a

Figure S20²⁹Si{¹H} DEPT (99 MHz, CD₂Cl₂, 273 K) spectrum of compound 10a

Crystals suitable for the X-ray crystal structure analysis were obtained from slow diffusion of pentane into a saturated solution of compound **10a** in CH₂Cl₂ at -35 °C.

X-ray crystal structure analysis of compound 10a (9204.ERK): A yellow prism-like specimen of C₃₇H₃₂AuBF₁₆NO₄PS₂Si, approximate dimensions 0.050 mm x 0.070 mm x 0.100 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. The integration of the data using a triclinic unit cell yielded a total of 11394 reflections to a maximum θ angle of 25.00° (0.84 Å resolution), of which 7690 were independent (average redundancy 1.482, completeness = 98.4%, R_{int} = 3.32%, R_{sig} = 3.87%) and 7344 (95.50%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 9.6920(2) Å, <u>b</u> = 13.3940(3) Å, <u>c</u> = 18.8313(4) Å, $\alpha = 71.7140(10)^{\circ}$, $\beta = 82.1690(10)^{\circ}$, $\gamma = 73.107(2)^{\circ}$, volume = 2218.24(9) Å³, are based upon the refinement of the XYZ-centroids of reflections above 20 σ (I). Data were corrected for absorption effects using the multi-scan method (SADABS). The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7160 and 0.8410. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P-1, with Z = 2 for the formula unit, $C_{37}H_{32}AuBF_{16}NO_4PS_2Si$. The final anisotropic full-matrix least-squares refinement on F^2 with 642 variables converged at R1 = 4.78%, for the observed data and wR2 = 13.17% for all data. The goodness-of-fit was 1.080. The largest peak in the final difference electron density synthesis was $0.920 \text{ e}^{-1}/\text{Å}^{-3}$ and the largest hole was -4.453 e^{-}/A^{3} with an RMS deviation of 0.173 e^{-}/A^{3} . On the basis of the final model, the calculated density was 1.781 g/cm³ and F(000), 1164 e⁻.

Figure S21 (Thermal ellipsoids are shown with 15% probability)

Preparation of compound 10b:

Scheme S4

A mixture of compound **9b** (94 mg, 0.10 mmol) and AgNTf₂ (39 mg, 0.10 mmol) in CH₂Cl₂ (1 mL) was stirred for 1 hour at room temperature. After removal of the generated AgCl with Celite, all volatiles were removed *in vacuo* and *n*-pentane (2 mL) was added and stirred for 10 minutes. The white precipitate of the resulting suspension was collected, washed with *n*-pentane (2 mL \times 2) and dried *in vacuo* to give compound **10b** as a white powder (96 mg, 0.081 mmol, 81%).

Elemental Analysis calcd for C₃₇H₃₂AuBF₁₆NO₄PS₂Si (1189.60 g/mol): C, 37.36; H, 2.71; N, 1.18. Found: C, 37.51; H, 2.75; N, 1.26.

¹**H** NMR (600 MHz, CD₂Cl₂, 299 K): δ = 7.06 (dm, ²*J*_{PH} = 25.8 Hz, 1H, PCH=), 6.90 (m, 4H, *m*-Mes), 2.34 (s, 12H, *o*-Me^{Mes}), 2.31 (s, 6H, *p*-Me^{Mes}), 0.10 (s, ²*J*_{SiH} = 6.4 Hz, 9H, SiMe₃).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, 299 K): $\delta = 174.1$ (br, BC=), 148.9 (dm, ¹*J*_{FC} ~ 250 Hz, C₆F₅), 145.1 (dm, ¹*J*_{FC} ~ 255 Hz, C₆F₅), 142.8 (d, ⁴*J*_{PC} = 2.7 Hz, *p*-Mes), 142.0 (d, ²*J*_{PC} = 10.3 Hz, *o*-Mes), 137.8 (dm, ¹*J*_{FC} ~ 257 Hz, C₆F₅), 137.0 (d, ¹*J*_{PC} = 51.9 Hz, PCH=), 132.1 (d, ³*J*_{PC} = 9.2 Hz, *m*-Mes), 124.0 (d, ¹*J*_{PC} = 59.8 Hz, *i*-Mes), 119.7 (q, ¹*J*_{FC} ~ 324 Hz, CF₃), 112.7 (br, C₆F₅), 24.4 (d, ³*J*_{PC} = 9.2 Hz, *o*-Me^{Mes}), 20.9 (*p*-Me^{Mes}), -0.7 (SiMe₃).

