Enantioselective iridium catalyzed α -alkylation of azlactones by a

tandem asymmetric allylic alkylation/aza-Cope rearrangement

Xue-Dan Bai, Qing-Feng Zhang, and Ying He*

School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China

Supporting Information

General Information	S2
General procedure A: The synthesis of allylic <i>tert</i> -butyl carbonates	S2
General procedure B: The synthesis of racemic azlactones	S4
General procedure C: Enantioselective a-alkylation of oxazolones by iridium catalysis	S6
General procedure D: One-pot synthesis of allylated 2,4-diaryloxazol-5(2H)-ones	S23
General procedure E: Large scale synthesis of 3a .	S24
Synthetic transformations.	S24
References	\$32
Single X-ray structure data of chiral 3j	\$33
Spectral Data	\$39
HPLC data	\$91

General Information

Unless otherwise noted, all starting materials were purchased from commercial sources and used without any further purification. The reactions were carried out in the glovebox unless otherwise stated. Toluene, 1,4-dioxane, DCM, and DME were obtained from commercial sources and anhydrous THF is gained from distilling apparatus. Chemicals were used as obtained from the suppliers. The analytical data for the known compounds were found to match with the literature data and stored at -30°C under an inert atmosphere. TLC plates were visualized under UV light (254 nm) or by staining with phosphomolybdic acid or KMnO₄ followed by heating. Abbreviations are reported as follows: EA = ethyl acetate, DCM = dichloromethane, DME = dimethoxyethane, THF = tetrahydrofuran, PE = petroleum ether.¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded on an AVANCE 500 Bruker spectrometer operating at 500 MHz, 470 MHz and 126 MHz in CDCl₃, respectively, and chemical shifts are reported in ppm. Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High spectral data were acquired on Agilent Technologies resolution mass Accurate-Mass Q-TQF LC/MS 6520 operated by China Pharmaceutical University. Enantiomeric excess was determined on a Thermo Fisher UltiMate 3000 Chiral HPLC using AD, IG, IA column.

General procedure A: The synthesis of allylic tert-butyl carbonates^[1]

Under an argon atmosphere, to a flame-dried flask containing cinnamyl alcohol derivatives (10 mmol) and (Boc)₂O (4.6 mL, 20 mmol) was added 30 mL of anhydrous THF followed by 4-DMAP (122 mg, 1.0 mmol). The resulting solution was stirred at room temperature overnight. The solution was then concentrated in vacuo. The crude products were purified by column chromatography over silica gel (PE: EA=10:1) to afford the title compounds. The characterizations of unreported

substrates are as following:

White solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.62 – 7.57 (m, 4H), 7.49 – 7.43 (m, 4H), 7.37 – 7.34 (m, 1H), 6.72 (d, *J* = 15.9 Hz, 1H), 6.36 (dtd, *J* = 15.8, 6.5, 1.9 Hz, 1H), 4.76 (dd, *J* = 6.4, 1.5 Hz, 2H), 1.53 (d, *J* = 2.1 Hz, 9H).¹³C NMR (126 MHz, Chloroform-*d*) δ 152.37, 139.83, 139.56, 134.22, 132.97, 127.81, 126.41, 126.28, 126.11, 125.95, 121.96, 81.26, 66.51, 26.82.

White solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.39 – 7.37 (m, 2H), 7.13 – 7.12 (m, 2H), 6.64 (d, *J* = 15.9 Hz, 1H), 6.24 (dt, *J* = 15.9, 6.4 Hz, 1H), 4.70 (dd, *J* = 6.5, 1.3 Hz, 2H), 1.55 (s, 9H), 1.50 (s, 9H).¹³C NMR (126 MHz, Chloroform-*d*) δ 152.30, 150.71, 149.76, 132.87, 132.34, 126.56, 122.11, 120.39, 82.65, 81.28, 66.33, 26.78, 26.68.

Colorless oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.37 (d, J = 1.6 Hz, 1H), 7.25 – 7.22 (m, 3H), 6.60 (dd, J = 15.9, 1.4 Hz, 1H), 6.30 (dt, J = 15.9, 6.3 Hz, 1H), 4.71 (dd, J = 6.3, 1.4 Hz, 2H), 1.50 (s, 9H).¹³C NMR (126 MHz, Chloroform-*d*) δ 152.26, 137.05, 133.54, 131.69, 128.81, 126.99, 125.57, 123.80, 123.52, 81.38, 66.02, 26.77.

Colorless oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.19 (ddd, *J* = 11.6, 7.7, 1.7 Hz, 1H), 7.13 – 7.07 (m, 2H), 6.57 (d, *J* = 15.8 Hz, 1H), 6.21 (dt, *J* = 16.0, 6.3 Hz, 1H), 4.70 (dd, *J* = 6.3, 1.4 Hz, 2H), 1.50 (s, 9H).¹³C NMR (126 MHz, Chloroform-*d*) δ 152.24, 131.05 (d, *J* = 1.7 Hz), 123.12 (d,

J = 2.6 Hz), 121.91 (d, J = 3.4 Hz), 121.86 (d, J = 3.6 Hz), 116.42, 116.28, 114.04, 113.90, 81.41, 65.91, 26.75. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -137.68 (ddt, J = 21.5, 17.1, 7.5 Hz), -138.20 - -138.30 (m).

Yellow oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.41 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.26 – 7.21 (m, 1H), 6.98 (d, *J* = 16.0 Hz, 1H), 6.92 – 6.89 (m, 1H), 6.85 (d, *J* = 8.3 Hz, 1H), 6.31 (dt, *J* = 16.0, 6.6 Hz, 1H), 4.71 (dd, *J* = 6.6, 1.3 Hz, 2H), 3.83 (s, 3H), 1.49 (s, 9H).¹³C NMR (126 MHz, Chloroform-*d*) δ 155.89, 152.38, 145.73, 128.55, 128.13, 126.19, 122.46, 119.60, 109.82, 84.16, 67.09, 54.40. 26.40.

White solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.44 – 7.40 (m, 2H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.27 – 7.22 (m, 1H), 6.78 (dd, *J* = 15.6, 10.5 Hz, 1H), 6.59 (d, *J* = 15.7 Hz, 1H), 6.47 (dd, *J* = 15.2, 10.5 Hz, 1H), 5.89 (dt, *J* = 15.0, 6.5 Hz, 1H), 4.65 (dd, *J* = 6.6, 1.2 Hz, 2H), 1.51 (s, 9H).¹³C NMR (126 MHz, Chloroform-*d*) δ 152.35, 135.89, 133.79, 132.89, 127.64, 126.84, 126.69, 125.58, 125.51, 81.18, 66.19, 26.80.

General procedure B: The synthesis of racemic azlactones^[2]

Arylglycine (10 mmol) was dissolved in 1N NaOH (30 mL). Then aroyl chloride (11 mmol) was added dropwise into the solution. After the addition was completed, the reaction mixture was allowed to stir at room temperature overnight, quenched with 2N HCl (20 mL*2) and extracted by using EA (30 mL*3). The organic layer was then dried over Na₂SO₄ and concentrated in vacuo to yield a white solid. The products were used in the next step without further purification.

To a flame-dried flask was added the N-benzoyl-phenylglycine (1.27 g, 5 mmol) dissolved in DCM (20 mL). Then TFAA (0.7 mL, 5 mmol) was added and reaction mixture was allowed to stir under nitrogen at room temperature for a certain time. The reaction mixture was quenched with saturated NaHCO₃ solution (25 mL x 3). The product was then extracted using DCM, dried over Na₂SO₄ and concentrated in vacuo to yield the oxazolones. PS: The oxazolones could be purified by washing with hexane to some extent. The compounds **2w**, **2x**, **2y** and **2a'** were used directly without purification. The characterizations of unreported substrates are as following:

Yellow solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.81 (dd, J = 3.8, 1.2 Hz, 1H), 7.65 (dd, J = 5.1, 1.3 Hz, 1H), 7.45 – 7.36 (m, 5H), 7.19 (dd, J = 5.1, 3.8 Hz, 1H), 5.50 (s, 1H).¹³C NMR (126 MHz, Chloroform-*d*) δ 174.64, 157.42, 132.35, 131.44, 131.27, 128.01, 127.78, 127.20, 127.16, 125.85, 66.95. HRMS(ESI) m/z: calculated for [C₁₃H₉NO₂S + H]⁺ 244.0432, found 244.0425.

Yellow solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.10 (d, *J* = 7.7 Hz, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.7 Hz, 2H), 7.46 (s, 1H), 7.42 – 7.33 (m, 3H), 5.50 (s, 1H).¹³C NMR (126 MHz, Chloroform-*d*) δ 174.61, 161.95, 134.21, 133.92, 132.28,

129.95, 127.93, 127.19, 125.92, 124.43, 124.00, 66.33. HRMS(ESI) m/z: calculated for $[C_{15}H_{10}CINO_2 + H]^+$ 272.0478, found 272.0479.

Yellow solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.09 (d, J = 7.7 Hz, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.53 (t, J = 7.7 Hz, 2H), 7.47 (d, J = 7.9 Hz, 1H), 7.34 (td, J = 7.6, 1.9 Hz, 1H), 7.30 – 7.24 (m, 2H), 5.89 (s, 1H).¹³C NMR (126 MHz, Chloroform-*d*) δ 174.22, 162.28, 133.09, 132.19, 130.46, 129.47, 129.36, 128.68, 127.92, 127.14, 126.40, 124.53, 66.07. HRMS(ESI) m/z: calculated for [C₁₅H₁₀ClNO₂ + H]⁺ 272.0478, found 272.0473.

General procedure C: Enantioselective α-alkylation of oxazolones by iridium catalysis

The reaction was carried out in the glovebox under argon atmosphere. $[Ir(cod)Cl]_2$ (1.4 mg, 0.002 mmol), L1 (2.5 mg, 0.004 mmol), and TBD (1.4 mg, 0.01 mmol) were added to a 2 *dram* scintillation vial (vial A) equipped with a magnetic stirring bar. The vial A was then charged with THF (0.5 mL) and stirred at 30°C for 30 min. To another 2 *dram* scintillation vial (vial B) was added *tert*-butyl cinnamyl carbonates (0.1 mmol), 2,4-diphenyloxazol-5(4*H*)-one (0.2 mmol), DBU (0.3 mmol) and THF (0.5 mL). The pre-formed catalyst solution (vial A) was then transferred to vial B. The vial B was sealed and stirred at room temperature or 30°C for a certain time. Upon completion of the reaction, the vial B was removed from the glovebox and uncapped. Saturated NH₄Cl aqueous solution was added and the mixture was extracted with DCM (10 mL x 3). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified

by column chromatography over silica gel to afford the desired products. (PS: No desired products were obtained using allylic carbonates bearing a -Me group at α or β position.)

