Supporting Information

Lewis Acid Base Chemistry of Bestmann's Ylide, Ph₃PCCO, and its Bulkier Analogue, (Cyclohexyl)₃PCCO

Amandeep Brar, Daniel K. Unruh, Adelia J. A. Aquino, Clemens Krempner*

clemens.krempner@ttu.edu

1. General Remarks

All air- and moisture-sensitive manipulations were carried out using standard vacuum line, Schlenk or cannula techniques or in a Vacuum Atmospheres OMNI inert atmosphere dry box containing an atmosphere of purified nitrogen. Toluene and hexanes were distilled under nitrogen from alkali metals and stored over 4 Å molecular sieves prior. Acetonitrile was stored over 4 Å molecular sieves prior to use. All deuterated solvents were purchased from Cambridge Isotope Labs. C₆D₆, C₇D₈ CD₂Cl₂ and CDCl₃ were dried and stored over 4 Å molecular sieves prior to use. NaN(SiMe₃)₂ (Alfa Aesar), Ph₃CBF₄ (Alfa Aesar), Ph₃CBr (Alfa Aesar) and AIMe₃ (Acros, 1M solution in heptane) were purchased form commercial sources and used without further purification. Ph₃PCCO [1], $B(C_6F_5)_3$ [2] and $Al(C_6F_5)_3$ [3] were synthesized according to the literature procedure and stored in the glove box. The ¹H-, ¹³C-, ¹¹B- ¹⁹F-, and ³¹P-NMR spectra were obtained from a JOEL ECS 400 and Varian 500. All measurements, unless noted otherwise, were carried out at 298 K and NMR chemical shifts were given in ppm. The ¹¹B NMR spectra referenced to H₃BO₃ in D₂O (δ = 36 ppm), the ³¹P NMR referenced to H₃PO₄ in D_2O ($\delta = 0$ ppm), ¹⁹F NMR spectrum was referenced to $C_6H_5CF_3$ in C_6D_6 ($\delta = 62.3$) ppm), The ¹H-NMR spectra were referenced to the residual protonated solvent for ¹H and the ¹³C-NMR spectra were referenced to the deuterated solvent peaks. The following abbreviations were used to describe peak multiplicities in the reported NMR spectroscopic data: "s" for singlet, "d" for doublet, "t" for triplet, "g" for guartet, "m" for multiplet and "br" for broadened resonances. The Raman spectra were recorded on a Bruker Optics Senterra dispersive Raman microscope spectrometer with a spectral resolution of 3-5 cm⁻¹ using 785 nm laser excitation. Elemental analyses were performed using a Perkin Elmer 2400 Series II CHNS/O Analyzer.

- [1] R. Schobert, *Organic Syntheses*, **2005**, 82, 140.
- [2] S. Lancaster, *ChemSpider SyntheticPages*, **2003**, doi:10.1039/SP215.
- [3] S. P. Lewis, US 75885991 B2, **2008**.

2. Synthetic Procedures

2.1 [(Cyclohexyl)₃PCH₂COOEt]Br

A 50 ml Schlenk flask equipped with a magnetic stir bar was charged with tricyclohexylphosphine (2 g, 7.13 mmol) under nitrogen atmosphere. To this solution, bromoethyl acetate (0.82 ml, 7.13 mmol) was slowly added with stirring. Afterwards, the reaction mixture was heated for ca. one hour at 90°C. After cooling to room temperature, ca. 20 mL of hexanes were added and the resulting white suspension was centrifuged (Note: filtration is also possible but should be done under nitrogen or quickly on the bench without nitrogen as the product is hygroscopic). The solid was washed twice with hexanes, centrifuged and dried under vacuum to give 3.0 g (96%) of the title compound. ¹H NMR (CDCl₃, 400 MHz): δ 1.27 (t, ${}^{3}J_{H-H}$ = 8 Hz, CH₃, 3 H), 1.29-1.30 (m, cyclohexyl, 6 H), 1.38-1.57 (m, cyclohexyl, 13 H), 1.76-1.79 (m, cyclohexyl, 3 H), 1.89-1.92 (m, cyclohexyl, 5 H), 2.04-2.06 (m, cyclohexyl, 6 H), 2.83 (m, cyclohexyl, 3 H), 4.00 (d, ${}^{2}J_{P-H}$ = 12 Hz, PCH₂, 2 H), 4.19 (q, ${}^{3}J_{H-H}$ = 8 Hz, OCH₂, 2 H) ppm. ${}^{13}C{H}$ NMR (CDCl₃, 100.6) MHz): 14.3 (CH₃), 23.4 (d, ${}^{1}J_{P-C}$ = 45.3 Hz, PCH₂), 25.7 (CH₂), 26.7 (d, ${}^{2}J_{P-C}$ = 12.1 Hz, CH₂), 27.4 (d, ${}^{3}J_{P-C}$ = 4.0 Hz, CH₂), 30.8 (d, ${}^{1}J_{P-C}$ = 39 Hz, CH), 63.1 (OCH₂), 166.1 (d, ${}^{3}J_{P-C}$ = 3 Hz, CO) ppm. 31 P NMR [CDCl₃, 161.9 MHz]: δ 33.7 ppm. Anal. Calc. for C₂₂H₄₀BrO₂P (447.438): C, 59.06; H, 9.01; Found C, 57.67; H, 9.07.

