¹⁷O NMR and ¹⁵N NMR Chemical Shifts of Sterically-Hindered Amides: Ground-State Destabilization in Amide Electrophilicity

Vittorio Pace,^{§,*} Wolfgang Holzer,[§] Laura Ielo,[§] Guangrong Meng,[†] Shicheng Shi,[†] Mina Hanna,[†] Roman Szostak,[‡] and Michal Szostak^{†,*}

[§]Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna A-1090, Austria

[†]Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA

[‡]Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland

vittorio.pace@univie.ac.at; michal.szostak@rutgers.edu

Electronic Supplementary Information

Table of Contents	1
Additional Data Referred to from the Manuscript	2
• ¹⁷ O NMR Chemical Shift Measurement	4
• ¹⁵ N NMR Chemical Shift Measurement	5
Additional Plots Referred to from the Manuscript	6
• Representative ¹⁷ O NMR and ¹⁵ N NMR Spectra	11

Corresponding Authors:

Prof. Dr. Vittorio Pace Department of Pharmaceutical Chemistry, University of Vienna Althanstrasse 14, Vienna A-1090, Austria E-mail: vittorio.pace@univie.ac.at

Prof. Dr. Michal SzostakDepartment of Chemistry, Rutgers University73 Warren Street, Newark, NJ 07102, United StatesE-mail: michal.szostak@rutgers.edu

Additional Data Referred to from the Manuscript

To gain additional information, we next decided to analyze three series of control compounds (Table ESI-1). First, since adamantyl group represents one of the most sterically-hindered C-substituents,^{5b} we prepared and analyzed a series of representative C-adamantyl amides (entries 1-5). As expected, the presence of an adamantyl results in strong deshielding of the carbonyl oxygen, which is attributed to increased rotation around the N–C(O) bond (up to 8 ppm, a plot of ¹⁷O NMR(adamantyl) vs. ¹⁷O NMR(pivaloyl) gives a linear correlation, $R^2 = 0.98$). Along the same lines, N-TMP is the most sterically-hindered alkyl substituent that has been used to twist amide bonds.¹⁶ We found that the use of a simple C-primary substituent in combination with N-TMP group results in a highly electrophilic carbonyl (entry 6, 398.2 ppm). This can be compared with the analogous N-Et₂ amide (entries 7-8), which shows a remarkable $\Delta\sigma^{17}$ O of 66.8 ppm. Indeed, the unique electrophilic reactivity of N-TMP amides has been well demonstrated, and future studies will likely expand the growing utility of this class of sterically-destabilized amides.

Entry	Amide	Series	$\delta(^{17}\text{O})^a \text{ ppm}$	$\delta(^{15}N)^b$ ppm
1	5a	Ad	350.3	93.9
2	5b	Ad	347.6	123.7
3	5c	Ad	348.1	116.9
4	5d	Ad	350.5	133.0
5	5e	Ad	393.0	132.6
6	6	TMP	398.2	146.3
7	7a	PhCH ₂	344.1	126.1
8	7b	Ph(CH ₂) ₂	331.4	126.1

Table ESI-1. ¹⁷O NMR and ¹⁵N NMR Chemical Shifts for Amides in Series 5-7.

^{*a*}Recorded at 54.1 MHz in C₆D₆. Chemical shifts are referenced to external H₂O. ^{*a*}Recorded at 40.4 MHz in C₆D₆. Chemical shifts are referenced to external CH₃NO₂. Ad = adamantyl; TMP = 2,2,6,6-tetramethylpiperidinyl.

¹⁷O NMR Chemical Shift Measurement

¹⁷O NMR spectra were recorded on Bruker Avance III 400 spectrometer (400 MHz for ¹H, 54.1 MHz for ¹⁷O) from approximately 1.0 M C₆D₆ solutions at 297 K using a "directly" detecting broadband observe (BBFO) probe, unless stated otherwise. Referencing was performed against external H₂O (0 ppm, coaxial capillary) by measuring the difference between the water ¹⁷O shift and the spectrometer values. For the ¹⁷O NMR spectra 10 000 to 300 000 scans were accumulated (pulse width 90°, acquisition time 0.15 s, relaxation delay 0.2 s, spectral width 500 ppm) and Fourier transformed after a 200 Hz line broadening by exponential multiplication. To decrease acoustic ringing a pre-scan delay DE = 100 µs was used in the pulse sequence.