Following the general procedure **C**, **3a** was obtained as yellow solid (29 mg, 82% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.44 (dt, J = 7.3, 1.4 Hz, 2H), 7.73 – 7.71 (m, 2H), 7.60 – 7.56 (m, 1H), 7.52 – 7.49 (m, 2H), 7.45 (dd, J = 8.3, 6.5 Hz, 2H), 7.42 – 7.38 (m, 1H), 7.28 (d, J = 3.6 Hz, 4H), 7.24 – 7.21 (m, 1H), 6.48 (dt, J = 15.9, 1.4 Hz, 1H), 6.01 (dt, J = 15.8, 7.4 Hz, 1H), 3.18 (qdd, J = 14.2, 7.4, 1.3 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.98, 155.22, 137.62, 135.73, 135.37, 131.53, 127.87, 127.74, 127.56, 127.50, 127.48, 126.63, 125.30, 125.01, 119.64, 105.14, 44.13. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 6.8 min (major), tr = 8.9 min (minor), ee = 92%.

Following the general procedure **C**, **3b** was obtained as yellow oil (32 mg, 86% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.44 – 8.42 (m, 2H), 7.72 – 7.70 (m, 2H), 7.59 – 7.55 (m, 1H), 7.50 (dd, J = 8.3, 6.9 Hz, 2H), 7.46 – 7.43 (m, 2H), 7.41 – 7.37 (m, 1H), 7.17 (d, J = 7.9 Hz, 2H), 7.08 (d, J = 7.8 Hz, 2H), 6.44 (d, J = 15.8 Hz, 1H), 5.94 (dt, J = 15.3, 7.4 Hz, 1H), 3.16 (qdd, J = 14.1, 7.4, 1.3 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.01, 155.21, 137.69, 136.49, 135.29, 132.99, 131.52, 128.19, 127.85, 127.76, 127.75, 127.74, 127.55, 125.22, 125.03, 118.53, 105.21, 44.15, 20.19. HRMS(ESI) m/z: calculated for [C₂₅H₂₁NO₂ + Na]⁺ 390.1470, found 390.1476. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 6.0 min (major), tr = 6.9 min (minor), ee = 91%.

Following the general procedure **C**, **3c** was obtained as white solid (34 mg, 89% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.46 – 8.44 (m, 2H), 7.75 – 7.73 (m, 2H), 7.63 – 7.60 (m, 1H), 7.55 – 7.52 (m, 2H), 7.48 (t, *J* = 7.8 Hz, 2H), 7.44 – 7.41 (m, 1H), 7.24 (d, *J* = 8.2 Hz, 2H), 6.85 – 6.84 (m, 2H), 6.44 (d, *J* = 15.8 Hz, 1H), 5.87 (dt, *J* = 15.3, 7.3 Hz, 1H), 3.83 (d, *J* = 1.2 Hz, 3H), 3.18 (qd, *J* = 14.2, 7.3 Hz, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 163.03, 158.23, 155.21, 137.71, 134.85, 131.51, 128.58, 127.84, 127.74, 127.74, 127.73, 127.55, 126.48, 125.02, 117.26, 112.90, 105.24, 54.26, 44.14. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 9.5 min (major), tr = 11.8 min (minor), ee = 84%.

Following the general procedure **C**, **3d** was obtained as white solid (25 mg, 66% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.40 – 8.38 (m, 2H), 7.68 – 7.66 (m, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 2H), 7.41 – 7.36 (m, 3H), 7.21 (d, *J* = 8.5 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 6.38 (d, *J* = 15.9 Hz, 1H), 5.94 (dt, *J* = 15.4, 7.4 Hz, 1H), 3.18 – 3.07 (m, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.93, 155.24, 137.49, 134.16, 134.15, 132.30, 131.61, 127.93, 127.77, 127.72, 127.66, 127.58, 127.43, 126.48, 124.98, 120.41, 105.03, 44.05. HPLC data (Chiralpak IA column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 6.7 min (major), tr = 7.6 min (minor), ee = 86%.

Following the general procedure **C**, **3e** was obtained as yellow solid (26 mg, 60% yield). ¹H NMR (500 MHz, Chloroform-d) δ 8.39 – 8.37 (m, 2H), 7.67 – 7.65 (m, 2H), 7.56 (s, 1H), 7.48 (dd, J = 8.4, 7.0 Hz, 2H), 7.41 – 7.40 (m, 2H), 7.37 (dd, J = 7.9, 6.5 Hz, 3H), 7.10 – 7.08 (m, 2H), 6.34 (s, 1H), 5.95 (dt, J = 15.4, 7.4 Hz, 1H), 3.17 – 3.06 (m, 2H).¹³C NMR (126 MHz, Chloroform-d) δ 162.93, 155.24, 137.48, 134.60, 134.20, 131.63, 130.61, 127.94, 127.78, 127.72, 127.59, 127.42, 126.81, 124.98, 120.56, 120.47, 105.00, 44.06. HPLC data (Chiralpak AD column, hexane : isopropanol = 98 : 2, 1.0 mL/min), tr = 18.4 min (major), tr = 21.2 min (minor), ee = 87%.

Following the general procedure **C**, **3f** was obtained as white solid (28 mg, 65% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.43 – 8.41 (m, 2H), 7.72 – 7.69 (m, 2H), 7.57 (ddd, *J* = 7.2, 3.5, 1.5 Hz, 3H), 7.51 – 7.48 (m, 4H), 7.44 (td, *J* = 7.9, 7.4, 3.5 Hz, 4H), 7.41 – 7.38 (m, 1H), 7.34 (dd, *J* = 10.6, 7.8 Hz, 3H), 6.49 (d, *J* = 15.8 Hz, 1H), 6.06 – 6.00 (m, 1H), 3.18 (qdd, *J* = 14.2, 7.4, 1.3 Hz, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.99, 155.25, 139.63, 139.43, 137.63, 134.94, 134.76, 131.57, 127.90, 127.77, 127.59, 127.53, 126.31, 126.21, 125.92, 125.74, 125.04, 119.76, 105.16, 44.21. HRMS(ESI) m/z: calculated for [C₃₀H₂₃NO₂ + H]⁺ 430.1807, found 430.1797. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 10.1 min (major), tr = 11.1 min (minor), ee = 92%.

Following the general procedure **C**, **3g** was obtained as white solid (27 mg, 58% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.41 – 8.39 (m, 2H), 7.68 – 7.66 (m, 2H), 7.58 – 7.54 (m, 1H), 7.49 (dd, J = 8.3, 6.9 Hz, 2H), 7.43 – 7.40 (m, 2H), 7.39 – 7.35 (m, 1H), 7.24 – 7.22 (m, 2H), 7.07 – 7.04 (m, 2H), 6.41 (d, J = 15.8 Hz, 1H), 5.92 (dt, J = 15.8, 7.4 Hz, 1H), 1.55 (s, 9H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.93, 155.21, 150.78, 149.44, 137.55, 134.33, 133.44, 131.57, 127.89, 127.76, 127.73, 127.56, 127.46, 126.20, 125.00, 120.31, 119.95, 105.09, 82.61, 44.10, 26.68. HRMS(ESI) m/z: calculated for [C₂₉H₂₇NO₅ + H]⁺ 470.1967, found 470.1965. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 11.7 min (minor), tr = 12.3 min (major), ee = 87%.

Following the general procedure **C**, **3h** was obtained as yellow solid (16 mg, 44% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.40 – 8.38 (m, 2H), 7.68 – 7.66 (m, 2H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.43 – 7.35 (m, 3H), 7.13 (t, *J* = 7.6 Hz, 1H), 7.04 – 7.00 (m, 3H), 6.40 (d, *J* = 15.8 Hz, 1H), 5.94 (dt, *J* = 15.4, 7.4 Hz, 1H), 3.12 (dt, *J* = 14.3, 7.3 Hz, 2H), 2.28 (s, 3H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.99, 155.20, 137.64, 137.03, 135.71, 135.68, 135.48, 131.51, 127.85, 127.74, 127.73, 127.54, 127.42, 127.36, 122.42, 119.39, 105.17, 44.14, 20.33. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 6.1 min (major), tr = 8.3 min (minor), ee = 91%.

Following the general procedure **C**, **3i** was obtained as yellow oil (32 mg, 84% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.47 – 8.44 (m, 2H), 7.75 – 7.72 (m, 2H), 7.61 (td, *J* = 7.1, 1.4 Hz, 1H), 7.54 (t, *J* = 7.7 Hz, 2H), 7.49 – 7.41 (m, 3H), 7.22 (td, *J* = 7.6, 1.1 Hz, 1H), 6.89 (dd, *J* = 7.6, 1.3 Hz, 1H), 6.82 – 6.80 (m, 2H), 6.47 (d, *J* = 15.8 Hz, 1H), 6.05 – 5.99 (m, 1H), 3.80 (s, 3H), 3.19 (qdd, *J* = 14.2, 7.4, 1.2 Hz, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 164.01, 159.72, 156.27, 138.64, 138.25, 136.34, 136.34, 132.59, 129.51, 128.93, 128.79, 128.61, 128.56, 126.06, 121.10, 119.00, 113.32, 111.71, 106.16, 55.19, 45.12. HRMS(ESI) m/z: calculated for [C₂₅H₂₁NO₃ + Na]⁺ 406.1419, found 406.1418. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 8.5 min (major), tr = 12.3 min (minor), ee = 94%.