Figure S2.¹³C NMR spectrum of [(cyclohexyl)₃PCH₂COOEt]Br in CDCl₃.

Figure S3.³¹P NMR spectrum of [(cyclohexyl)₃PCH₂COOEt]Br in CDCl₃.

2.2 (Cyclohexyl)₃PCCO (2)

In the glove box, a 50 mL Schlenk flask equipped with a magnetic stir bar was charged with [(cyclohexyl)₃PCH₂COOEt]Br (2 g, 4.47 mmol) and 20 ml of dry toluene. Then sodium bis(trimethylsilyl)amide (1.64 g, 8.95 mmol) was added portion wise with stirring. Then the flask was taken from the glove box, attached to the Schlenk line and heated at 90°C for 3 hours. After cooling to room temperature, the resulting suspension was centrifuged and the solution was decanted off. The precipitate was washed twice with toluene, centrifuged and all washings were combined. Then all the solvent was removed under vacuum and the remaining solid was dried under vacuum (ca. 8-10 hrs.) until hexamethyldisilazane [HN(SiMe₃)₂] was fully removed. Subsequently, the crude product was recrystallized from toluene to give 990 mg (70%) of analytically pure 2. ¹H NMR (C₆D₆, 400 MHz): δ 0.95-1.02 (b, cyclohexyl, 9 H), 1.23-1.26 (m, cyclohexyl, 6 H), 1.48 (b, cyclohexyl, 3 H), 1.56-1.65 (m, cyclohexyl, 9 H), 1.74-1.77 (m, cyclohexyl, 6 H) ppm. ¹³C{H} NMR (C₆D₆, 100.6 MHz): 26.7 (CH₂), 27.6 (d, ${}^{2}J_{P-C}$ = 13 Hz, CH₂), 27.9 (d, ${}^{3}J_{P-C}$ = 3.02 Hz, CH₂), 35.6 (d, ${}^{1}J_{P-C}$ = 57 Hz, CH), -17.5 (d, ${}^{1}J_{P-C}$ = 177 Hz, P=C), 145.5 (d, ${}^{2}J_{P-C}$ = 39 Hz, CO) ppm. 31 P NMR [C₆D₆, 161.9 MHz]: δ 20.5 ppm. Anal. Calc. for C₂₀H₃₃OP (320.457): C, 74.96; H, 10.38; Found C, 72.66; H, 10.49.

Figure S5. ¹³C NMR spectrum of 2 in C₆D₆.

300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -30 Delta (ppm)

Figure S6. ³¹P NMR spectrum of 2 in C₆D₆.

In a Glove box, a 25 mL Schlenk flask was charged with **1** (300 mg, 0.99 mmol) and 2 ml of toluene. Subsequently, B(C₆F₅)₃ (510 mg, 0.99 mmol) was added to the flask. The formation of **3** was confirmed by ¹¹B, ¹⁹F and ³¹P NMR spectroscopy. Then, the toluene was removed under vacuum to leave raw **3** as a solid material, which was washed twice with hexanes and dried under vacuum (yield 80%). ¹H NMR (C₆D₆, 400 MHz): δ 6.72-6.76 (m, arom. H, 6 H), 6.86-6.90 (m, arom. H, 3 H), 7.17-7.20 (m, arom. H, 6 H) ppm. ¹³C{H} NMR (C₆D₆, 100.6 MHz): 122.1 (d, ¹*J*_{*P*-*C*} = 92 Hz, ipso-C-P), 130.1 (d, ²*J*_{*P*-*C*} = 13 Hz, arom. CH), 134.1 (d, ³*J*_{*P*-*C*} = 11 Hz, arom. CH), 134.9 (d, ⁴*J*_{*P*-*C*} = 3 Hz, arom. CH), 137.9 (m, ¹*J*_{*C*-*F*</sup> = 254 Hz, ortho-CF), 140.3 (m, ¹*J*_{*C*-*F*} = 251 Hz, para-CF), 149.1 (m, ¹*J*_{*C*-*F*</sup> = 246 Hz, meta-CF), 171.9 (d, ²*J*_{*P*-*C*} = 10 Hz, CO) ppm. ¹¹B NMR (C₆D₆, 128.4 MHz): δ -14.4 ppm. ³¹P NMR [C₆D₆, 161.9 MHz]: δ 29.9 ppm. ¹⁹F NMR (C₆D₆, 376.3 MHz): δ -130.2 (m, ortho-F, 6 F), -158.8 (m, para-F, 3 F), -164.2 (m, meta-F, 6 F) ppm. Anal. Calc. for C₃₈H₁₅BF₁₅OP (814.297): C, 56.05; H, 1.86; Found C, 56.45; H, 1.98.}}

Figure S7. ¹H NMR spectrum of 3 in C₆D₆.