¹¹**B** NMR (192 MHz, CD₂Cl₂, 299 K): δ = 59.6 (v_{1/2} ~ 1700 Hz).

¹¹**B**{¹**H**} **NMR** (192 MHz, CD₂Cl₂, 299 K): $\delta = 59.6 (v_{1/2} \sim 1700 \text{ Hz}).$

³¹**P NMR** (243 MHz, CD₂Cl₂, 299 K): $\delta = 5.2$ (d, ²*J*_{PH} ~ 26 Hz).

³¹**P**{¹**H**} **NMR** (243 MHz, CD₂Cl₂, 299 K): $\delta = 5.2 (v_{1/2} \sim 10 \text{ Hz}).$

¹⁹**F NMR** (564 MHz, CD₂Cl₂, 299 K): δ = -75.2 (s, 6F, CF₃), -124.1 (m, 4F, *o*-C₆F₅), -145.3 (m, 2F, *p*-C₆F₅), -161.3 (m, 4F, *m*-C₆F₅), [Δδ¹⁹F_{m, p} = 16.0].

²⁹Si{¹H} DEPT (99 MHz, CD₂Cl₂, 299 K): $\delta = 1.3$ (d, ³J_{PSi} = 30.0 Hz).

Figure S23 ${}^{13}C{}^{1}H$ NMR (151 MHz, CD₂Cl₂, 299 K) spectrum of compound 10b

Figure S24 (1) ${}^{11}B{}^{1}H$ and (2) ${}^{11}B$ NMR (192 MHz, CD₂Cl₂, 299 K) spectra of compound 10b

Figure S25 (1) ${}^{31}P{}^{1}H$ and (2) ${}^{31}P NMR$ (243 MHz, CD₂Cl₂, 299 K) spectra of compound **10b**

Figure S26 ¹⁹F NMR (564 MHz, CD₂Cl₂, 299 K) spectrum of compound 10b

Figure S27 ²⁹Si{¹H} DEPT (99 MHz, CD₂Cl₂, 299 K) spectrum of compound 10b

Crystals suitable for the X-ray crystal structure analysis were obtained from slow diffusion of pentane into a saturated solution of compound **10b** in CH₂Cl₂ at -35 °C.

X-ray crystal structure analysis of compound 10b (9161.ERK): A colorless prism-like specimen of C₃₇H₃₂AuBF₁₆NO₄PS₂Si, approximate dimensions 0.078 mm x 0.160 mm x 0.268 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 1257 frames were collected. The total exposure time was 5.24 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell vielded a total of 115238 reflections to a maximum θ angle of 27.20° (0.78 Å resolution), of which 10215 were independent (average redundancy 11.281, completeness = 99.6%, R_{int} = 5.32%, R_{sig} = 2.54%) and 9290 (90.94%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 39.0501(18) Å, <u>b</u> = 10.3111(5) Å, <u>c</u> = 23.3236(9) Å, $\beta = 101.2240(10)^{\circ}$, volume = 9211.6(7) Å³, are based upon the refinement of the XYZ-centroids of 9616 reflections above 20 $\sigma(I)$ with 5.171° < 2 θ < 54.24°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.820. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.4580 and 0.7750. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group C2/c, with Z = 8 for the formula unit, $C_{37}H_{32}AuBF_{16}NO_4PS_2Si$. The final anisotropic full-matrix least-squares refinement on F^2 with 713 variables converged at R1 = 2.82%, for the observed data and wR2 = 5.52% for all data. The goodness-of-fit was 1.171. The largest peak in the final difference electron density synthesis was 0.859 e^{-}/A^{3} and the largest hole was -1.979 e^{-}/A^{3} with an RMS deviation of 0.088 $e^{-}/Å^{3}$. On the basis of the final model, the calculated density was 1.716 g/cm^3 and F(000), 4656 e⁻.