Following the general procedure **C**, **3j** was obtained as yellow solid (33 mg, 85% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.46 (d, J = 7.7 Hz, 2H), 7.73 (d, J = 7.6 Hz, 2H), 7.62 (t, J = 7.3 Hz, 1H), 7.54 (t, J = 7.6 Hz, 2H), 7.48 (t, J = 7.4 Hz, 2H), 7.43 (t, J = 7.3 Hz, 1H), 7.27 (s, 1H), 7.22 (d, J = 5.1 Hz, 2H), 7.15 (dd, J = 6.7, 2.7 Hz, 1H), 6.42 (d, J = 15.8 Hz, 1H), 6.04 (dt, J = 15.3, 7.4 Hz, 1H), 3.24 – 3.13 (m, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.92, 155.24, 137.53, 137.44, 134.00, 133.42, 131.64, 128.73, 127.96, 127.79, 127.75, 127.61, 127.43, 126.62, 125.26, 125.00, 123.47, 121.39, 105.01, 44.08. HRMS(ESI) m/z: calculated for [C₂₄H₁₈ClNO₂ + H]⁺ 388.1104, found 388.1101. HPLC data (Chiralpak AD column, hexane :

isopropanol = 90 : 10, 1.0 mL/min), tr = 7.5 min (major), tr = 9.5 min (minor), ee = 90%.

Following the general procedure **C**, **3k** was obtained as yellow solid (20 mg, 52% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.45 (d, *J* = 7.8 Hz, 2H), 7.72 (d, *J* = 7.6 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 2H), 7.46 (dt, *J* = 15.3, 7.2 Hz, 3H), 7.08 (td, *J* = 9.1, 5.5 Hz, 2H), 6.98 (t, *J* = 6.2 Hz, 1H), 6.39 (d, *J* = 15.8 Hz, 1H), 5.93 (dt, *J* = 15.3, 7.4 Hz, 1H), 3.23 – 3.12 (m, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.89, 155.26, 137.41, 133.30, 131.66, 127.97, 127.79, 127.72, 127.61, 127.40, 124.97, 121.49 (d, *J* = 3.5 Hz), 121.44 (d, *J* = 3.4 Hz), 120.94, 116.31, 116.17, 113.70, 113.56, 104.95, 43.92.¹⁹F NMR (470 MHz, Chloroform-*d*) δ -137.87 (ddd, *J* = 20.2, 11.5, 8.3 Hz), -138.82 – -138.91 (m). HRMS(ESI) m/z: calculated for [C₂₄H₁₇F₂NO₂ + H]⁺ 390.1306, found 390.1301. HPLC data (Chiralpak IG column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 8.7 min (major), tr = 10.1 min (minor), ee = 91%.

Following the general procedure **C**, **3I** was obtained as yellow oil (17 mg, 44% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.42 – 8.39 (m, 2H), 7.71 – 7.68 (m, 2H), 7.57 – 7.54 (m, 1H), 7.50 – 7.47 (m, 2H), 7.44 – 7.40 (m, 2H), 7.39 – 7.36 (m, 1H), 7.24 – 7.22 (m, 1H), 7.18 (td, *J* = 7.8, 1.7 Hz, 1H), 6.85 (td, *J* = 7.5, 1.0 Hz, 1H), 6.80 (dd, *J* = 8.3, 1.0 Hz, 1H), 6.74 (d, *J* = 16.0 Hz, 1H), 5.96 (dt, *J* = 15.9, 7.4 Hz, 1H), 3.73 (s, 3H), 3.22 – 3.13 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.05, 155.60, 155.23, 137.80, 131.42, 130.49, 127.79, 127.75, 127.68, 127.63, 127.61, 127.52, 126.04, 125.01, 124.93, 120.38, 119.54, 109.78, 105.23, 54.31, 44.40. HRMS(ESI) m/z: calculated for $[C_{25}H_{21}NO_3 + H]^+$ 384.1600, found 384.1592. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 8.2 min (major), tr = 13.3 min (minor), ee = 83%.

Following the general procedure **C**, **3m** was obtained as yellow oil (32 mg, 81% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.46 – 8.44 (m, 2H), 7.74 – 7.72 (m, 2H), 7.63 – 7.59 (m, 1H), 7.54 (t, *J* = 7.7 Hz, 2H), 7.49 – 7.46 (m, 2H), 7.44 – 7.42 (m, 1H), 6.82 (d, *J* = 1.4 Hz, 1H), 6.75 – 6.71 (m, 2H), 6.39 (d, *J* = 15.8 Hz, 1H), 5.96 (s, 2H), 5.84 (dt, *J* = 15.7, 7.4 Hz, 1H), 3.16 (qdd, *J* = 14.1, 7.3, 1.2 Hz, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 164.02, 156.26, 147.94, 147.30, 136.01, 132.57, 131.26, 128.90, 128.79, 128.77, 128.60, 128.56, 128.51, 126.05, 121.05, 118.78, 108.24, 106.20, 105.62, 101.06, 45.08. HRMS(ESI) m/z: calculated for [C₂₅H₁₉NO₄ + H]⁺ 398.1392, found 398.1391. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 11.2 min (major), tr = 13.6 min (minor), ee = 90%.

3n

Following the general procedure **C**, **3n** was obtained as yellow oil (26 mg, 76% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.42 – 8.40 (m, 2H), 7.68 – 7.66 (m, 2H), 7.58 – 7.55 (m, 1H), 7.50 – 7.47 (m, 2H), 7.44 – 7.36 (m, 4H), 6.31 (dd, *J* = 3.4, 1.8 Hz, 1H), 6.25 (d, *J* = 15.8 Hz, 1H), 6.14 (d, *J* = 3.4 Hz, 1H), 5.90 (dt, *J* = 15.5, 7.5 Hz, 1H), 3.16 – 3.07 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.98, 156.27, 152.18, 142.00, 138.65, 132.54, 128.90, 128.82, 128.80, 128.75, 128.58, 126.04, 124.40, 119.22, 111.15, 107.93, 106.05, 45.04. HRMS(ESI) m/z: calculated for $[C_{22}H_{17}NO_3 + H]^+$ 344.1287, found 344.1280. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 7.9 min (major), tr = 11.4 min (minor), ee = 83%.

Following the general procedure **C**, **30** was obtained as yellow oil (28 mg, 78% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.41 (d, J = 7.7 Hz, 2H), 7.69 (dd, J = 7.2, 1.5 Hz, 2H), 7.59 – 7.55 (m, 1H), 7.50 (dd, J = 8.4, 6.9 Hz, 2H), 7.43 (t, J = 7.2 Hz, 2H), 7.40 – 7.36 (m, 1H), 7.09 (d, J = 5.1 Hz, 1H), 6.91 (dd, J = 5.1, 3.5 Hz, 1H), 6.86 (d, J = 3.5 Hz, 1H), 6.56 (d, J = 15.7 Hz, 1H), 5.82 (dt, J = 15.3, 7.4 Hz, 1H), 3.11 (qd, J = 14.3, 7.4 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.94, 155.28, 140.67, 137.50, 131.56, 128.30, 127.91, 127.81, 127.75, 127.57, 127.49, 126.29, 125.01, 124.67, 123.31, 119.25, 105.04, 44.02. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 8.1 min (major), tr = 10.8 min (minor), ee = 91%.

Following the general procedure **C**, **3p** was obtained as red oil (30 mg, 55% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.45 (d, J = 7.7 Hz, 2H), 7.99 (d, J = 8.4 Hz, 1H), 7.76 (t, J = 8.9 Hz, 4H), 7.62 (t, J = 7.6 Hz, 1H), 7.55 – 7.50 (m, 4H), 7.48 – 7.40 (m, 3H), 7.35 – 7.31 (m, 1H), 7.24 (d, J = 8.1 Hz, 2H), 7.19 (t, J = 7.6 Hz, 1H), 6.53 (d, J = 16.0 Hz, 1H), 6.06 (dt, J = 15.5, 7.3 Hz, 1H), 3.21 (qd, J = 14.2, 7.3 Hz, 2H), 2.38

(s, 3H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.98, 155.29, 144.02, 137.51, 134.33, 133.98, 131.61, 128.91, 127.95, 127.80, 127.78, 127.74, 127.61, 127.46, 126.02, 125.82, 125.02, 123.85, 122.95, 122.45, 121.25, 119.28, 118.99, 112.66, 105.08, 44.55, 20.58. HRMS(ESI) m/z: calculated for [C₃₃H₂₆N₂O₄S + H]⁺ 547.1692, found 547.1687. HPLC data (Chiralpak AD column, hexane : isopropanol = 70 : 30, 1.0 mL/min), tr = 16.3 min (major), tr = 23.9 min (minor), ee = 88%.

Following the general procedure C, **3q** was obtained as yellow solid (23 mg, 65% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.45 – 8.38 (m, 4H), 7.68 – 7.66 (m, 2H), 7.58 – 7.52 (m, 2H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.44 – 7.36 (m, 3H), 7.17 (dd, *J* = 8.0, 4.8 Hz, 1H), 6.42 (d, *J* = 15.9 Hz, 1H), 6.04 (dt, *J* = 15.5, 7.3 Hz, 1H), 3.21 – 3.10 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.87, 155.27, 147.72, 147.12, 137.38, 131.78, 131.68, 131.28, 127.99, 127.79, 127.72, 127.62, 127.37, 124.97, 122.41, 122.33, 104.91, 44.12. HRMS(ESI) m/z: calculated for [C₂₃H₁₈N₂O₂ + H]⁺ 355.1447, found 355.1455. HPLC data (Chiralpak AD column, hexane : isopropanol = 85 : 15, 1.0 mL/min), tr = 13.5 min (major), tr = 17.0 min (minor), ee = 89%.

Following the general procedure **C**, **3r** was obtained as yellow solid (30 mg, 79% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.43 – 8.41 (m, 2H), 7.68 – 7.67 (m, 2H), 7.59 – 7.55 (m, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.43 (dd, *J* = 8.1, 6.5 Hz, 2H), 7.40 – 7.38 (m, 1H), 7.34 (d, *J* = 7.3 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 2H), 7.21 (t, *J* = 7.2 Hz, 1H), 6.65 (dd, *J* = 15.7, 10.4 Hz, 1H), 6.45 (d, *J* = 15.7 Hz, 1H), 6.26 (dd, *J* = 15.2,

10.4 Hz, 1H), 5.54 (dt, J = 15.0, 7.5 Hz, 1H), 3.14 – 3.05 (m, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.98, 155.20, 137.67, 136.02, 135.87, 131.57, 131.56, 127.88, 127.76, 127.56, 127.52, 127.15, 126.58, 125.37, 124.98, 123.41, 105.07, 43.94. HRMS(ESI) m/z: calculated for [C₂₆H₂₁NO₂ + Na]⁺ 402.1470, found 402.1466. HPLC data (Chiralpak AD column, hexane : isopropanol = 95 : 5, 1.0 mL/min), tr = 11.3 min (major), tr = 14.0 min (minor), ee = 78%.

