Electronic supplementary information

Off-off-on chiroptical property switching of a pyrene luminophore by stepwise helicate formation

Yuki Imai and Junpei Yuasa

Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.; E-mail: yuasaj@rs.tus.ac.jp

Experimental Section

Materials and Methods

All the chemical reagents were commercially available and used without purification. 1,8dibromopyrene, (*R*)- and (*S*)-2-iodo-1-(2-methoxypropyl)-1*H*-imidazole were synthesized following procedures reported in literature.^{1,2} ¹H NMR spectra were measured with JEOL JNM-ECZ400S (400 MHz) and JNM-ECA500 (500 MHz). Emission spectra were recorded by a JASCO FP-6500 fluorescence spectrophotometer. UV-Vis absorption and circular dichroism (CD) spectra were recorded by an Agilent Cary 8454 and JEOL J-725 spectrophotometer at ambient temperature, respectively. The emission lifetimes were recorded using FluoroCube (HORIBA, 3000U-YSP). ESI-MS spectra were measured with mass spectrometers (JEOL JMS-T100CS). The luminescence anisotropy factor (g_{CPL}) was determined using the experimental setup designed based on a fluorescence spectrofluorometer (JASCO FP-6500) with a rotatable $\lambda/4$ filter and a fixed linearly polarized plate.³ TD-DFT calculation was conducted using Gaussian 09.

Synthesis

1,8-bis((trimethylsilyl)ethynyl)pyrene:

CuI (79 mg, 0.42 mmol) was placed in a flame dried 100 mL 2-necked flask, evacuated, and backfilled with Ar three times. To this flask, 1,8-dibromopyrene (3.0 g, 8.33 mmol), PPh₃ (109 mg, 0.42 mmol), and degassed triethylamine (30 mL) were added. Then, Pd(PPh₃)₂Cl₂ (292 mg, 0.42 mmol) and trimethylsilylacetylene (3 mL, 21 mmol) were added and stirred at reflux for overnight. The reaction mixture was evaporated and dissolved in CHCl₃. This solution was washed with saturated ammonium chloride solution and water, dried over Na₂SO₄, and evaporated. The crude product was purified by silica gel column chromatography (CHCl₃) to obtain 1,8-bis((trimethylsilyl)ethynyl)pyrene as yellow powder. This material contains *ca.* 30% of 1,6-bis((trimethylsilyl)ethynyl)pyrene (judged from ¹H NMR), we used it without further purification (2.3 g, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 2H), 7.99–8.14 (m, 6H), 0.40 (s, 18H).

1,8-bis((1-((S)-2-methoxypropyl)-1H-imidazol-2-yl)ethynyl)pyrene (L^S):

CuI (12 mg, 0.06 mmol) was placed in a flame dried 50 mL 2-necked flask, evacuated, and backfilled with Ar three times. To this flask, 1,8-bis((trimethylsilyl)ethynyl)pyrene (500 mg, 1.3 mmol), (*S*)-2-iodo-1-(2-methoxypropyl)-1*H*-imidazole (740 mg, 2.8 mmol), PPh₃ (17 mg, 0.06 mmol), and degassed dry THF (7 mL) and triethylamine (7 mL) were added. Then, Pd(PPh₃)₂Cl₂ (44 mg, 0.06 mmol) and TBAF (1 M in THF, 3.2 mL, 3.2 mmol) were added and stirred at reflux for overnight. The reaction mixture was evaporated and dissolved in CHCl₃. This solution was washed with saturated ammonium chloride solution and water, dried over Na₂SO₄, then evaporated. The crude product was purified by silica gel column chromatography (CHCl₃/MeOH = 9/1) and GPC (CHCl₃) to obtain 1,8-bis((1-((*S*)-2-methoxypropyl)-1*H*-imidazol-2-yl)ethynyl)pyrene (L^S) as yellow powder (87 mg, 13%). ¹H NMR (500 MHz, CDCl₃) δ 8.70 (s, 2H), 8.23 (d, *J* = 7.8 Hz, 2H), 8.15 (d, *J* = 7.8 Hz, 2H), 8.08 (s, 2H), 7.20 (s, 2H), 7.17 (s, 2H), 4.24–4.36 (m, 4H), 3.76–3.84 (m, 2H), 3.37 (s, 6H), 1.27 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 132.22, 131.80, 131.77, 130.28, 129.92, 128.33, 126.43, 125.42, 124.03, 121.97, 117.19, 91.71, 84.87, 76.22, 56.88, 52.01, 16.98.