Figure S28 (Thermal ellipsoids are shown with 15% probability)

Catalytic hydroamination reactions.

Preparation of compound 12a:

Scheme S5

For the synthesis of compound **12a** a solution of phenylacetylene (102 mg, 1.0 mmol), *p*-toluidine (107 mg, 1.0 mmol), compound **9a** (18.8 mg, 0.02 mmol, 2 mol%), and AgNTf₂ (7.7 mg, 0.02 mmol, 2 mol%) in CH₂Cl₂ (2 mL) was stirred for 4 hours at 40 °C. The suspension was filtered and the filtrate was concentrated *in vacuo*. After purification by silica gel column chromatography (pentane/CH₂Cl₂ = 1/1), compound **12a** was obtained as a yellow oil (182 mg, 0.87 mmol, 87%). The NMR data were in good agreement with those given in the literature [C. Reddy V. Reddy, S. Urgaonkar, J. G. Verkade *Org. Lett.* 2005, **7**, 4427].

Preparation of compound 12a, control experiments:

a) Au-free:

Scheme S6

A solution of phenylacetylene (26 mg, 0.25 mmol), *p*-toluidine (27 mg, 0.25 mmol), AgCl (0.7 mg, 0.005 mmol, 2 mol%) in CD_2Cl_2 (0.5 mL) was heated for 4 hours at 40 °C. Then the reaction mixture was characterized by ¹H NMR experiments: no conversion was observed. b) Ag-free with compound **10a**:

Scheme S7

A solution of phenylacetylene (26 mg, 0.25 mmol), *p*-toluidine (27 mg, 0.25 mmol), compound **10a** (6.0 mg; 0.005 mmol, 2 mol%) in CD_2Cl_2 (0.5 mL) was heated for 4 hours at 40 °C. Then the reaction mixture was characterized by ¹H NMR experiments: close to complete conversion to the hydroamination product was observed.

Figure S29 ¹**H** NMR (600 MHz, CD₂Cl₂, 299 K) hydroamination reaction of phenylacetylene with *p*-toluidine; (1) with 2 mol% of compound **10a**. (2) control reaction with 2 mol% of AgCl.

c) Ag-free reaction with compound **9a**:

A solution of phenylacetylene (26 mg, 0.25 mmol), *p*-toluidine (27 mg, 0.25 mmol), compound **9a** (4.7 mg; 0.005 mmol, 2 mol%) in CD_2Cl_2 (0.5 mL) was heated for 4 hours at 40 °C. Then the reaction mixture was characterized by ¹H NMR experiments: hydroamination product was observed in traces (< 4 mol% yield).

Figure S30 ¹**H NMR** (600 MHz, CD_2Cl_2 , 299 K) hydroamination reaction of phenylacetylene with *p*-toluidine in the presence of 2 mol% of compound **9a** without silver salt.

d) Ag-free reaction with compound 9b:

A solution of phenylacetylene (26 mg, 0.25 mmol), *p*-toluidine (27 mg, 0.25 mmol), compound **9b** (4.7 mg; 0.005 mmol, 2 mol%) in CD_2Cl_2 (0.5 mL) was heated for 4 hours at 40 °C. Then the reaction mixture was characterized by ¹H NMR experiments: hydroamination product was observed in ca. 9 mol% yield.