Following the general procedure **C**, **3s** was obtained as colorless oil (26 mg, 71% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.47 – 8.44 (m, 2H), 7.63 – 7.59 (m, 3H), 7.54 (t, *J* = 7.7 Hz, 2H), 7.33 – 7.29 (m, 5H), 7.27 – 7.24 (m, 2H), 6.51 (d, *J* = 15.9 Hz, 1H), 6.03 (dt, *J* = 15.9, 7.3 Hz, 1H), 3.20 (ddd, *J* = 15.7, 7.4, 1.3 Hz, 2H), 2.43 (s, 3H).¹³C NMR (126 MHz, Chloroform-*d*) δ 164.10, 156.18, 138.83, 136.84, 136.29, 135.75, 132.52, 129.27, 128.77, 128.77, 128.63, 128.53, 127.65, 126.36, 125.96, 120.87, 106.28, 45.10. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 7.9 min (major), tr = 10.4 min (minor), ee = 84%.

Following the general procedure **C**, **3t** was obtained as yellow oil (18 mg, 52% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.47 – 8.44 (m, 2H), 7.88 (d, *J* = 8.2 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.65 – 7.61 (m, 1H), 7.55 (dd, *J* = 8.4, 6.9 Hz, 2H), 7.34 – 7.25 (m, 5H), 6.49 (d, *J* = 15.9 Hz, 1H), 6.01 (dt, *J* = 15.4, 7.4 Hz, 1H), 3.18 (qdd, *J* = 14.3, 7.4, 1.2 Hz, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 163.63, 156.58, 142.39 (d, J = 1.3 Hz), 136.94, 136.55, 132.87, 130.99, 128.87, 128.83, 128.58, 128.26, 127.86, 126.61, 126.36, 125.61 (q, J = 3.8 Hz), 123.86 (d, J = 272.1 Hz), 119.98, 105.45, 45.22.¹⁹F NMR (470 MHz, Chloroform-*d*) δ -62.70 (d, J = 5.2 Hz). HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 5.8 min (major), tr = 7.0 min (minor), ee = 84%.

Following the general procedure **C**, **3u** was obtained as yellow oil (24 mg, 62% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.40 – 8.38 (m, 2H), 7.62 – 7.61 (m, 2H), 7.56 (d, *J* = 7.4 Hz, 1H), 7.49 (dd, *J* = 8.4, 7.0 Hz, 2H), 7.40 – 7.38 (m, 2H), 7.27 – 7.21 (m, 5H), 6.43 (d, *J* = 15.8 Hz, 1H), 5.95 (dt, *J* = 15.5, 7.4 Hz, 1H), 3.09 (qdd, *J* = 14.2, 7.4, 1.2 Hz, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.74, 155.35, 136.08, 135.62, 135.59, 133.91, 131.71, 127.79, 127.75, 127.52, 127.40, 127.33, 126.75, 126.51, 125.31, 119.29, 104.59, 44.20. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 7.3 min (major), tr = 9.6 min (minor), ee = 91%.

Following the general procedure **C**, **3v** was obtained as yellow oil (24 mg, 56% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.40 – 8.38 (m, 2H), 7.59 – 7.53 (m, 5H), 7.49 (dd, J = 8.4, 7.0 Hz, 2H), 7.28 – 7.19 (m, 5H), 6.43 (d, J = 15.9 Hz, 1H), 5.95 (dt, J = 15.4, 7.4 Hz, 1H), 3.15 – 3.04 (m, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.72, 155.36, 136.60, 135.64, 135.58, 131.73, 130.71, 127.80, 127.76, 127.53, 127.31, 126.80, 126.76, 125.32, 122.14, 119.25, 104.62, 44.15. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 7.6 min (major), tr = 10.1 min (minor), ee = 91%.

Following the general procedure **C**, **3w** was obtained as yellow solid (28 mg, 75% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.42 – 8.39 (m, 2H), 7.59 – 7.56 (m, 1H), 7.51 – 7.46 (m, 3H), 7.42 – 7.37 (m, 2H), 7.28 – 7.19 (m, 5H), 7.07 (td, *J* = 8.2, 2.2 Hz, 1H), 6.44 (d, *J* = 15.8 Hz, 1H), 5.95 (dt, *J* = 15.4, 7.4 Hz, 1H), 3.12 (qdd, *J* = 14.2, 7.4, 1.3 Hz, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.64 (d, *J* = 18.4 Hz), 155.43, 139.88 (d, *J* = 7.5 Hz), 135.64 (d, *J* = 9.0 Hz), 131.72, 129.22 (d, *J* = 8.0 Hz), 127.79, 127.77, 127.51, 127.30, 126.74, 125.32, 120.72 (d, *J* = 3.2 Hz), 119.20, 114.93, 114.76, 112.57, 112.38, 104.38 (d, *J* = 2.4 Hz), 44.09. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -111.64 (td, *J* = 8.9, 5.5 Hz). HRMS(ESI) m/z: calculated for [C₂₄H₁₈FNO₂ + Na]⁺ 394.1219, found 394.1215. HPLC data (Chiralpak AD column, hexane : isopropanol = 95 : 5, 1.0 mL/min), tr = 7.2 min (major), tr = 8.0 min (minor), ee = 92%.

Following the general procedure **C**, **3x** was obtained as yellow oil (22 mg, 60% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.40 – 8.38 (m, 2H), 7.58 – 7.54 (m, 1H), 7.50 – 7.47 (m, 4H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.27 – 7.23 (m, 4H), 7.21 – 7.18 (m, 2H), 6.47 – 6.43 (m, 1H), 5.96 (dt, *J* = 15.8, 7.3 Hz, 1H), 3.15 (qdd, *J* = 14.2, 7.4, 1.3 Hz, 2H), 2.40 (s, 3H).¹³C NMR (126 MHz, Chloroform-*d*) δ 163.03, 155.17, 137.56, 137.35, 135.77, 135.34, 131.49, 128.59, 127.73, 127.55, 127.47, 127.46, 126.61, 125.58, 125.30, 122.09, 119.71, 105.19, 44.02, 20.54. HRMS(ESI) m/z: calculated for $[C_{25}H_{21}NO_2 + H]^+$ 368.1651, found 368.1643. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 6.1 min (major), tr = 6.9 min (minor), ee = 92%.

Following the general procedure **C**, **3y** was obtained as yellow oil (26 mg, 70% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.43 – 8.41 (m, 2H), 7.58 (td, *J* = 7.5, 1.6 Hz, 2H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.38 (tdd, *J* = 7.2, 4.8, 1.7 Hz, 1H), 7.27 – 7.23 (m, 4H), 7.21 – 7.18 (m, 1H), 7.17 – 7.13 (m, 2H), 6.49 (d, *J* = 15.9 Hz, 1H), 5.98 (dt, *J* = 15.5, 7.4 Hz, 1H), 3.37 – 3.25 (m, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.85, 155.81, 135.71, 135.48, 131.71, 130.14 (d, *J* = 8.6 Hz), 127.82, 127.78, 127.47, 127.34, 126.93 (d, *J* = 2.9 Hz), 126.64, 125.31, 123.21 (d, *J* = 3.6 Hz), 119.53, 115.83, 115.65, 103.54 (d, *J* = 4.9 Hz), 41.32 (d, *J* = 3.6 Hz).¹⁹F NMR (470 MHz, Chloroform-*d*) δ -111.34 (dt, *J* = 13.0, 6.4 Hz). HRMS(ESI) m/z: calculated for [C₂₄H₁₈FNO₂ + Na]⁺ 394.1219, found 394.1217. HPLC data (Chiralpak AD column, hexane : isopropanol = 98 : 2, 1.0 mL/min), tr = 13.9 min (major), tr = 14.7 min (minor), ee = 91%.

Following the general procedure **C**, **3z** was obtained as yellow solid (35 mg, 90% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.41 – 8.38 (m, 2H), 7.64 – 7.62 (m, 2H),

7.59 – 7.56 (m, 1H), 7.50 (dd, J = 8.4, 6.9 Hz, 2H), 7.41 – 7.39 (m, 2H), 7.29 – 7.20 (m, 5H), 6.44 (d, J = 15.8 Hz, 1H), 5.96 (dt, J = 15.5, 7.4 Hz, 1H), 3.10 (qdd, J = 14.2, 7.4, 1.2 Hz, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.75, 155.35, 136.09, 135.63, 135.60, 133.91, 131.72, 128.40, 128.22, 127.80, 127.76, 127.53, 127.34, 126.76, 126.52, 125.32, 124.67, 119.30, 104.60, 44.21. HRMS(ESI) m/z: calculated for [C₂₄H₁₈ClNO₂ + H]⁺ 388.1104, found 388.1095. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 7.3 min (major), tr = 9.6 min (minor), ee = 92%.

Following the general procedure **C**, **3a'** was obtained as yellow oil (25 mg, 73% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.43 – 8.41 (m, 2H), 7.60 – 7.57 (m, 1H), 7.51 – 7.47 (m, 3H), 7.29 – 7.24 (m, 4H), 7.21 (td, *J* = 5.7, 2.5 Hz, 1H), 6.56 – 6.48 (m, 2H), 6.39 (dd, *J* = 3.4, 1.8 Hz, 1H), 6.02 (dt, *J* = 15.9, 7.3 Hz, 1H), 3.32 (ddd, *J* = 7.3, 2.6, 1.3 Hz, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.91, 156.71, 147.83, 142.68, 135.64, 135.46, 131.85, 127.90, 127.81, 127.50, 127.24, 126.71, 125.35, 119.00, 109.56, 108.03, 100.54, 39.59. HRMS(ESI) m/z: calculated for [C₂₂H₁₇NO₃ + H]⁺ 344.1287, found 344.1286. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 7.1 min (major), tr = 8.3 min (minor), ee = 89%.