1,8-bis((1-((R)-2-methoxypropyl)-1H-imidazol-2-yl)ethynyl)pyrene (L^{R}) was also prepared by same procedure.

Possibility of Micro/nanostructures: We have examined the possibility of micro/nanostructures by concentration dependence of UV-Vis absorption spectrum of the assemblies, where the total concentrations of the components (L^s and Zn^{2+}) are successively changed but the molar ratio is fixed at $[Zn^{2+}]/[L^s]_0 = 0.33$ or 1.0. If helical micro/nanostructures are formed in equilibrium in solution, the absorption spectral shape would be changed depending on the concentrations of the components. There is no appreciable absorption spectral shape change with a change in the total concentrations of the components (see ESI[†], S8), indicating that helical micro/nanostructures could not be formed under our experimental conditions.

Fig. S1 CPL spectrum of L^{R} (2.0 × 10⁻⁵ M) in the presence of Zn²⁺ (6.6 × 10⁻⁶ M) in acetonitrile. Excitation wavelength: $\lambda_{ex} = 385$ nm.

Fig. S2 CPL spectrum of L^{R} in the absence of Zn^{2+} in acetonitrile. Excitation wavelength: $\lambda_{ex} = 375$ nm.

Fig. S3 ESI MS (positive) of L^S in acetonitrile $(1.0 \times 10^{-3} \text{ M})$ containing (a) $3.5 \times 10^{-4} \text{ M}$ and (b) $7.0 \times 10^{-4} \text{ M}$ of Zn(OSO₂CF₃)₂. Insets: Isotopically resolved signals at (a) m/z = 1791.58943 ({(L^S)₃(Zn)₁(OSO₂CF₃)₁}⁺) and (b) m/z = 2153.42387 ({(L^S)₃(Zn)₂(OSO₂CF₃)₃}⁺) with their calculated spectra.

Fig. S4 ¹H-¹H COSY (top), ROESY (middle), and NOESY (bottom) NMR spectra of L^{S} (2.1 × 10⁻³ M) in the presence of Zn²⁺ (1.0 × 10⁻³ M) in CD₃CN at 298 K.

Fig. S5 ¹H-¹H COSY (top), ROESY (middle), and NOESY (bottom) NMR spectra of L^{S} (2.1 × 10⁻³ M) in the presence of Zn²⁺ (1.6 × 10⁻³ M) in CD₃CN at 298 K.

Fig. S6 Stacked ¹H NMR spectra of L^{S} (2.0 × 10⁻³ M) in the presence of Zn^{2+} (0–6.0 × 10⁻⁴ M (blue), 7.0 × 10⁻⁴–1.3 × 10⁻³ M (red), 1.4 × 10⁻³–2.0 × 10⁻³ M (green)) in CD₃CN at 298 K.

Fig. S7 Assignment of rotatory strength for P-(L')₃(Zn²⁺)₂.

Fig. S8 UV-Vis absorption spectra of L^{S} [3.5 × 10⁻⁶ M (blue), 2.0 × 10⁻⁵ M (red), 6.4 × 10⁻⁵ M (green), 1.1 × 10⁻⁴ M (yellow)] in the presence of (a) 1.0 equiv. and (b) 0.33 equiv. of Zn²⁺ in acetonitrile.

References

- H. Bittermann, D. Siegemund, V. L. Malinovskii and R. Häner, *J. Am. Chem. Soc.*, 2008, **130**, 15285.
- 2. Y. Imai, Y. Nakano, T. Kawai and J. Yuasa, Angew. Chem. Int. Ed., 2018, 57, 8973.
- 3. Y. Okayasu and J. Yuasa, Mol. Syst. Des. Eng., 2018, 3, 66.