Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2019

SUPPORTING INFORMATION

¹H-Detected quadrupolar spin-lattice relaxation measurements under magic-angle spinning solid-state NMR

Maria Makrinicha, Amir Goldbourta,*

^aSchool of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Tel Aviv, Israel. *amirqo@tauex.tau.ac.il

1. Experimental parameters

Variable	²³ Na indirect	²³ Na direct	14N indirect	⁸¹ Br indirect
	Fig. 1c	Fig. 1b	Fig. 2a	Fig. 2b
Spectrometer details: Field /	14.1 T / Bruker AVIII / 4mm	14.1 T / Bruker AVIII / 4mm	9.4 T / Bruker AVIII / 4mm	14.1 T / Bruker AVIII / 4mm
Console / Probe				
Material and source	Na ₂ HPO ₄ ·2H ₂ O (Merck)	Na ₂ HPO ₄ ·2H ₂ O (Merck)	Glycine (Bio-Lab Chemicals)	Tetra-n-butylammonium
				bromide (Chem-Impex Int'l
				Inc.)
Spinning speed	14 kHz	14 kHz	14 kHz	14 kHz
PM pulse power / length (τ _{PM})	33.5 kHz / 10 T _R	33.5 kHz / 10 T _R	30 kHz / 50 T _R	40 kHz / 10 T _R
*Excitation pulse power /	9.9 kHz / 12.6 μs	9.9 kHz / 12.6 μs	30 kHz / 41.5 μs	51.5 kHz / 2.4 μs
length (τ_p)				
CP power ¹ H / CP power X /	39 kHz / 14.6 kHz / 1.5 ms		29 kHz / 15 kHz / 2.4 ms	45 kHz / 8.5 kHz / 3.0 ms
pulse length				
¹ H decoupling		100 kHz, swf-tppm		
Recycle delay	1 s	1 s	1.6 s	1 s
Scans	32	4	512	8192
Total experimental time	1.16 hrs	8.7 min	5.71 hrs	63.4 hrs
Temperature**	~45 °C	~45 °C	18.2 °C	~45 °C
Apodization	Exponential, 100 Hz	Exponential, 30 Hz	Exponential, 200 Hz	Exponential, 500 Hz

²³Na experiments: The ¹H-detected {²³Na}¹H CP experiment shown in the inset of Fig. 1c was conducted with 32 scans and all other experimental parameters were similar to Fig. 1c. The Bloch-decay ¹H spectrum was obtained using a 90° pulse of 100 kHz and a single scan. The ¹H T₁ value in this compound is ~7 min, hence a single scan was used for the Bloch-decay ¹H spectrum, and the measurement was performed after a long waiting period.

¹⁴N experiments: The ¹H-detected {¹⁴N}¹H CP experiment in the inset of Fig. 2a was conducted with 128 scans, a recycle delay of 5 s, and the same experimental parameters as the saturation recovery experiment (Fig. 2a). The Bloch-decay ¹H spectrum was obtained using 90° pulse of 100 kHz, a recycle delay of 3 s, and a single scan.

81Br experiments: The 1H-detected (81Br)1H CP experiment in the inset was conducted with the same experimental parameters used in the saturation recovery experiment. 1H was saturated in the beginning of the sequence to avoid the presence of any residual signal from direct excitation. The Bloch-decay 1H spectrum was obtained with a recycle delay of 35 s, and a single scan.

>>Phase cycle opt. 1: Quadrupolar excitation pulse: y, \overline{y} ; CP(¹H): $x, x, \overline{x}, \overline{x}, y, \overline{y}, y, \overline{y}$; CP(X): x; receiver: $x, \overline{x}, x, y, \overline{y}, \overline{y}, y, y$. (X=²³Na, ¹⁴N, 8¹Br) >>Phase cycle opt. 2: Quadrupolar excitation pulse: y, \overline{y} ; CP(¹H): $(x)_4, (\overline{x})_4, (y)_4, (\overline{y})_4$; CP(X): $(x)_2, (\overline{x})_2$; receiver: $x, \overline{x}, \overline{x}, x, \overline{x}, x, x, \overline{x}, y, \overline{y}, \overline{y}, y, y, \overline{y}, y, y, \overline{y}$.

^{* 81}Br power levels were calibrated using the signal of KBr. 14N power levels were calibrated using NH₄Cl.

^{**} The temperature in the experiments on ²³Na and ⁸¹Br are the values of the temperature in the room (22 °C) corrected for frictional heating at a spinning speed of 14 kHz, as determined from experiments on PbNO₃ (approximately 23-25 °C). The temperatures in the experiments on ¹⁴N were determined by the second sensor in the probe. Temperature dependent experiments on ¹⁴N are detailed below (Figs. S2, S3) with their explicit experimental values.