Figure S8. ¹³C NMR spectrum of 3 in C₆D₆.

-128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 Delta (ppm)

Figure S9. ¹⁹F NMR spectrum of **3** in C₆D₆.

Figure S10. ³¹P NMR spectrum of **3** in C₆D₆.

Figure S11. ¹¹B NMR spectrum of 3 in C_6D_6 .

2.4 Reaction of ylide 1 with Al(C₆F₅)₃

In a Glove box, a J-Young NMR tube was charged with **1** (50 mg, 0.16 mmol) and 0.5 mL of C₆D₆. Then Al(C₆F₅)₃×(toluene)_{1/3} (92 mg, 0.16 mmol) was added and the resulting solution analyzed by NMR spectroscopy. ¹H NMR (C₆D₆, 400 MHz): δ 6.86-6.91 (m, arom. H, 6 H), 7.11-7.15 (m, arom. H, 3 H), 7.21-7.26 (m, arom. H, 6 H) ppm. ¹³C{H} NMR (C₆D₆, 100.6 MHz): 115.6 (br, ipso-C), 124.7 (d, ¹*J*_{P-C} = 106 Hz, P-C), 130.1 (d, ²*J*_{P-C} = 13 Hz, CH), 133.2 (d, ³*J*_{P-C} = 12 Hz, CH), 133.7 (CH), 137.5 (m, ¹*J*_{C-F} = 249 Hz, ortho-CF), 142.4 (m, ¹*J*_{C-F} = 270 Hz, para-CF), 151.3 (m, ¹*J*_{C-F} = 232 Hz, meta-CF) ppm. ³¹P NMR [C₆D₆, 161.9 MHz]: δ 10.1 ppm. ¹⁹F NMR (C₆D₆, 376.3 MHz): δ -122.4 (m, ortho-F, 6 F), -153.8 (m, para-F, 3 F), - 162.0 (m, meta-F, 6 F) ppm. ³¹P NMR [C₆D₆, 161.9 MHz, 213K]: δ ~28, ~4 ppm.

Figure S12. ¹H NMR spectrum in C₆D₆ at room temperature.

Figure S13. ³¹P NMR Spectrum in C₆D₆ at room temperature.

Figure S14. ³¹P NMR spectrum in toluene at -60°C.

Figure S15. ¹⁹F NMR spectrum in C_6D_6 at room temperature.

Figure S16. ¹³C NMR spectrum in C₆D₆ at room temperature.

In a Glove box, a 25 mL Schlenk flask was charged with **2** (50 mg, 0.16 mmol) and 0.5 ml of toluene and B(C₆F₅)₃ (80 mg, 0.16 mmol) was subsequently added. The immediate formation of Lewis acid base adduct **5** was confirmed by NMR spectroscopy. Then, the solvent was removed under vacuum, the solid residue washed twice with hexanes and dried under vacuum. Yield 80%. ¹H NMR (C₆D₆, 400 MHz): δ 0.75-0.77 (m, cyclohexyl, 14 H), 1.23-1.60 (m, cyclohexyl, 19 H) ppm. ¹³C{H} NMR (C₆D₆, 125.7 MHz): 5.2 (d, ¹*J*_{P-C} = 200.0 Hz, P=C), 25.6 (CH₂), 26.8 (d, ²*J*_{P-C} = 13.8 Hz, CH₂), 27.2 (d, ³*J*_{P-C} = 2.5 Hz, CH₂), 32.1 (d, ¹*J*_{P-C} = 52.8 Hz, CH), 125.3 (d, ¹*J*_{P-C} = 40.22 Hz, CO), 119.5 (ipso-C), 138.2 (m, ¹*J*_{C-F} = 254 Hz, ortho-CF), 140.9 (m, ¹*J*_{C-F} = 251 Hz, para-CF), 149.4 (m, ¹*J*_{C-F} = 242 Hz, meta-CF) ppm. ¹¹B NMR (C₆D₆, 376.3 MHz): δ 0.3 ppm. ³¹P NMR [C₆D₆, 161.9 MHz]: δ 23.9 ppm. ¹⁹F NMR (C₆D₆, 376.3 MHz): δ -133.3 (m, ortho-F, 6 F), -157.9 (m, para-F, 3 F), -164.6 (m, meta-F, 6 F) ppm. Anal. Calc. for C₃₈H₃₃BF₁₅OP (832.441): C, 54.83; H, 4.00; Found C, 53.85; H, 3.78.