Following the general procedure C, **3b**' was obtained as yellow oil (13 mg, 36% yield). ¹H NMR (500 MHz, Chloroform-d) δ 8.41 (d, *J* = 7.7 Hz, 2H), 7.60 – 7.56 (m,

1H), 7.50 (t, J = 7.7 Hz, 2H), 7.35 (dd, J = 5.1, 1.2 Hz, 1H), 7.27 (dd, J = 4.3, 2.8 Hz, 5H), 7.23 – 7.20 (m, 1H), 7.04 (dd, J = 5.1, 3.7 Hz, 1H), 6.50 (d, J = 15.9 Hz, 1H), 6.03 (dt, J = 15.4, 7.3 Hz, 1H), 3.29 – 3.19 (m, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.79, 155.77, 139.15, 135.66, 135.62, 131.80, 127.88, 127.81, 127.51, 127.24, 126.73, 126.01, 125.41, 125.36, 124.77, 119.34, 103.23, 43.96. HRMS(ESI) m/z: calculated for [C₂₂H₁₇NO₂S + Na]⁺ 382.0878, found 382.0875. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 7.6 min (major), tr = 8.8 min (minor), ee = 86%.

Following the general procedure **C**, **3c'** was obtained as yellow solid (20 mg, 52% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.38 – 8.35 (m, 2H), 7.68 – 7.66 (m, 2H), 7.47 – 7.45 (m, 2H), 7.43 (td, *J* = 7.7, 7.2, 1.8 Hz, 2H), 7.40 – 7.36 (m, 1H), 7.28 – 7.19 (m, 5H), 6.43 (d, *J* = 15.8 Hz, 1H), 5.94 (dt, *J* = 15.8, 7.4 Hz, 1H), 3.14 (qdd, *J* = 14.3, 7.4, 1.3 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.79, 155.36, 139.11, 138.46, 136.70, 136.58, 130.10, 129.17, 129.00, 128.65, 128.55, 127.75, 126.95, 126.33, 126.01, 120.47, 106.38, 45.13. HRMS(ESI) m/z: calculated for [C₂₄H₁₈ClNO₂ + H]⁺ 388.1104, found 388.1094. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 8.4 min (major), tr = 10.3 min (minor), ee = 88%.

Following the general procedure **C**, **3d**' was obtained as yellow oil (33 mg, 85% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.40 (t, *J* = 1.9 Hz, 1H), 8.33 (dt, *J* = 7.8,

1.3 Hz, 1H), 7.69 – 7.66 (m, 2H), 7.53 (ddd, J = 8.0, 2.2, 1.1 Hz, 1H), 7.45 – 7.37 (m, 4H), 7.29 – 7.20 (m, 5H), 6.45 (d, J = 15.8 Hz, 1H), 5.95 (dt, J = 15.9, 7.4 Hz, 1H), 3.15 (qdd, J = 14.2, 7.4, 1.3 Hz, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.52, 154.25, 137.31, 135.63, 135.61, 133.94, 131.60, 129.09, 129.06, 128.01, 127.63, 127.58, 127.52, 126.73, 125.91, 125.31, 124.98, 119.33, 105.41, 44.08. HRMS(ESI) m/z: calculated for [C₂₄H₁₈ClNO₂ + H]⁺ 388.1104, found 388.1101. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 6.0 min (major), tr = 6.6 min (minor), ee = 92%.

Following the general procedure **C**, **3e'** was obtained as yellow oil (16 mg, 41% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.76 (dd, *J* = 7.5, 1.8 Hz, 2H), 7.71 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.51 – 7.44 (m, 4H), 7.38 (td, *J* = 7.6, 1.1 Hz, 1H), 7.34 – 7.30 (m, 4H), 7.27 (ddd, *J* = 8.6, 5.2, 2.5 Hz, 1H), 6.54 (d, *J* = 15.8 Hz, 1H), 6.07 (dt, *J* = 15.3, 7.4 Hz, 1H), 3.26 (d, *J* = 7.4 Hz, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 163.40, 158.12, 138.39, 136.94, 136.66, 133.85, 132.27, 131.26, 130.73, 129.09, 128.71, 128.56, 127.79, 127.67, 126.82, 126.39, 126.05, 120.19, 107.30, 44.83. HRMS(ESI) m/z: calculated for [C₂₄H₁₈ClNO₂ + H]⁺ 388.1104, found 388.1095. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 8.0 min (major), tr = 9.2 min (minor), ee = 94%.

Following the general procedure C, **3f**² was obtained as yellow oil (27 mg, 56% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.44 – 8.42 (m, 2H), 8.07 – 8.06 (m, 1H), 7.72 (dd, J = 7.9, 1.6 Hz, 1H), 7.57 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.37 – 7.34 (m, 1H), 7.24 (d, J = 6.1 Hz, 4H), 7.19 (td, J = 5.8, 2.4 Hz, 1H), 7.02 (td, J = 7.7, 1.7 Hz, 1H), 6.48 (d, J = 15.8 Hz, 1H), 5.95 (dt, J = 15.4, 7.4 Hz, 1H), 3.51 (dd, J = 14.3, 7.6 Hz, 1H), 3.38 (dd, J = 14.3, 7.2 Hz, 1H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.45, 155.21, 141.84, 139.42, 135.72, 135.55, 131.69, 129.41, 128.06, 127.90, 127.80, 127.46, 127.13, 126.64, 125.32, 119.38, 104.33, 91.96, 41.02. HRMS(ESI) m/z: calculated for [C₂₄H₁₈INO₂ + Na]⁺ 502.0280, found 502.0276. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 6.1 min (major), tr = 6.6 min (minor), ee = 88%.

General procedure D: One-pot synthesis of allylated 2,4-diaryloxazol-5(2H)-ones

To a dried 5 mL vial was added 2-benzamido-2-phenylacetic acid (51 mg, 0.2 mmol), trifluoroacetic anhydride (31 mg, 0.22 mmol) and THF (0.5 mL) under the atmosphere of Ar. The reaction mixture was then stirred at room temperature for 5 min. Then, *tert*-butyl cinnamyl carbonate (23 mg, 0.1 mmol), and DBU (91 mg, 0.6 mmol) were added using a pipetting gun. A separate vial was charged of [Ir(cod)Cl]₂ (1.4 mg, 0.002 mmol), **L1** (2.5 mg, 0.004 mmol), TBD (1.4 mg, 0.01 mmol) and THF (0.5 mL). The mixture was stirred at 30 °C for 30 min. The Iridium complex was then transferred to the first vial via syringe. The reaction mixture was stirred at the corresponding temperature for 48 hours. Upon completion of the reaction the vial was removed from the glovebox and uncapped. Saturated NH₄Cl aqueous solution was added and the mixture was extracted with DCM (10 mL x 3). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by silica gel flash chromatography (PE:EA=100:1) to afford the desired product **3a** as a yellow solid (24 mg, 68% yield, ee=90%).

General procedure E: Large scale synthesis of 3a.

The reaction was carried out in the glovebox under argon atmosphere. $[Ir(cod)Cl]_2$ (14 mg, 0.02 mmol), L1 (25 mg, 0.04 mmol), and TBD (14 mg, 0.1 mmol) were added to a vial equipped with a magnetic stirring bar. The vial was then charged with THF (5.0 mL) and stirred at 30°C for 30 min. Pressure pipe was added *tert*-butyl cinnamyl carbonates (1.0 mmol), 2,4-diphenyloxazol-5(4*H*)-one (2.0 mmol), DBU (3.0 mmol) and THF (5.0 mL). The pre-formed catalyst solution was then transferred to pressure pipe. The mixture was stirred at 30°C for 24 h. Upon completion of the reaction, saturated NH₄Cl aqueous solution was added and the mixture was extracted with DCM (10 mL x 3). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by silica gel flash chromatography (PE:EA=100:1) to afford the desired product **3a** as a yellow solid (247 mg, 70% yield, ee=88%).

Synthetic transformations.

10 mg of Pd/C was added to a solution of (S)-2-cinnamyl-2,4-diphenyloxazol-5(2*H*)-one (35 mg, 0.1 mmol) in THF (1.0 mL). The mixture was hydrogenated for 2 hours. The suspension was filtered and the solvent was evaporated to obtain the crude product. The product was then purified by column chromatography to yield the desired product **7** as a colorless oil (21 mg, 59% yield).

¹H NMR (500 MHz, Chloroform-*d*) δ 8.49 – 8.47 (m, 2H), 7.68 – 7.65 (m, 2H), 7.61 – 7.58 (m, 1H), 7.53 (dd, J = 8.3, 6.9 Hz, 2H), 7.46 – 7.38 (m, 3H), 7.30 (t, J = 7.5 Hz, 2H), 7.21 (t, J = 7.5 Hz, 1H), 7.16 – 7.14 (m, 2H), 2.65 (t, J = 7.7 Hz, 2H), 2.37 (ddd, J = 14.0, 10.3, 5.9 Hz, 1H), 2.27 (ddd, J = 14.1, 10.2, 6.1 Hz, 1H), 1.72 – 1.65 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.11, 154.58, 140.31, 137.91, 131.52, 127.74, 127.73, 127.59, 127.53, 127.39, 127.37, 127.02, 124.98, 124.96, 105.92, 40.11, 34.37, 23.88. HRMS(ESI) m/z: calculated for [C₂₄H₂₁NO₂ + K]⁺ 394.1209, found 394.1203. HPLC data (Chiralpak AD column, hexane : isopropanol = 98 : 2, 1.0 mL/min), tr = 8.2 min (major), tr = 9.2 min (minor), ee = 91%.

Under an argon atmosphere, a vial was charged with (*S*)-2-cinnamyl-2,4-diphenyloxazol-5(2*H*)-one (35 mg, 0.1 mmol), *m*-CPBA (34 mg, 0.2 mmol) and DCM (1.0 mL). The mixture is stirred vigorously for 2 hours at 30°C, and then quenched by addition of saturated NH₄Cl aqueous. The layers were separated and the aqueous phase was extracted with DCM (10 mL x 3). The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified by column chromatography over silica gel (PE: EA=100:1) to afford the compound **8** (26 mg, 70% yield) as a pale yellow oil.