Figure S31 ¹**H NMR** (600 MHz, CD_2Cl_2 , 299 K) hydroamination reaction of phenylacetylene with *p*-toluidine in the presence of 2 mol% of compound **9b** without silver salt.

Preparation of compound 12a (gram scale reaction):

A solution of phenylacetylene (1 g, 10 mmol), *p*-toluidine (1.1 g, 10 mmol), compound **9a** (188 mg, 0.2 mmol, 2 mol%), and AgNTf₂ (77 mg, 0.2 mmol, 2 mol%) in CH₂Cl₂ (20 mL) was stirred for 4 hours at 40 °C. The suspension was filtered and the filtrate was concentrated *in vacuo*. After the purification by silica gel column chromatography (pentane/CH₂Cl₂ = 1/1), compound **12a** was obtained as a yellow oil (1.98 g, 0.95 mmol, 95%).

The NMR data were in good agreement with those given in the literature [C. Reddy V. Reddy, S. Urgaonkar, J. G. Verkade *Org. Lett.* **2005**, *7*, 4427].

Scheme S11

A solution of 4-bromoethynylbenzene (**11b**, 181 mg, 1.00 mmol), *p*-toluidine (107 mg, 1.00 mmol), compound **9a** (18.8 mg, 0.02 mmol, 2 mol%), and AgNTf₂ (7.7 mg, 0.02 mmol, 2 mol%) in CH₂Cl₂ (2 mL) was stirred for 4 hours at 40 °C. The suspension was filtered and the filtrate was concentrated *in vacuo*. After the purification by silica gel column chromatography (pentane/CH₂Cl₂ = 1/1), compound **12b** was obtained as a yellow solid (265 mg, 0.92 mmol, 92%). **HRMS:** m/z calc. for C₁₅H₁₄BrN+[H⁺] 288.0387; found 288.0389

¹**H NMR** (600 MHz, CDCl₃, 299 K): δ = 7.84 (m, 2H, Ar), 7.57 (m, 2H, Ar), 7.16 (m, 2H, Ar), 6.69 (m, 2H, Ar), 2.35 (s, 3H, Me^{Tol}), 2.21 (s, 3H, Me^{N=C}).

¹³C{¹H} NMR (151 MHz, CDCl₃, 299 K): $\delta = 164.3$ (N=C), 148.7 (C^{Tol}), 138.5 (C^{Ar}), 132.8 (C^{Tol}), 131.5 (CH^{Ar}), 129.5 (CH^{Tol}), 128.7 (CH^{Ar}), 124.9 (C^{Ar}), 119.3 (CH^{Tol}), 20.8 (Me^{Tol}), 17.1 (Me^{N=C}).

Figure S32 ¹H NMR (600 MHz, CD₂Cl₂, 299 K) spectrum of compound 12b

Figure S33 ¹³C{¹H} NMR (151 MHz, CDCl₃, 299 K) spectrum of compound 12b

Preparation of compound 12c:

A solution of 4-ethylethynylbenzene (**11c**, 130 mg, 1.0 mmol), *p*-toluidine (107 mg, 1.0 mmol), compound **9a** (18.8 mg, 0.02 mmol, 2 mol%), and AgNTf₂ (7.7 mg, 0.02 mmol, 2 mol%) in CH₂Cl₂ (2 mL) was stirred for 4 hours at 40 °C. The suspension was filtered and the filtrate was concentrated *in vacuo*. After the purification by silica gel column chromatography (pentane/CH₂Cl₂ = 1/1), compound **12c** was obtained as a yellow solid (217 mg, 0.92 mmol, 92%).