Figure S17. ¹H NMR spectrum of 5 in C₆D₆.

Figure S18. ¹³C NMR spectrum of 5 in C₆D₆.

Figure S21. ¹¹B NMR spectrum of 5 in C₆D₆.

2.6 Synthesis of 6

In a Glove box, a Schlenk flask was charged with **2** (50 mg, 0.16 mmol) and 0.5 ml of toluene and Al(C₆F₅)₃×(toluene)_{1/3} (90 mg, 0.16 mmol) was subsequently added. Upon concentration of the solution, crystals precipitated, which were collected, washed with hexanes twice and dried under vacuum. Yield 65%. ¹H NMR (toluene-D₈, 400 MHz): δ 0.75-0.94 (m, cyclohexyl, 14 H), 1.35-1.64 (m, cyclohexyl, 19 H) ppm. ¹³C{H} NMR (toluene-D₈, 100.6 MHz): 0.0 (d, ¹*J*_{P-C} = 202.0 Hz, P=C), 26.4 (CH₂), 27.4 (d, ²*J*_{P-C} = 13.1 Hz, CH₂), 27.8 (d, ³*J*_{P-C} = 3.0 Hz, CH₂), 33.7 (d, ¹*J*_{P-C} = 53.2 Hz, CH), 124.5 (d, ¹*J*_{P-C} = 41.2 Hz, CO), 116 (ipso-C), 138.2 (m, ¹*J*_{C-F} = 241 Hz, ortho-CF), 142.8 (m, ¹*J*_{C-F} = 243 Hz, para-CF), 151.7 (m, ¹*J*_{C-F} = 237 Hz, meta-CF) ppm. ³¹P NMR [toluene-D₈, 161.9 MHz]: δ 24.5 ppm. ¹⁹F NMR (toluene-D₈, 376.3 MHz): δ -122.6 (m, ortho-F, 6 F), -154.2 (m, para-F, 3 F), -162.3 (m, meta-F, 6 F) ppm. The results from combustion analysis were unsatisfactory due to partial decomposition of **6**.

Figure S22. ¹H NMR spectrum of 6 in toluene-d8.

Figure S23. ¹³C NMR spectrum of 6 in toluene-d8.

Figure S24. ³¹P NMR spectrum of 6 in toluene-d8.

l12 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 Delta (ppm)

Figure S25. ¹⁹F NMR spectrum of **6** in toluene-d8.

2.7 Synthesis of 8

A 25 mL Schlenk flask equipped with a magnetic stir bar was charged with 1 (200 mg. 0.66 mmol) and acetonitrile (3 mL). Then Ph₃CBF₄ (218 mg, 0.66 mmol) was added and the mixture stirred until all solid material had dissolved. Colorless crystals formed upon standing the solution overnight without stirring. After decantation of the solvent, the crystals were washed twice with acetonitrile and dried under vacuum to give analytically pure $8 \times (CH_3CN)_{0.5}$. Yield 62%. ¹H NMR (CD₂Cl₂, 400 MHz): δ 6.96-8.27 (m, arom. H, 29 H) ppm. ¹³C{H} NMR (CD₂Cl₂, 125.7 MHz): 65.7 (d, ${}^{2}J_{P-C}$ = 10.1 Hz, trityl-C), 98.0 (d, ${}^{1}J_{P-C}$ = 102 Hz, P=C), 122.1 (d, ${}^{1}J_{P-C}$ = 92 Hz, ipso-C), 124.9 (d, ⁴*J*_{P-C} = 2.5 Hz, **C**H=CH-CH), 125.8 (g, CH-CH=**C**H, *J*_{P-F} = 6.3 Hz), 127.8 (m-C), 128.2, 129.9 (C=CH-CH=C), 127.8 (meta-CH), 128.9 (d, ${}^{2}J_{P-C}$ = 21.4 Hz, ortho-CH), 129.9 (d, ³J_{P-C} = 13.8 Hz, meta-CH), 131.3 (para-CH), 134.2 (d, ⁴J_{P-C} = 2.5 Hz, ortho-CH), 135.2 (d, ${}^{4}J_{P-C}$ = 11.3 Hz, para-CH), 135.8 (d, ${}^{3}J_{P-C}$ = 13.8 Hz, **C**=C), 142.0 (ipso-C), 159.1 (d, ³*J*_{P-C} = 12.6 Hz, C=**C**), 177.6 (CO) ppm. ¹¹B NMR (CD₂Cl₂, 128.4 MHz): δ -2.2 ppm. ³¹P NMR [CD₂Cl₂, 161.9 MHz]: δ 16.5 ppm. ¹⁹F NMR $(CD_2CI_2,$ 376.3 MHz): δ -146.2 ppm. Anal. Calc. for C₃₉H₂₉BF₃OP×(CH₃CN)_{0.5} (632.965): C, 75.90; H, 4.86; Found C, 74.82; H, 4.75.