¹H NMR (500 MHz, Chloroform-*d*) δ 8.43 – 8.41 (m, 2.02H), 8.40 – 8.38 (m, 2.05H), 7.66 – 7.64 (m, 4.11H), 7.58 (dt, J = 10.0, 7.4 Hz, 2.38H), 7.49 (q, J = 7.5 Hz, 5.06H), 7.41 (dd, J = 5.2, 1.9 Hz, 5.94H), 7.29 (s, 1.36H), 7.26 – 7.24 (m, 3.97H), 7.07 (dd, J = 7.4, 2.1 Hz, 2.02H), 7.03 (dd, J = 6.7, 3.0 Hz, 2.05H), 3.47 (d, J = 1.9 Hz, 1.02H), 3.45 (d, J = 1.9 Hz, 1H), 3.04 (d, J = 6.8 Hz, 1.01H), 3.02 (d, J = 1.9 Hz, 1.02H), 2.75 (dd, J = 14.2, 5.3 Hz, 1.14H), 2.69 (dd, J = 14.3, 5.5 Hz, 1.14H), 2.52 (dd, J = 14.3, 6.5 Hz, 1.12H), 2.45 (dd, J = 14.1, 6.7 Hz, 1.12H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.74, 162.54, 155.19, 154.91, 128.15, 128.10, 127.83, 127.78, 127.74, 127.39, 127.33, 127.31, 127.19, 127.15, 125.02, 124.92, 124.45, 124.43, 105.22, 104.32, 57.41, 57.15, 56.67, 56.58, 43.93, 43.84. HRMS(ESI) m/z: calculated for [C₂₄H₁₉NO₃ + H]⁺ 370.1443, found 370.1438.

Under an argon atmosphere, PhMgBr (0.2 mL, 0.2 mmol, 1.0 M) was added to a solution of (*S*)-2-cinnamyl-2,4-diphenyloxazol-5(2*H*)-one (35 mg, 0.1 mmol) in THF (1.0 mL) at 30°C. After 1 hour, the solvent was removed and the product was purified by column chromatography on silica gel to afford the product as a white solid (43 mg, 99% yield).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.91 – 7.88 (m, 2.02H), 7.86 – 7.83 (m, 1.68H), 7.78 (d, J = 1.6 Hz, 1.97H), 7.74 (s, 1.7H), 7.60 (s, 0.75H), 7.58 (d, J = 1.6 Hz, 0.96H), 7.43 – 7.40 (m, 3.28H), 7.36 (dq, J = 9.7, 5.6, 5.1 Hz, 6.08H), 7.32 – 7.29 (m, 5.25H), 7.27 – 7.25 (m, 5.55H), 7.22 (dtd, J = 14.5, 7.6, 6.8, 2.9 Hz, 6.48H), 6.64 (d, J = 16.0 Hz, 1H), 6.43 (d, J = 15.9 Hz, 0.82H), 6.28 – 6.24 (m, 1H), 6.23 – 6.19 (m, 0.82H), 3.28 – 3.14 (m, 1.98H), 3.04 (ddd, J = 59.0, 14.1, 8.3 Hz, 2.28H).¹³C NMR (126 MHz, Chloroform-*d*) δ 166.04, 142.31, 138.55, 135.32, 135.19, 133.20, 129.99, 128.67, 128.14, 127.77, 127.53, 127.47, 127.45, 127.35, 127.31, 127.25, 127.13, 126.97, 126.90, 126.81, 126.22, 125.54, 125.31, 125.22, 125.00, 124.82, 123.44, 123.12, 109.87, 108.91, 107.78, 107.46, 45.81. HRMS(ESI) m/z: calculated for [C₃₀H₂₅NO₂ + H]⁺ 432.1964, found 432.1949.

Under argon atmosphere, to a vial were added aryl acetylene (0.2 mmol) and dry THF (1.0 mL). The mixture was then stirred at -78°C for 5 min. After that, ⁿBuLi (0.08 mL, 0.2 mmol, 2.5 M) was added dropwise *via* syringe. The reaction mixture was stirred at -78°C for 1 hour, followed by dropwise addition of (*S*)-2-cinnamyl-2,4-diph-enyloxaz -ol-5(2*H*)-one (35 mg, 0.1 mmol) in THF (1.0 mL). The mixture was stirred at the same temperature for 3 hours. When the raw material reacted completely, the reaction was quenched with saturated NH₄Cl aqueous. The layers were separated and extracted with EA (20 mL×3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated by vacuo. The crude product was purified by column chromatography over silica gel (PE: EA=100:1) to afford the product as a white solid

(37 mg, 82% yield).

¹H NMR (500 MHz, DMSO- d_6) δ 8.46 (s, 0.30H), 8.35 (s, 1.01H), 8.21 – 8.17 (m, 2.68H), 7.67 (d, J = 7.6 Hz, 2.75H), 7.46 (qd, J = 10.4, 9.0, 4.8 Hz, 4.21H), 7.36 (t, J = 7.5 Hz, 3.99H), 7.33 – 7.28 (m, 4H), 7.24 (s, 4.18H), 7.19 (d, J = 7.5 Hz, 2.40H), 7.00 (dt, J = 14.6, 7.1 Hz, 3.19H), 6.46 (d, J = 15.9 Hz, 1H), 6.39 (d, J = 15.9 Hz, 0.32H), 6.20 (ddt, J = 22.1, 15.3, 7.0 Hz, 1.36H), 3.12 (td, J = 15.1, 7.2 Hz, 1.35H), 3.00 (td, J = 16.9, 14.5, 6.8 Hz, 1.36H). ¹³C NMR (126 MHz, DMSO- d_6) δ 162.77, 162.56, 142.60, 141.42, 136.50, 136.43, 132.89, 132.25, 131.03, 130.93, 130.74, 130.60, 128.77, 128.68, 128.46, 128.24, 128.21, 128.18, 128.12, 128.02, 127.95, 127.78, 127.47, 127.44, 127.11, 127.05, 126.56, 126.48, 125.28, 125.22, 125.08, 123.96, 123.33, 120.42, 120.28, 110.03, 109.49, 100.11, 100.07, 87.06, 86.91, 85.32, 84.93, 45.07, 44.50. HRMS(ESI) m/z: calculated for [C₃₂H₂₅NO₂ + H]⁺ 456.1964, found 456.1954.

The compound **11** was synthesized according the literature with modifications.^[3] CH₃Li (0.8 mL, 1.25 mmol) was added dropwise under argon atmosphere to a stirred slurry of titanocene dichloride (124 mg, 0.5 mmol) in dry toluene (2.0 mL) at -5°C. After 1 hour, the reaction mixture was warmed to 0°C and then quenched carefully with ice-cold 6% aqueous NH₄Cl (3.0 mL). After separation, the organic layer was washed with water (10 mL) and brine (10 mL), dried over Na₂SO₄ and filtered to provide a red solution. The solution was concentrated to one third the volume. The dimethyltitanocene was generally stored in the freezer and used as a 0.5 M solution in

toluene.

A solution of dimethyltitanocene and (S)-2-cinnamyl-2,4-diphenyloxaz-ol-5(2*H*)-one (35 mg, 0.1 mmol) was stirred for 4 hours in the dark at 80°C under argon atmosphere. The solvent was removed and the product was purified by column chromatography, affording product as a colorless oil (30 mg, 85% yield).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.68 (dd, J = 8.9, 7.2 Hz, 4H), 7.50 – 7.46 (m, 1H), 7.44 – 7.39 (m, 4H), 7.35 – 7.31 (m, 2H), 7.28 – 7.25 (m, 3H), 7.21 – 7.18 (m, 1H), 6.46 (d, J = 15.9 Hz, 1H), 6.11 (dt, J = 15.7, 7.3 Hz, 1H), 4.83 (d, J = 2.6 Hz, 1H), 4.52 (d, J = 2.6 Hz, 1H), 3.09 (ddd, J = 7.5, 2.7, 1.3 Hz, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 163.15, 157.32, 140.51, 136.42, 133.64, 130.29, 129.65, 127.55, 127.43, 127.41, 127.29, 127.04, 126.19, 125.18, 124.76, 121.75, 110.56, 84.61, 44.55. HRMS(ESI) m/z: calculated for [C₂₅H₂₁NO + H]⁺ 352.1701, found 352.1694. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 5.0 min (major), tr = 5.5 min (minor), ee = 90%.

A solution of 3r (38 mg, 0.1 mmol) and tetracyanoethylene (26 mg, 0.2 mmol) in 1.0 mL of toluene was heated at reflux for overnight. When the reaction completed, the mixture was added with water and extracted with EA (10 mL x 2). The combined organic phases were washed with saturated NH₄Cl solution, dried and evaporated. The crude mixture was purified by column chromatography to yield the product as a colorless oil (36 mg, 71% yield).

¹H NMR (500 MHz, Chloroform-*d*) δ 8.50 (d, J = 7.6 Hz, 1.93H), 8.46 (d, J = 7.8 Hz, 2.46H), 7.72 – 7.71 (m, 4.60H), 7.66 – 7.62 (m, 2.18H), 7.61 – 7.52 (m, 9.93H), 7.50 – 7.45 (m, 9.92H), 7.44 – 7.40 (m, 4.66H), 6.13 (ddd, J = 10.8, 4.7, 2.8 Hz, 1.33H), 6.01 (ddd, J = 10.8, 4.6, 2.7 Hz, 1.06H), 5.95 (dt, J = 10.7, 2.2 Hz, 1.25H), 5.91 – 5.88 (m, 0.98H), 4.25 (p, J = 2.7 Hz, 2.32H), 3.26 – 3.14 (m, 4.89H), 2.82 (dd, J = 14.7, 8.9 Hz, 1H), 2.70 (dd, J = 14.9, 9.6 Hz, 1.26H).¹³C NMR (126 MHz, Chloroform-*d*) δ 162.27, 161.86, 155.95, 155.31, 135.45, 134.90, 132.42, 132.32, 131.51, 129.38, 129.12, 128.66, 128.64, 128.46, 128.39, 128.34, 128.05, 127.99, 127.96, 126.90, 126.83, 126.55, 126.29, 125.32, 125.16, 123.76, 123.62, 109.97, 109.94, 109.92, 109.89, 108.91, 108.89, 108.51, 108.43, 103.87, 103.64, 45.79, 45.76, 43.50, 43.24, 42.81, 42.76, 42.09, 36.84, 36.70. HRMS(ESI) m/z: calculated for [C₃₂H₂₁N₅O₂ + Na]⁺ 530.1593, found 530.1584.