> The lack of signal originating from direct excitation of the proton spins was verified by performing experiments without irradiation on the quadrupolar spins.

2. Temperature dependent ¹H-detected ¹⁴N PM-saturation recovery spin-lattice (T_1) relaxation measurements in natural-abundance glycine.

Experimental variables different from the Table above are indicated explicitly.

The fit values were used to produce Figure 3 in the article.

Figs. S2.1-S2.5 were acquired with a long ^{14}N excitation pulse $\tau_p;$ Figs. S2.6-S2.9 were acquired with a short excitation pulse.

All curves were fit using the MATLAB tool 'cftools'. The errors report a confidence level of 95%.

Figure S2.1: Temperature (T)=18.2 °C. The mono-exponential fit yields $m=0.99\pm0.03$; $a=1.07\pm0.03$; $T_1=590\pm77$ ms. $\tau_{\rm PM}=30$ T_R; $\tau_{\rm p}=41.5$ μ s. Total experimental time ($t_{\rm exp}$) = 5.71 hrs.

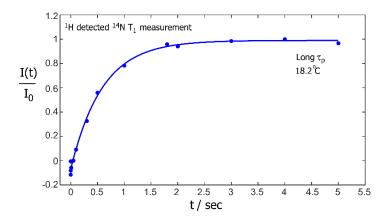
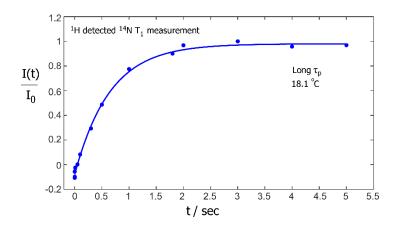
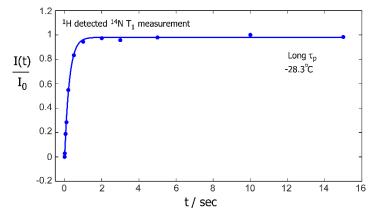




Figure S2.2: T=18.1 °C. The mono-exponential fit yields $m=0.98\pm0.03$; $a=1.08\pm0.03$; $T_1=648\pm74$ ms. $\tau_p=48$ µs; CP power ¹H: 29.8 kHz, power ¹4N 15 kHz, length 3ms. $t_{\rm exp}=5.71$ hrs.

Figure S2.3: T=-28.3 °C.

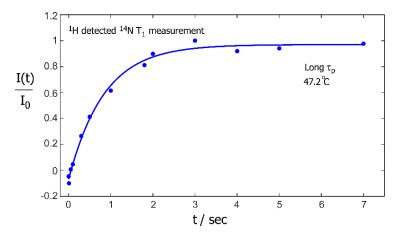

The mono-exponential fit yields $m=0.98\pm0.02$; $a=1.01\pm0.03$; $T_1=255\pm25$ ms. $\tau_p=48$ µs; recycle delay = 9.6 s. $t_{\rm exp}=21.63$ hrs.

Figure S2.4: T = 47.2 °C.

Fit: $m = 0.97 \pm 0.04$; $a = 1.07 \pm 0.05$; $T_1 = 839 \pm 143$ ms.

 $τ_p$ = 48 μs; recycle delay = 1.3 s; 1024 scans. $t_{\rm exp}$ = 11.85 hrs.

Figure S2.5: $T = -3.8 \, ^{\circ}\text{C}$.

Fit: $m = 0.98 \pm 0.03$; $a = 1.01 \pm 0.04$; $T_1 = 349 \pm 51$ ms.

 $\tau_p = 48 \mu s$; recycle delay = 3.2 s. $t_{exp} = 6.82 \text{ hrs.}$

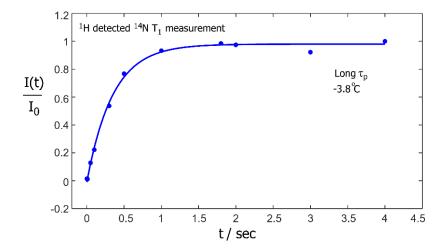


Figure S2.6: T = -3.9 °C. Fit: $m = 0.99 \pm 0.05$; $a = 1.15 \pm 0.06$; $T_1 = 449 \pm 82$ ms. $\tau_p = 8.3$ µs; recycle delay = 3.2 s; 1280 scans. $t_{\rm exp} = 17.05$ hrs.