Figure S27. ¹³C NMR spectrum of 8 in CD₂Cl₂.

Figure S30. ¹¹B NMR spectrum of 8 in CD₂Cl₂.

2.8 Synthesis of 9

A 25 mL Schlenk flask equipped with a magnetic stir bar was charged with **1** (200 mg, 0.66 mmol) and acetonitrile (3 mL). Then Ph₃CBr (218 mg, 0.66 mmol) was added and the mixture stirred until all solid material dissolved. Colorless crystals formed upon standing the solution overnight without stirring. The solvent was decanted off, the crystals washed twice with acetonitrile and dried under vacuum for several hours. Yield 53%. ¹H NMR (CD₂Cl₂, 400 MHz): δ 6.97-7.62 (m, 29 H) ppm. ¹³C{H} NMR (CD₂Cl₂, 100.6 MHz): 66.2 (b, trityl-C),122.5 (b, ipso-C), 123.4, 125.0, 127.9,128.6 (CH), 127.6 (meta-CH), 128.9 (d, ²*J*_{P-C} = 27 Hz, ortho-CH), 129.9 (d, ³*J*_{P-C} = 13 Hz, meta-CH), 131.3 (para-CH), 135.1 (d, ⁴*J*_{P-C} = 10 Hz, para-CH), 134.1 (ortho-CH), 137.6 (C=C), 143.1 (ipso-C), 158.6 (d, ³*J*_{P-C} = 12 Hz, C=C) ppm. ³¹P NMR [CD₂Cl₂, 161.9 MHz]: δ 15.7 ppm. IR (solid-state): *v* = 3300 cm⁻¹ (OH). Anal. Calc. for C₃₉H₂₉BF₃OP (625.546): C, 74.88; H, 4.83; Found C, 75.02; H, 4.68 (Note! To fully remove acetonitrile for elemental analysis, the sample was dried under vacuum at 80°C for ca. 1 day).

Figure S31. ¹H NMR spectrum of 9 in CD₂Cl₂.

Figure S32. ³¹P NMR spectrum of **9** in CD₂Cl₂.

Figure S33. ¹³C NMR spectrum of **9** in CD₂Cl₂.

2.9 Synthesis of 10

In a Glove box, a J-Young NMR tube was charged with **1** (50 mg, 0.16 mmol) and 0.4 ml of C₆D₆. A heptane solution of AlMe₃ (1 M, 0.32 mmol, 0.32 ml) was added slowly. Upon concentration of the solution, crystals of **10** precipitated, which were collected, washed with hexanes twice and finally dried under vacuum. Yield 90% ¹H NMR (C₆D₆, 400 MHz): δ 1.77 (d, ⁴*J*_{P-H} = 0.4 Hz, CH₃), -0.03 [s, Al(CH₃)₂, 6 H], -0.11 [s, Al(CH₃)₃, 9 H], 6.89-6.94 (m, arom. CH, 6 H), 7.01-7.06 (m, arom. CH, 3 H), 7.18-7.24 (m, 6H) ppm. ¹³C{H} NMR (C₆D₆, 100.6 MHz): -5.7 [Al(CH₃)₃], -7.2 [Al(CH₃)₂], 22.8 (d, ³*J*_{P-C} = 4.0 Hz, CH₃), 96.7 (d, ¹*J*_{P-C} = 73.4 Hz, P=C), 125.6 (d, ¹*J*_{P-C} = 91.2 Hz, CH), 130.2 (d, ²*J*_{P-C} = 13.1 Hz, CH), 133.6 (d, ³*J*_{P-C} = 10.1 Hz, CH), 133.8 (d, ⁴*J*_{P-C} = 2.0 Hz, CH), 178.8 (d, ²*J*_{P-C} = 10.1 Hz, CO) ppm. ³¹P NMR [C₆D₆, 161.9 MHz]: δ 11.3 ppm. The results from combustion analysis were unsatisfactory due to decomposition of **10**.

Figure S34. ¹H NMR spectrum of **10** in C₆D₆.

Figure S35. ¹³C NMR spectrum of **10** in C₆D₆.

0.06 0.14 0.15 0.17 0.17

2173 C173

Figure S36. ³¹P NMR spectrum of **10** in C₆D₆.