The reaction was proceeded in the glovebox. To a vessel was added a solution of compound (*S*)-2-cinnamyl-2,4-diphenyloxazol-5(2*H*)-one (35 mg, 0.1 mmol) in DCM (1.0 mL) and Hoveyda-Grubbs II catalyst (1.7 mg, 0.02 mmol) to form a dark-red solution. The tube was sealed with a Teflon/rubber cap. To this solution was added ethyl acrylate (22 μ L, 0.2 mmol). The resulting solution was heated over 50 °C for 48 hours. Then, the reaction mixture was cooled to rt. The crude product was purified by column chromatography to give compound **13** (21 mg, 57% yield).

¹H NMR (500 MHz, Chloroform-*d*) δ 8.42 – 8.40 (m, 2H), 7.64 – 7.61 (m, 2H), 7.59 – 7.56 (m, 1H), 7.50 (t, *J* = 7.7 Hz, 2H), 7.43 – 7.36 (m, 3H), 6.72 (dt, *J* = 15.3, 7.5 Hz, 1H), 5.87 (dd, *J* = 15.4, 1.5 Hz, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.17 – 3.05 (m, 2H), 1.24 (t, *J* = 7.1 Hz, 3H).¹³C NMR (126 MHz, Chloroform-*d*) δ 164.52, 162.66, 155.30, 137.98, 136.96, 131.79, 128.15, 127.82, 127.79, 127.70, 127.27, 125.90, 124.94, 104.24, 59.46, 43.23, 13.15. HRMS(ESI) m/z: calculated for [C₂₁H₁₉NO₄ + Na]⁺ 372.1212, found 372.1209. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 7.9 min (major), tr = 10.8 min (minor), ee = 91%.

The Pd(OAc)₂ (2.2 mg, 0.01 mmol), PPh₃ (5.2 mg, 0,02 mmol) and Ag₂CO₃ (0.2 mmol, 2.0 eq) were added to a vial containing a stirring bar under an argon atmosphere. The vial was wrapped with Teflon tape and capped. THF (1.0 mL) and (*S*)-2-cinnamyl-2-(2-iodophenyl)-4-phenyloxazol-5(2*H*)-one (41 mg, 0.1 mmol) were then added using a syringe. The resulting solution was heated at reflux for 16 hours. The solvent was removed and the product was purified by column chromatography on silica gel, eluent (PE: EA=100:1), product as a yellow solid (19 mg, 55% yield).

¹H NMR (500 MHz, Chloroform-*d*) δ 8.46 – 8.44 (m, 2H), 7.76 (d, *J* = 7.9 Hz, 1H), 7.59 (t, *J* = 7.5 Hz, 1H), 7.50 (q, *J* = 7.9 Hz, 3H), 7.44 (d, *J* = 7.8 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 1H), 7.27 (d, *J* = 7.2 Hz, 1H), 7.17 (d, *J* = 2.5 Hz, 1H), 7.03 (d, *J* = 7.7 Hz, 1H), 3.77 – 3.61 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.41, 154.75, 142.04, 136.96, 135.89, 135.23, 131.79, 130.00, 128.07, 127.90, 127.85, 127.66, 127.64, 127.28, 126.36, 122.28, 121.32, 119.91, 109.23, 41.27. HRMS(ESI) m/z: calculated for [C₂₄H₁₇NO₂ + Na]⁺ 374.1157, found 374.1153. HPLC data (Chiralpak AD column, hexane : isopropanol = 90 : 10, 1.0 mL/min), tr = 15.5 min (major), tr = 18.4 min (minor), ee = 83%.

References

- [1] M. Hayashi; L. E. Brown; J. A. P. Jr. J. Am. Chem. Soc. 2016, 138, 13103-13106.
- [2] D. K. Kahlon; T. A. Lansdell; J. S. Fisk; C. D. Hupp; T. L. Friebe; S. Hovde; A. D.
- Jones; R. D. Dyer; R. W. Henry; J. J. Tepe. J. Med. Chem. 2009, 52, 1302-1309.
- [3] A. J. Ndakala; M. Hashemzadeh; R. C. So; A. R. Howell. Org. Lett. 2002, 4, 1719–1722.

Single X-ray structure data of chiral 3j

Table 1 Crystal data and structure refinement for cu_20181219LMF_0m_a.

Identification code	cu_20181219LMF_0m_a
Empirical formula	$C_{24}H_{18}CINO_2$
Formula weight	387.84
Temperature/K	296(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	6.0263(5)
b/Å	16.9680(14)
c/Å	18.8850(16)
$\alpha/^{\circ}$	90
β/°	90
γ/ °	90
Volume/Å ³	1931.1(3)
Z	4
$\rho_{calc}g/cm^3$	1.334
μ/mm^{-1}	1.904
F(000)	808.0
Crystal size/mm ³	$0.220 \times 0.190 \times 0.160$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2 Θ range for data collection/°	7.004 to 130.97
Index ranges	$-6 \le h \le 7, \ -20 \le k \le 20, \ -22 \le l \le 22$
Reflections collected	10368
Independent reflections	$3213 [R_{int} = 0.0498, R_{sigma} = 0.0556]$
Data/restraints/parameters	3213/0/253
Goodness-of-fit on F ²	1.092
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0475, wR_2 = 0.1185$
Final R indexes [all data]	$R_1 = 0.0491, wR_2 = 0.1205$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.37
Flack parameter	0.031(10)

Table 2 Fractional Atomic Coordinates (×104) and Equivalent IsotropicDisplacement Parameters (Å2×103) for cu_20181219LMF_0m_a. Ueq is definedas 1/3 of of the trace of the orthogonalised UIJ tensor.

Atom	x	У	Z	U(eq)
Cl1	3089.6(19)	6950.5(6)	2965.4(4)	71.1(3)
O2	580(3)	5517.4(11)	6577.1(10)	44.4(4)
01	227(4)	4692.7(14)	5659.3(12)	58.4(6)
N1	3820(4)	4995.0(12)	7059.1(12)	38.8(5)
C11	1175(5)	5643.0(14)	7843.2(14)	40.1(6)
C10	2261(4)	5641.8(14)	7123.3(14)	38.7(5)
C6	4960(5)	6572.3(12)	4966.5(14)	38.2(5)
C23	3262(4)	4571.9(14)	6530.1(13)	38.5(5)
C9	3430(5)	6432.6(15)	6954.7(15)	44.0(6)
C24	1202(5)	4897.4(15)	6177.6(15)	41.4(6)
C22	4456(5)	3857.7(15)	6313.3(14)	40.7(6)
C2	7978(5)	6184.9(17)	4204.2(18)	51.1(7)
C12	2250(5)	5344.2(15)	8425.5(16)	48.2(7)
C5	3789(4)	6802.8(14)	4369.3(14)	40.6(6)
C8	4678(5)	6399.9(15)	6272.9(16)	44.9(6)
C7	3897(5)	6644.2(14)	5661.8(15)	40.9(6)
C17	6492(5)	3691.5(18)	6629.4(16)	50.1(7)
C1	7098(5)	6261.8(14)	4874.8(17)	44.8(6)
C3	6794(6)	6402.5(17)	3610.8(16)	52.0(7)
C21	3612(6)	3333.3(17)	5819.1(17)	53.8(7)
C4	4681(5)	6707.4(15)	3703.9(15)	46.6(6)
C16	-900(6)	5979(2)	7930.8(19)	63.6(9)
C13	1283(8)	5376.4(17)	9093.7(16)	60.8(9)
C20	4752(8)	2649.4(19)	5661(2)	67.1(10)

63.6(10)	5985.4(19)	2484.5(19)	6742(7)	C19
62.5(9)	9173.1(18)	5705.0(19)	-780(7)	C14
74.7(11)	8602(2)	6001(3)	-1860(6)	C15
60.9(8)	6469(2)	3009(2)	7612(6)	C18

Table 3 Anisotropic Displacement Parameters $(\mathring{A}^2 \times 10^3)$ for

cu_20181219LMF_0m_a. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	\mathbf{U}_{22}	U 33	U23	U 13	U12
Cl1	78.6(6)	87.8(6)	46.8(4)	5.5(4)	-6.2(4)	-4.7(5)
O2	38.6(9)	51.7(9)	43.0(10)	1.4(8)	-6.7(8)	8.3(8)
01	53.5(13)	70.7(13)	50.9(12)	-7.8(10)	-18.4(11)	6.9(10)
N1	35.7(10)	43.3(10)	37.4(10)	3.8(8)	-0.9(10)	3.9(9)
C11	39.2(13)	39.6(11)	41.4(13)	-1.8(10)	1.0(11)	-2.6(10)
C10	35.5(12)	41.6(12)	38.9(12)	-0.1(10)	-4.5(11)	5.4(10)
C6	39.5(12)	29.9(10)	45.3(14)	-2.4(9)	3.6(12)	-4.1(9)
C23	36.5(12)	42.7(11)	36.2(12)	7.2(10)	2.6(11)	1.0(10)
C9	43.8(13)	44.3(12)	43.8(13)	2.2(10)	1.5(12)	-0.2(11)
C24	35.8(12)	46.7(12)	41.6(13)	2.6(10)	-2.4(12)	-0.3(11)
C22	44.2(14)	43.2(11)	34.5(12)	7.1(9)	4.9(11)	3.3(11)
C2	39.0(14)	49.3(13)	64.9(18)	-11.8(13)	8.8(15)	-2.4(12)
C12	59.7(17)	41.8(12)	43.1(14)	4.9(11)	1.8(14)	5.2(12)
C5	38.6(12)	35.3(11)	47.8(14)	-0.7(9)	4.3(12)	-4.8(10)
C8	40.2(13)	45.9(11)	48.7(15)	2.2(11)	3.2(12)	0.9(11)
C7	38.2(12)	37.1(10)	47.5(14)	-1.3(10)	5.0(12)	4.0(10)
C17	49.0(15)	56.9(15)	44.4(14)	2.1(12)	2.3(13)	9.9(12)
C1	38.2(13)	42.3(12)	54.0(16)	-4.4(11)	-2.0(13)	-0.4(10)

C3	54.7(16)	51.1(13)	50.2(16)	-10.3(12)	16.3(15)	-12.2(14)
C21	60.5(18)	48.6(14)	52.4(15)	-0.8(13)	-4.7(16)	5.2(13)
C4	53.0(15)	40.9(11)	45.9(15)	-3.0(11)	1.9(13)	-11.0(12)
C16	44.2(16)	96(2)	51.0(17)	-9.8(17)	2.5(16)	14.2(16)
C13	96(3)	45.2(14)	41.0(15)	5.7(11)	9.1(18)	-4.5(15)
C20	92(3)	48.6(15)	61(2)	-8.2(13)	-3(2)	5.4(17)
C19	81(3)	50.9(15)	59.3(18)	5.5(13)	17.9(19)	24.7(16)
C14	76(2)	60.7(17)	51.0(17)	-12.5(14)	22.7(18)	-23.3(17)
C15	47.7(17)	105(3)	72(2)	-26(2)	12.9(19)	3(2)
C18	55.8(18)	66.1(17)	60.8(19)	8.6(15)	2.3(16)	21.0(15)

Table 4 Bond Lengths for cu_20181219LMF_0m_a.