¹⁵N NMR Chemical Shift Measurement

¹⁵N NMR spectra were recorded on Bruker Avance III 400 spectrometer (400 MHz for ¹H, 40.4 MHz for ¹⁵N) from approximately 1.0 M C₆D₆ solutions at 297 K using a "directly" detecting broadband observe (BBFO) probe, unless stated otherwise. The spectra were either taken via one-pulse experiments (inverse gated decoupling, digital resolution 1 Hz/data point, 15 s relaxation delay, 8192 scans) or via gradient-selected ¹⁵N,¹H HMBC spectra (2048×32 data matrix, 16 ppm spectral width for ¹⁵N). Referencing was performed against neat, external nitromethane (0 ppm, coaxial capillary) by measuring the difference between the nitromethane ¹⁵N shift and the spectrometer values. The reported values are referenced against nitromethane and given according to IUPAC by adding -380.5 ppm to the referenced spectrometer value for C₆D₆.

Chart ESI-1. Plot of ¹⁷O NMR chemical shifts in amide series **1** vs. amide series **2**. Outlier: **1d**, $\delta(^{17}\text{O}) = 327$ ppm.

Chart ESI-2. Plot of ¹⁷O NMR chemical shifts in amide series **1** vs. amide series **3**. Outlier: **1d**, $\delta(^{17}\text{O}) = 327$ ppm.

Chart ESI-3. Plot of ¹⁷O NMR chemical shifts in amide series 2 vs. amide series 3.

Chart ESI-4. Plot of ¹⁷O NMR chemical shifts in amide series 2 vs. Charton Value (v). Outlier: **2f**, $\delta(^{17}\text{O}) = 340.7$ ppm.

Chart ESI-5. Plot of ¹⁷O NMR chemical shifts in amide series **3** vs. Charton Value (v).

Chart ESI-6. Plot of ¹⁵N NMR chemical shifts in amide series **2** vs. ¹⁵N NMR chemical shifts in amines.

Chart ESI-7. Plot of ¹⁵N NMR chemical shifts in amide series 3 vs. ¹⁵N NMR chemical shifts in amines.

Chart ESI-8. Plot of ¹⁵N NMR chemical shifts in MeOD- d^4 vs. C₆D₆ in **3**.

Chart ESI-9. Plots of ¹⁷O NMR chemical shifts vs. amide series **1-4** showing $\delta(^{17}O)$ as a function of individual amides **1-4**.

Chart ESI-10. Plots of ¹⁵O NMR chemical shifts vs. amide series **1-4** showing $\delta(^{15}O)$ as a function of individual amides **1-4**.

Figure ESI-1. ¹⁷O NMR Spectrum of *N*,*N*-Dibutyl-2,2-dimethylpropanamide.

Figure ESI-2. ¹⁵N NMR Spectrum of *N*,*N*-Dibutyl-2,2-dimethylpropanamide.

Figure ESI-3. ¹⁷O NMR Spectrum of *N*-Ethyl-*N*,2,2-trimethylpropanamide.

Figure ESI-4. ¹⁵N NMR Spectrum of *N*-Ethyl-*N*,2,2-trimethylpropanamide.

Figure ESI-5. ¹⁷O NMR Spectrum of *N-tert*-Butyl-*N*-methylbenzamide.

Figure ESI-6. ¹⁵N NMR Spectrum of *N-tert*-Butyl-*N*-methylbenzamide.

Figure ESI-7. ¹⁷O NMR Spectrum of *N*,*N*-Dimethylcyclohexanecarboxamide.

Figure ESI-8. ¹⁵N NMR Spectrum of *N*,*N*-Dimethylcyclohexanecarboxamide.

Figure ESI-9. ¹⁷O NMR Spectrum of *N*-Methyl-*N*-(propan-2-yl)cyclohexanecarboxamide.

Figure ESI-10. ¹⁵N NMR Spectrum of *N*-Methyl-*N*-(propan-2-yl)cyclohexanecarboxamide.