2.10 Synthesis of 11

In a Glove box, a J-Young NMR tube was charged with **2** (50 mg, 0.16 mmol) and 0.4 ml of C₆D₆. To this solution, a heptane solution of AlMe₃ (1M, 0.32 mmol, 0.32 ml) was added slowly. Upon concentration of the solution, crystals of **11** precipitated, which were collected, washed twice with hexanes and finally dried under vacuum. Yield 88%. ¹H NMR (C₆D₆, 400 MHz, 333 K): δ 2.20 (d, ⁴J_{P-H} = 4.0 Hz, CH₃, 3 H), -0.11 [s, Al(CH₃)₂, 6 H], -0.08 [s, Al(CH₃)₃, 9 H] 0.89-0.98 (m, cyclohexyl, 8 H), 1.05-7.1.14 (m, cyclohexyl, 7 H), 1.48-1.69 (m, cyclohexyl, 18 H) ppm. ¹³C{H} NMR (C₆D₆, 100.6 MHz, 333 K): 33.7 (d, ¹J_{P-C} = 49.2 Hz, CH), 27.5 (d, ²J_{P-C} = 12 Hz, CH₂), 27.7 (d, ³J_{P-C} = 3.0 Hz, CH₂), 26.4 (CH₂), 94.7 (d, ¹J_{P-C} = 63.3 Hz, P=C), 25.00 (d, ³J_{P-C} = 2.00 Hz, CH₃), -5.6 [Al(CH₃)₃], -6.7 [Al(CH₃)₂], 174.5 (d, ²J_{P-C} = 6.0 Hz, CO) ppm. ³¹P NMR [C₆D₆, 161.9 MHz, 333 K]: δ 22.6 ppm. The results from combustion analysis were unsatisfactory due to decomposition of **11**. Determination of the solid-state structure of **11** by X-ray crystallography was attempted. Owing to the poor quality of the collected data set, only connectivity could be confirmed (see also below).

Figure S37. Solid-state structure of 11 (black = carbon, H atoms omitted).

Figure S38. ¹H NMR spectrum of **11** in C₆D₆.

Figure S39. ¹³C NMR spectrum of **11** in C₆D₆.

Figure S40. ³¹P NMR spectrum of **11** in C₆D₆.

3. X-ray crystallography

X-ray diffraction data for compounds **1**, **2**, **3**, **5**, **6**, **8**, **9**, and **10** were obtained on a Bruker Smart Apex II CCD diffractometer, using graphite-monochromated Mo-K α radiation (λ = 0.71073 Å) at 100 K. Intensity data were collected using ω -steps accumulating area detector images spanning at least a hemisphere of reciprocal space. All the data were corrected for Lorentz polarization effects. A multi-scan absorption corrections were applied using SADABS [4]. Structures were solved by direct methods (SHELXS) [4] and refined by full-matrix least-squares against *F*² (SHELXL) [5]. All hydrogen atoms were assigned riding isotropic displacement parameters and constrained to idealized geometries. In the structures of **3** and **7**, highly disordered interstitial solvent molecules were treated as diffuse scattering with Platon/SQUEEZE [6, 7]. For compounds **3**, **5**, **8**, and **9** the rigid-bond restraint RIGU was applied globally during the final refinements to help restrain slight positional disorder.

CCDC1881945-1881952 (**1**, **2**, **3**, **5**, **6**, **8**, **9**, **10**) contain the supplementary crystallographic data for this paper. These data can be obtained from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk.

- [4] Krause *et al.*, **2015**, SADABS v2014/5.
- [5] G. M. Sheldrick, *Acta Crystallogr.*, **2008**, *A64*, 112.
- [6] A. L. Spek, J. Appl. Cryst., 2003, 36, 7.
- [7] A. L. Spek, Acta Cryst., 2009, D65, 148.

	1	2	3	5
Formula	C ₂₀ H ₁₅ OP	C ₂₀ H ₃₃ OP	C44H29BF15OP	C45H41BF15OP
Molecular weight	302.29	320.43	900.45	924.56
Space group	$P2_{1}/n$	$P2_{1}/c$	$P2_{1}/n$	$P\overline{1}$
a (Å)	10.703(10)	14.1064(19)	11.9223(18)	11.2805(14)
b (Å)	10.124(9)	14.0310(19)	17.418(3)	13.0713(17)
c (Å)	14.561(13)	19.066(3)	19.227(3)	15.639(2)
β (°)	93.534(14)	107.466(2)	102.096(2)	110.532(2)
Volume (Å ³)	1575(2)	3599.7(8)	3904.2(10)	2065.1(5)
Ζ	4	8	4	2
$\rho_{\text{calcd}} (\text{g cm}^{-3})$	1.275	1.183	1.532	1.487
Temperature (K)	100	100	100	100
μ (mm ⁻¹)	0.173	0.154	0.179	0.171
Reflections collected	21843	41888	37581	21668
Unique reflections (R_{int})	3466 (0.0303)	8008 (0.0359)	7159 (0.0796)	7602 (0.0543)
$R_1 [I > 2\sigma(I)]$	0.0336	0.0341	0.0507	0.0483
wR_2 (all data)	0.0857	0.0897	0.1312	0.1135
Goodness-of-fit on F ²	1.055	1.034	1.025	1.021

Table 1. Crystallographic data for complexes 1-3 and 5.