HRMS: m/z calc. for $C_{17}H_{19}N+[H^+]$ 238.1596; found 238.1594

¹**H** NMR (600 MHz, CD₂Cl₂, 299 K): δ = 7.89 (m, 2H, Ar), 7.30 (m, 2H, Ar), 7.18 (m, 2H, Ar), 6.69 (m, 2H, Ar), 2.73 (q, ³*J*_{HH} = 7.6 Hz, 2H, CH₂^{Et}), 2.36 (s, 3H, Me^{Tol}), 2.23 (s, 3H, Me^{N=C}), 1.29 (t, ³*J*_{HH} = 7.6 Hz, 2H, Me^{Et}).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, 299 K): $\delta = 166.5$ (N=C), 149.0 (C^{Tol}), 147.7 (C^{Ar}), 137.3 (C^{Ar}), 133.3 (C^{Tol}), 129.9 (CH^{Tol}), 128.2 (CH^{Ar}), 127.6 (CH^{Ar}), 119.9 (CH^{Tol}), 29.1 (CH₂^{Et}), 20.9 (Me^{Tol}), 17.5 (Me^{N=C}), 15.6 (Me^{Et}).

Figure S35 $^{13}\text{C}\{^1\text{H}\}$ NMR (151 MHz, CD₂Cl₂, 299 K) spectrum of compound 12c

Scheme S13

A solution of 4-phenylethynylbenzene (**11d**, 178 mg, 1.0 mmol), *p*-toluidine (107 mg, 1.0 mmol), compound **9a** (18.8 mg, 0.02 mmol, 2 mol%), and AgNTf₂ (7.7 mg, 0.02 mmol, 2 mol%) in CH₂Cl₂ (2 mL) was stirred for 4 hours at 40 °C. The suspension was filtered and the filtrate was concentrated *in vacuo*. After the purification by silica gel column chromatography (pentane/acetone = 4/1), compound **12d** was obtained as a pale yellow solid (265 mg, 0.93 mmol, 93%).

HRMS: m/z calc. for $C_{21}H_{19}N+[H^+]$ 286.1596; found 286.1589

¹**H** NMR (600 MHz, CDCl₃, 299 K): $\delta = 8.05$ (m, 2H, Ar), 7.69 (m, 2H, Ar), 7.65 (m, 2H, Ar), 7.47 (m, 2H, Ar), 7.39 (m, 1H, Ar), 7.18 (m, 2H, CH^{Tol}), 6.75 (m, 2H, CH^{Tol}), 2.36 (s, 3H, Me^{Tol}), 2.29 (s, 3H, Me^{N=C}).

¹³C{¹H} NMR (151 MHz, CDCl₃, 299 K): $\delta = 165.0$ (N=C), 149.1 (C^{Tol}), 143.0 (C^{Ar}), 140.4 (C^{Ar}), 138.5 (C^{Ar}), 132.6 (C^{Tol}), 129.5 (CH^{Tol}), 128.8 (CH^{Ar}), 127.7 (CH^{Ar}), 127.6 (CH^{Ar}), 127.1 (CH^{Ar}), 127.0 (CH^{Ar}), 119.4 (CH^{Tol}), 20.9 (Me^{Tol}), 17.3 (Me^{N=C}).

Figure S37 ¹³C{¹H} NMR (151 MHz, CDCl₃, 299 K) spectrum of compound 12d

Preparation of compound 12e:

A solution of 4-ethynyl-*N*,*N*-dimethylaniline (**11e**, 145 mg, 1.0 mmol), *p*-toluidine (102 mg, 1.0 mmol), comound **9a** (19 mg, 0.02 mmol, 2 mol%), and AgNTf₂ (7.8 mg, 0.02 mmol, 2 mol%) in CH₂Cl₂ (1 mL) was stirred for 4 hours at 40 °C. The suspension was filtered and the filtrate was concentrated *in vacuo*. After purification by silica gel column chromatography (pentane/acetone = 4/1), compound **12e** was obtained as an orange powder (236 mg, 0.94 mmol, 94% isolated).