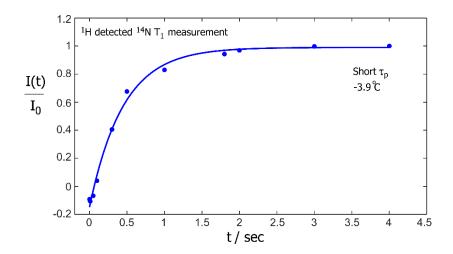
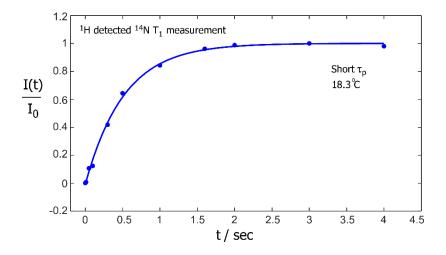



Figure S2.7: T = 18.3 °C. Fit: $m = 1.00 \pm 0.03$; $\alpha = 1.01 \pm 0.03$; $T_1 = 517 \pm 64$ ms. $\tau_p = 8.3$ µs; recycle delay = 1.6 s; 2048 scans. $t_{\rm exp} = 17.16$ hrs.

Figure S2.8: $T = 47.3 \, ^{\circ}\text{C}$.

Fit: $m = 0.99 \pm 0.06$; $a = 1.27 \pm 0.06$; $T_1 = 862 \pm 160$ ms. $\tau_p = 8.3$ µs; recycle delay =1.3 s; 2048 scans. $t_{\rm exp} = 18.86$ hrs.

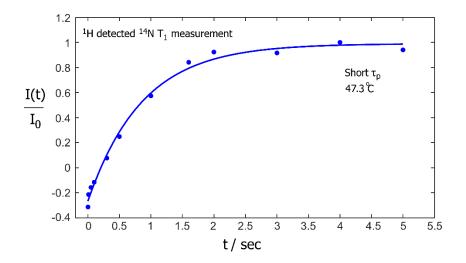
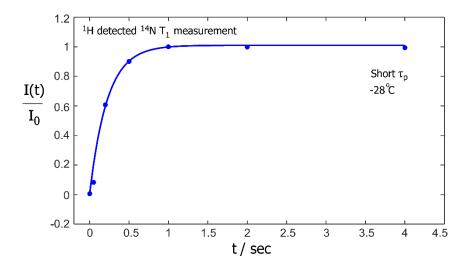
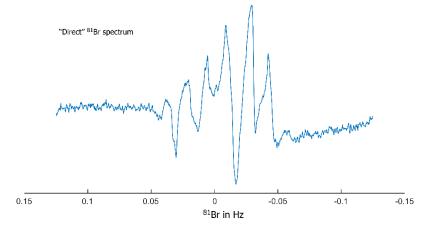
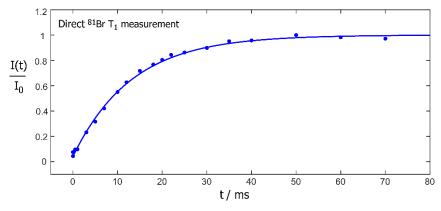




Figure S2.9: T = -28 °C. Fit: $m = 1.01 \pm 0.08$; $a = 1.0 \pm 0.1$; $T_1 = 223 \pm 85$ ms. $\tau_p = 8.3$ µs; recycle delay = 9.6 s; 768 scans. $t_{\rm exp} = 15.99$ hrs.



3. Direct-excitation 81 Br spectrum and phase-modulated T_1 saturation recovery curve.

Figure S3.1: Single excitation pulse spectrum of 81 Br in TBAB, Tetra-n-butylammonium bromide. The spectrum was acquired with an excitation pulse of 2.4 μ s, rf power level of 51.5 kHz, a spinning speed of 14 kHz, 512 scans, and a recycle delay of 1 s. Proton decoupling of 100 kHz (swf-tppm) was applied. The spectrum was processed with an exponential apodization function with a value of 500 Hz. $t_{\rm exp}$ = 9 min.

Figure S3.2: Direct ⁸¹Br-detected phase-modulated saturation recovery experiment. Each data point was extracted by integrating the directly-detected spectrum. The saturation recovery sequence is given in [1] and the PM pulse lasted 10 rotor periods. The spinning speed was 14 kHz. The T_1 relaxation time is 13±1 ms. $t_{\rm exp}$ = 2.9 hrs.

4. References

[1] M. Makrinich, R. Gupta, T. Polenova, A. Goldbourt, Saturation capability of short phase modulated pulses facilitates the measurement of longitudinal relaxation times of quadrupolar nuclei, Solid State Nucl. Magn. Reson. 84 (2017) 196-203.