	6	8	9	10
Formula	C ₃₈ H ₃₃ AlF ₁₅ OP	C ₄₆ H ₃₇ BF ₃ OP	C43H36BrN2OP	$C_{26}H_{33}Al_2OP$
Molecular weight	848.59	704.53	707.62	446.45
Space group	$P2_{1}/n$	$P\overline{1}$	PĪ	$P2_{1}/c$
a (Å)	11.1971(15)	9.7980(10)	10.3865(8)	8.6481(10)
b (Å)	15.351(2)	18.6088(18)	13.6653(10)	22.635(3)
c (Å)	21.663(3)	20.228(2)	14.2202(11)	13.7034(16)
β (°)	94.574(2)	95.8660(10)	90.9690(10)	90.665(2)
Volume (Å ³)	3711.8(9)	3528.1(6)	1790.3(2)	2682.3(5)
Ζ	4	4	2	4
$\rho_{\text{calcd}} (\text{g cm}^{-3})$	1.519	1.326	1.313	1.106
Temperature (K)	100	100	100	100
μ (mm ⁻¹)	0.205	0.131	1.229	0.182
Reflections collected	39040	55003	31758	28610
Unique reflections (R_{int})	7615 (0.0335)	12997	7925 (0.0320)	5483 (0.0321)
		(0.1132)		
$R_1[I \ge 2\sigma(I)]$	0.0348	0.0539	0.0312	0.0407
wR_2 (all data)	0.0850	0.1334	0.0789	0.1126
Goodness-of-fit on F ²	1.012	0.977	1.034	1.043

 Table 2. Crystallographic data for complexes 6 and 8-10.

4. Computational data

Quantum chemical calculations based on density functional theory (DFT) were carried out for geometry optimization and frequency calculations of **1** and **2**. Calculations were performed by means of the B3-LYP [8] functional and the triple- ζ valence polarization basis set (def2-TZVP) [9] using the Turbomole [10] program suite. Dispersion interactions were explicitly included in the calculations by using the empirical formalism D3 developed by Grimme [11]. The C=C=O stretching frequency values were corrected by a scale factor of 0.9662 [12].

Table 3. Calculated distances, angles and C=C=O stretching frequencies of the centralPCCO units of **1** and **2**.

Comp.	Distance [Å]		Angle [°]		Frequency [cm ⁻¹]		
	P-C	C-C	C-O	P-C-C	C-C-O	C=C=O asym.	C=C=O sym.
1	1.648	1.272	1.177	140.8	176.1	2128	1448
2	1.653	1.269	1.181	144.1	176.3	2126	1448

Cartesian coordinates of 1:

Ρ	0.5723174	0.0943782	0.0827289
0	3.5071691	1.1011434	2.4270248
С	2.1078554	0.5182362	0.5054225
С	2.8019962	0.8160127	1.5287914
С	0.1901208	0.6298705	-1.6151010
С	0.9792061	1.6190834	-2.2022931
Н	1.8230527	2.0154508	-1.6513790
С	0.6889703	2.0732554	-3.4840129
Н	1.3077075	2.8387867	-3.9351513
С	-0.3877424	1.5424814	-4.1858307
Н	-0.6110046	1.8950466	-5.1851842
С	-1.1742401	0.5507103	-3.6065594

Н	-2.0078801	0.1284855	-4.1535645
С	-0.8865443	0.0942513	-2.3267657
Н	-1.4969028	-0.6854478	-1.8894298
С	-0.7364282	0.7880984	1.1489348
С	-0.7105317	0.4565038	2.5079292
Н	0.0494879	-0.2171606	2.8852662
С	-1.6477748	0.9943000	3.3773921
Н	-1.6192796	0.7324588	4.4275486
С	-2.6167269	1.8747074	2.9013806
Н	-3.3449377	2.2981466	3.5818543
С	-2.6434374	2.2130973	1.5543574
Н	-3.3912119	2.9017692	1.1812095
С	-1.7075088	1.6714300	0.6779235
Н	-1.7354724	1.9435016	-0.3686646
С	0.2925790	-1.7093139	0.1002422
С	-0.9716009	-2.2617075	0.3187791
Н	-1.8171919	-1.6197417	0.5306613
С	-1.1465823	-3.6406076	0.2872359
Н	-2.1280934	-4.0622471	0.4646861
С	-0.0621563	-4.4750073	0.0377224
Н	-0.1990266	-5.5490933	0.0164639
С	1.2005178	-3.9292027	-0.1731034
Н	2.0486645	-4.5767422	-0.3568158
С	1.3796783	-2.5522381	-0.1397803
Н	2.3626852	-2.1212682	-0.2835935