HRMS: m/z calc. for $C_{17}H_{20}N_2+[H^+]$ 253.1705; found 253.1708

¹**H** NMR (600 MHz, CDCl₃, 299 K): δ = 7.88 (m, 2H, CH^{Ar}), 7.13 (m, 2H, CH^{Tol}), 6.72 (m, 2H, CH^{Ar}), 6.69 (m, 2H, CH^{Tol}), 3.03 (s, 6H, NMe₂), 3.34 (s, 3H, Me^{Tol}), 2.17 (s, 3H, Me^{N=C}).

¹³C{¹H} NMR (151 MHz, CDCl₃, 299 K): $\delta = 164.5$ (N=C), 151.9 (C^{Ar}), 149.7 (C^{Tol}), 131.9 (C^{Tol}), 129.4 (CH^{Tol}), 128.5 (CH^{Ar}), 127.5 (C^{Ar}), 119.8 (CH^{Tol}), 111.3 (CH^{Ar}), 40.2 (NMe₂), 20.8 (Me^{Tol}), 16.8 (Me^{N=C}).

Scheme S15

A solution of 4-methoxyphenylacetylene (**11f**, 132 mg, 1.0 mmol), *p*-toluidine (107 mg, 1.0 mmol), compound **9a** (19 mg, 0.02 mmol, 2 mol%), and AgNTf₂ (7.7 mg, 0.02 mmol, 2 mol%) in CH₂Cl₂ (1 mL) was stirred for 4 hours at 40 °C. The suspension was filtered and the filtrate was concentrated *in vacuo*. After purification by silica gel column chromatography (pentane/acetone = 4/1), compound **12f** was obtained as an yellow powder (208 mg, 0.87 mmol, 87% isolated). The NMR data were in good agreement with those given in the literature. [B. Li, C. B. Bheeter, C. Darcel, P. H. Dixneuf, *ACS Catal.* **2011**, *1*, 1221–1224].

¹**H** NMR (600 MHz, CDCl₃, 299 K): $\delta = 7.94$ (d, 2H, Ar), 7.15 (d, 2H, Ar), 6.95 (d, 2H, Ar), 6.70 (d, 2H, Ar), 3.86 (s, 6H, OMe), 2.35 (s, 3H, Me^{Tol}), 2.21 (s, 3H, Me^{N=C}).

Preparation of compound 12g:

Scheme S16

A solution of 1-ethynylcyclohexene (**11g**, 106 mg, 1.0 mmol), *p*-toluidine (107 mg, 1.0 mmol), compund **9a** (19 mg, 0.02 mmol, 2 mol%), and AgNTf₂ (7.8 mg, 0.02 mmol, 2 mol%) in CH₂Cl₂ (1 mL) was stirred for 4 hours at 40 °C. The suspension was filtered and the filtrate was concentrated *in vacuo*. After purification by silica gel column chromatography (pentane/acetone = 9/1), compound **12g** was obtained as an orange oil (185 mg, 0.87 mmol, 87% isolated).

HRMS: m/z calc. for $C_{15}H_{19}N+[H^+]$ 214.1596; found 214.1600

¹**H** NMR (600 MHz, CDCl₃, 299 K): δ = 7.09 (m, 2H, CH^{Tol}), 6.58 (m, 2H, CH^{Tol}), 6.51 (m, 1H, CH^{Hex}), 2.44 (m, 2H, CH₂^{Hex}), 2.31 (s, 3H, CH₃^{Tol}), 2.25 (m, 2H, CH₂^{Hex}), 1.92 (s, 3H, Me^{N=C}), 1.70 (s, 2H, CH₂^{Hex}), 1.65 (s, 2H, CH₂^{Hex}).

¹³C{¹H} NMR (151 MHz, CDCl₃, 299 K): $\delta = 166.6$ (N=C), 149.5 (C^{Tol}), 139.5 (C^{Hex}), 133.4 (CH^{Hex}), 132.0 (C^{Tol}), 129.3 (CH^{Tol}), 119.3 (CH^{Tol}), 26.2 (CH₂^{Hex}), 24.8 (CH₂^{Hex}), 22.6 (CH₂^{Hex}), 22.1 (CH₂^{Hex}), 20.8 (CH₃^{Tol}), 15.5 (Me^{N=C}).

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 ppm

Figure S40 $^1\!H$ NMR (600 MHz, CDCl_3, 299 K) spectrum of compound 12g

Preparation of compound 12h:

Scheme S17

A solution of cyclohexylacetylene (**11h**, 130 μ L, ca. 1.0 mmol), toluidine (107 mg, 1.0 mmol), compound **9a** (19 mg, 0.02 mmol, 2 mol%), and AgNTf₂ (7.8 mg, 0.02 mmol, 2 mol%) in CH₂Cl₂ (1 mL) was stirred for 4 hours at 40 °C. Then, MeOH (1 mL) and NaBH₄ were added to the mixture and stirred for 1 hour at room temperature. After quenching with H₂O (1 mL), the organic compounds were extracted by Et₂O (10 mL). The ethereal solution was dried over Na₂SO₄ and all volatiles were removed *in vacuo*. After the purification by silica gel column chromatography (pentane/acetone = 9/1), compound **12h** was obtained as a brown oil (120 mg, 0.55 mmol, 55% isolated). The NMR data were in good agreement with those given in the literature. [C. Brahms, P. Tholen, W. Saak, S. Doye, *Eur. J. Org. Chem.* **2013**, 7583–7592].

¹**H NMR** (600 MHz, CDCl₃, 299 K): δ = 7.00 (m, 2H, CH^{Tol}), 6.53 (m, 2H, CH^{Tol}), 3.36 (br, 1H, NH), 3.32 (m, 1H, NCH), 2.27 (s, 3H, Me^{Tol}), 1.87-1.70 (m, 5H, CH₂^{Hex}), 1.48 (m, 1H, CH₂^{Hex}), 1.35-0.97 (m, 5H, CH₂^{Hex}) 1.14 (md, *J* = 6.3 Hz, 3H, CHCH₃).

Preparation of compound 12i:

Scheme S18

A solution of *tert*-butylacetylene (**11i**, 122 μ L, ca. 1.0 mmol), toluidine (107 mg, 1.0 mmol), compound **9a** (19 mg, 0.02 mmol, 2 mol%), and AgNTf₂ (7.8 mg, 0.02 mmol, 2 mol%) in CH₂Cl₂ (1 mL) was stirred for 4 hours at 40 °C. Then, MeOH (1 mL) and NaBH₄ were added to the mixture and stirred for 1 hour at room temperature. After quenching with H₂O (1 mL), organic compounds were extracted by Et₂O (10 mL). The ethereal solution was dried over Na₂SO₄ and all volatiles were removed *in vacuo*. After the purification by silica gel column chromatography (pentane/acetone = 9/1), compound **12i** was obtained as a brown oil (112 mg, 0.59 mmol, 59% isolated).

HRMS: m/z calc. for C₁₃H₂₁N+[H⁺] 192.1752; found 192.1756

¹**H** NMR (600 MHz, CDCl₃, 299 K): $\delta = 6.98$ (m, 2H, CH^{Tol}), 6.54 (m, 2H, CH^{Tol}), 3.26 (br, 1H, NH), 3.20 (q, ${}^{3}J_{\text{HH}} = 6.5$ Hz, 1H, NCH), 2.24 (s, 3H, Me^{Tol}), 1.09 (d, ${}^{3}J_{\text{HH}} = 6.5$ Hz, 3H, CHCH₃), 0.97 (m, 9H, Me^{*T*Bu}).

¹³C{¹H} NMR (151 MHz, CDCl₃, 299 K): $\delta = 146.3 (C^{Tol})$, 129.7 (CH^{Tol}), 125.7 (C^{Tol}), 113.2 (CH^{Tol}), 57.6 (NCH), 34.7 (C'^{Bu}), 26.5 (Me'^{Bu}), 20.3 (Me^{Tol}), 15.8 (CHCH₃).