Cartesian coordinates of 2:

-5.1969014	2.5961084	13.4050748
-8.1711186	4.8302473	12.1407374
-6.1990692	3.9028816	13.2566878
-7.2251124	4.3489669	12.6588374
	-5.1969014 -8.1711186 -6.1990692 -7.2251124	-5.19690142.5961084-8.17111864.8302473-6.19906923.9028816-7.22511244.3489669

С	-3.7456284	3.0772663	14.4371154
С	-3.0306122	4.3172318	13.8732242
С	-1.9440567	4.8033194	14.8383710
С	-0.9445836	3.6918910	15.1710143
С	-1.6556373	2.4471098	15.7076051
С	-2.7377674	1.9568735	14.7378741
С	-4.5018012	1.9614072	11.7939128
С	-4.1139669	0.4706321	11.7822130
С	-3.4250739	0.0976631	10.4640435
С	-4.3029718	0.4384663	9.2576939
С	-4.7179525	1.9114109	9.2754314
С	-5.4017596	2.2943764	10.5914563
С	-6.0046614	1.1701088	14.2652291
С	-7.2909100	0.7603985	13.5243934
С	-7.9924762	-0.4097597	14.2204651
С	-8.2934439	-0.0884834	15.6853152
С	-7.0191175	0.3154565	16.4284710
С	-6.3075835	1.4861071	15.7409128
Н	-4.2163795	3.3815762	15.3787162
Н	-2.5642466	4.0702771	12.9124757
Н	-3.7592034	5.1057837	13.6809430
Н	-1.4263693	5.6640301	14.4071220
Н	-2.4180794	5.1538774	15.7622510
Η	-0.2062365	4.0471272	15.8947450
Н	-0.3899147	3.4242303	14.2635244
Η	-2.1218513	2.6824002	16.6713295
Η	-0.9352026	1.6463762	15.8944165
Η	-3.2369477	1.0780050	15.1528714
Н	-2.2570126	1.6389277	13.8067677
Н	-3.5797515	2.5429883	11.6771220
Н	-3.4622748	0.2231002	12.6213812

Н	-5.0138575	-0.1414175	11.8920978
Н	-2.4766131	0.6418695	10.3883223
Н	-3.1765265	-0.9672200	10.4675948
Н	-3.7785947	0.2005532	8.3284628
Н	-5.2018085	-0.1887995	9.2805454
Н	-5.3848618	2.1303290	8.4377178
Н	-3.8287288	2.5386170	9.1391208
Н	-6.3487275	1.7532417	10.6795941
Н	-5.6511361	3.3553174	10.5957330
Н	-5.2965522	0.3357213	14.2279695
Н	-7.9630134	1.6228395	13.4882765
Н	-7.0718664	0.4951685	12.4881585
Н	-8.9145155	-0.6535283	13.6859255
Н	-7.3538250	-1.2995246	14.1680538
Н	-8.7629060	-0.9455283	16.1751374
Н	-9.0146241	0.7357182	15.7317017
Н	-6.3388456	-0.5439740	16.4718590
Н	-7.2485023	0.5842419	17.4630728
Н	-5.3865836	1.7149479	16.2820327
Н	-6.9361128	2.3804772	15.7891728

- [8] A. D. Becke, J. Chem. Phys. **1993**, 98, 5648–5652.
- [9] F. Weigend, M. Haser, H. Patzelt, and R. Ahlrichs, *Chem. Phys. Lett.* **1998**, *294*, 143.
- [10] R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kölmel, *Chem. Phys. Lett.* **1989**, 162, 165.
- [11] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, *J. Chem. Phys.* **2010**, 132, 154104.
- [12] M. L. Laury, M. J. Carlson, and A. K. Wilson, J. Comp. Chem. 2012,33, 2380.

5. IR and Raman data

Figure S41. Raman spectrum of 1 (conditions: 785 nm, 25 mW, 5 s).

Figure S42. Raman spectrum of 2 (conditions: 785 nm, 25 mW, 5 s).

Figure S43. Raman spectrum of 3 (conditions: 785 nm, 25 mW, 20 s).

Figure S44. Raman spectrum of 5 (conditions: 785 nm, 25 mW, 20 s).

Figure S45. Raman spectrum of 6 (conditions: 785 nm, 25 mW, 20 s).