Figure S42 $^1\!H$ NMR (600 MHz, CDCl_3, 299 K) spectrum of compound 12i

Figure S43 ¹³C{¹H} NMR (151 MHz, CDCl₃, 299 K) spectrum of compound 12i

Preparation of compound 12j:

Scheme S19

A solution of 2-(phenylethynyl)aniline (**11j**, 193 mg, 1.0 mmol), compound **9a** (19 mg, 0.02 mmol, 2 mol%), and AgNTf₂ (7.8 mg, 0.02 mmol, 2 mol%) in CH₂Cl₂ (1 mL) was stirred for 4 hours at 40 °C. The suspension was filtered and the filtrate was concentrated *in vacuo*. After the purification by silica gel column chromatography (pentane/acetone = 9/1), compound **12j** was obtained as a white powder (180 mg, 0.93 mmol, 93% isolated). [P. R. Marqués, M. A. R. Crespo, A. L. Pérez, A. Corma *J. Am. Chem. Soc.*, **2015**, *137*, 11832].

¹**H** NMR (600 MHz, CDCl₃, 299 K): $\delta = 8.33$ (br, 1H, NH), 7.67 (d, J = 7.8 Hz, 2H, Ph), 7.64 (d, J = 7.8 Hz, 1H, Ind), 7.45 (t, J = 7.3 Hz, 2H, Ph), 7.41 (d, J = 7.8 Hz, 1H, Ind), 7.33 (t, J = 7.3 Hz, 2H, Ph), 7.20 (t, J = 7.8 Hz, 2H, Ind), 7.13 (t, J = 7.8 Hz, 2H, Ind), 6.84 (s, 1H, 3-CH^{Ind}).

Reaction of benzyl amine as aliphatic amine:

Scheme S20

A solution of phenylacetylene (102 mg), benzylaniline (107 mg, 1.0 mmol), compound **9a** (19 mg, 0.02 mmol, 2 mol%), and AgNTf₂ (7.8 mg, 0.02 mmol, 2 mol%) in CD_2Cl_2 (1 mL) was stirred for 4 hours at 40 °C. Then the reaction mixture was characterized by ¹H NMR experiments: no conversion to the hydroamination product was observed.

Catalytic hydroamination reaction: Time-conversion curve with compounds 9a or 9b.

A solution of phenylacetylene (**11a**, 102 mg, 1.0 mmol), *p*-toluidine (107 mg, 1.0 mmol), compounds **9a/b** (18.8 mg, 0.02 mmol, 2 mol%), and AgNTf₂ (7.7 mg, 0.02 mmol, 2 mol%) in CD_2Cl_2 (2 mL) was sealed in a J-Young NMR tube and heated at 40 °C. Then, the % yields of the imine product were determined by ¹H NMR analysis after 0.5, 1, 2, and 4 h reaction time.

Figure S45 Time-conversion curves of the hydroamination reaction of phenylacetylene with *p*-toluidine with compounds **9a** and **9b**

Control reaction: hydroamination reaction in the presence of AuPPh₃Cl

Scheme S22

A solution of phenylacetylene (26 mg, 0.25 mmol), *p*-toluidine (27 mg, 0.25 mmol), AuPPh₃Cl (2.5 mg; 0.005 mmol, 2 mol%), AgNTf₂ (1.9 mg; 0.005 mmol, 2 mol%) in CD₂Cl₂ (0.5 mL) was heated for 4 hours at 40 °C. Then the reaction mixture was characterized by ¹H NMR experiments: hydroamination product was observed in ca. 28 mol% yield.

Figure S46 ¹**H NMR** (600 MHz, CD_2Cl_2 , 299 K) hydroamination reaction of phenylacetylene with *p*-toluidine in the presence of 2 mol% of AuPPh₃Cl with 2 mol% of AgNTf₂.