Atom	Atom	Length/Å	Atom	n Atom	Length/Å
Cl1	C4	1.742(3)	C22	C21	1.386(4)
O2	C24	1.348(3)	C22	C17	1.393(4)
O2	C10	1.461(3)	C2	C3	1.379(5)
01	C24	1.193(4)	C2	C1	1.379(5)
N1	C23	1.275(4)	C12	C13	1.391(5)
N1	C10	1.450(3)	C5	C4	1.376(4)
C11	C12	1.373(4)	C8	C7	1.313(4)
C11	C16	1.385(5)	C17	C18	1.375(4)
C11	C10	1.509(4)	C3	C4	1.386(5)
C10	C9	1.549(4)	C21	C20	1.381(5)
C6	C5	1.387(4)	C16	C15	1.393(5)
C6	C1	1.403(4)	C13	C14	1.371(6)
C6	C7	1.466(4)	C20	C19	1.375(6)
C23	C22	1.468(4) C19	C18	1.379(6)	
-----	-----	--------------	-----	----------	
C23	C24	1.513(4) C14	C15	1.357(6)	
C9	C8	1.492(4)			

Table 5 Bond Angles for cu_20181219LMF_0m_a.

Atom Atom Atom		n Atom	Angle/° Atom		n Atom Atom		Angle/°	
C24	02	C10	108.37(19)	C21	C22	C23		122.5(3)
C23	N1	C10	108.7(2)	C17	C22	C23		118.6(3)
C12	C11	C16	118.8(3)	C3	C2	C1		121.5(3)
C12	C11	C10	121.1(3)	C11	C12	C13		121.0(3)
C16	C11	C10	120.0(3)	C4	C5	C6		120.7(3)
N1	C10	O2	106.3(2)	C7	C8	C9		124.5(3)
N1	C10	C11	110.9(2)	C8	C7	C6		127.2(2)
O2	C10	C11	109.6(2)	C18	C17	C22		120.6(3)
N1	C10	C9	110.1(2)	C2	C1	C6		120.1(3)
O2	C10	C9	107.2(2)	C2	C3	C4		118.2(3)
C11	C10	C9	112.4(2)	C20	C21	C22		120.1(3)
C5	C6	C1	118.2(3)	C5	C4	C3		121.2(3)
C5	C6	C7	118.9(2)	C5	C4	C11		119.2(2)
C1	C6	C7	122.9(3)	C3	C4	C11		119.5(2)
N1	C23	C22	123.6(2)	C11	C16	C15		119.7(4)
N1	C23	C24	110.8(2)	C14	C13	C12		119.7(3)
C22	C23	C24	125.5(2)	C19	C20	C21		120.5(3)
C8	C9	C10	112.0(2)	C20	C19	C18		119.7(3)
01	C24	O2	123.3(3)	C15	C14	C13		119.9(3)
01	C24	C23	131.2(3)	C14	C15	C16		120.9(4)

O2	C24	C23	105.5(2) C17	C18	C19	120.2(3)
C21	C22	C17	118.8(3)			

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for cu_20181219LMF_0m_a.

Atom	x	у	Z.	U(eq)
H9A	2328.48	6848.46	6929.28	53
H9B	4448.82	6560.24	7335.49	53
H2	9401.91	5981.89	4151.11	61
H12	3644.59	5117.09	8372.37	58
Н5	2386.06	7024.25	4418.91	49
H8	6105.53	6192.23	6281.23	54
H7	2518.32	6890.05	5671.21	49
H17	7097.56	4045.59	6951.82	60
H1	7923.65	6107.37	5267.01	54
Н3	7397.4	6346.15	3160.35	62
H21	2274.35	3442.14	5593.54	65
H16	-1648.48	6189.91	7543.95	76
H13	2033.13	5176.08	9484.69	73
H20	4170.04	2297.6	5332.04	81
H19	7497.03	2021.36	5879.15	76
H14	-1438.74	5725	9618.13	75
H15	-3261.93	6221.54	8658.55	90
H18	8961.47	2900.43	6687.44	73

S41

- 174. 54 - 157. 46 - 157. 46 - 1381. 1281

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

182 33 184 24

1

-43.94

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

- 164, 10 - 164, 10 - 164, 10 - 156, 13 - 156, 14 - 156, 156 -

-102, 01 -166, 71 -166, 71 -147, 58 -147, 58 -147, 58 -148, 58 -152, 58 -113, 56 -113, 56 -100, 58 -100, 58 -100, 59 -100, 59 -20, 59

---45.81

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

HPLC data

序号	峰名	保留时间	峰面积		峰	高	相对	峰面	相对峰高	样品量	
	称	(min)	(mAU*min)		(mA	U)	积 (%)		(%)	n.a.	
Entry	Peak	Retention	Peak	Peak area		Peak		Relativ	ve	Relative	Sample
	name	time (min)	(mA	(mAU*min)		heig	ht	peak	area	Peak height	volume
					(mA	(mAU)			(%)	n.a.	

For comparison of Chinese and English of the HPLC data table.

序号	峰名称	保留时间	峰面积	峰高	相对峰面积	相对峰高	样品量
		min	mAU*min	mAU	%	%	n.a.
1		7.997	35.224	208.427	50.12	58.53	n.a.
2		10.567	35.057	147.645	49.88	41.47	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			\mathcal{O}							
序号	峰名	保留时间	峰面积		峰	高	相对峰	面	相对峰高	样品量	
	称	(min)	(mAU*min)		(mAU)		积 (%)		(%)	n.a.	
Entry	Peak	Retention	Peak	Peak area		Peak		Relative	•	Relative	Sample
	name	time (min)	(mAU*min)		height		peak a	area	Peak height	volume	
					(mA	U)	(%)		(%)	n.a.	

For comparison of Chinese and English of the HPLC data table.

	1			0						
序号	峰名	保留时间	峰面积		峰	高	相对峰面	相对峰高	样品量	
	称	(min)	(mAU*min)		(mAU)		积 (%)	(%)	n.a.	
Entry	Peak	Retention	Peak area		Peak		Relative	Relative	Sample	
	name	time (min)	(mA	(mAU*min)		height		peak area	Peak height	volume
						(mA	U)	(%)	(%)	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0							
序号	峰名	保留时间	峰面积		峰	高	相对	峰面	相对峰高	样品量	
	称	(min)	(mAU*min)		(mAU)		积 (%)		(%)	n.a.	
Entry	Peak	Retention	Peak	Peak area		Peak		Relativ	ve	Relative	Sample
	name	time (min)	(mA	(mAU*min)		height		peak	area	Peak height	volume
						(mA	.U)	(%)		(%)	n.a.

	0.0 2.0	4.0	6.0 ଜ†ଲ	8.0 [min]	10.0 1	12.0 14.1	0 15.0
序号	峰名称	保留时间	峰面积	峰高	相对峰面积	相对峰高	样品量
		min	mAU*min	mAU	%	%	n.a.
1		6.710	74.384	581.569	93.19	94.67	n.a.
2		7.570	5.435	32.737	6.81	5.33	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0							
序号	峰名	保留时间	峰面积		峰	刯	相对	峰面	相对峰高	样品量	
	称	(min)	(mAU*min)		(mAU)		积 (%)		(%)	n.a.	
Entry	Peak	Retention	Peak	Peak area		Peak		Relativ	ve	Relative	Sample
	name	time (min)	(mA	(mAU*min)		height		peak	area	Peak height	volume
						(mA	(mAU)			(%)	n.a.

 序号
 峰名称
 保留时间
 峰面积
 峰高
 相对峰面积
 相对峰高
 样品量

 min
 mAU*min
 mAU
 %
 %
 n.a.

 1
 18.447
 797.856
 1349.756
 93.45
 94.11
 n.a.

 2
 21.247
 55.899
 84.509
 6.55
 5.89
 n.a.

For comparison of Chinese and English of the HPLC data table.

	1			U							
序号	峰名	保留时间	峰面积		峰	高	相对	峰面	相对峰高	样品量	
	称	(min)	(mAU*min)		(mAU)		积 (%)		(%)	n.a.	
Entry	Peak	Retention	Peak	Peak area		Peak		Relativ	ve	Relative	Sample
	name	time (min)	(mA	(mAU*min)		height		peak	area	Peak height	volume
						(mA	.U)	(%)		(%)	n.a.

序号	峰名	保留时间	峰	面	积	峰	高	相对峰	面	相对峰高	样品量	
	称	(min)	(mA	U*mi	n)	(mA	U)	积 (%)		(%)	n.a.	
Entry	Peak	Retention	Peal	Peak area		Peak	2	Relative		Relative	Sample	
	name	time (min)	(mA	(mAU*min)		height		peak are	rea	Peak height	volume	
						(mA	U)	(%)		(%)	n.a.	

For comparison of Chinese and English of the HPLC data table.

For comparison of	Chinese and	English	of the	HPLC	data table.
1		0			

	1			<u> </u>							
序号	峰名	保留时间	峰面积		峰	高	相对	峰面	相对峰高	样品量	
	称	(min)	(mAU*min)		(mAU)		积 (%)		(%)	n.a.	
Entry	Peak	Retention	Peak	Peak area		Peak		Relati	ve	Relative	Sample
	name	time (min)	(mA	(mAU*min)		heig	ht	peak	area	Peak height	volume
						(mA	.U)	(%)		(%)	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0							
序号	峰名	保留时间	峰面积		峰	刯	相对山	峰面	相对峰高	样品量	
	称	(min)	(mAU*min)		(mAU)		积 (%)		(%)	n.a.	
Entry	Peak	Retention	Peak area		Peak		Relativ	/e	Relative	Sample	
	name	time (min)	(mA	(mAU*min)		height		peak	area	Peak height	volume
						(mA	U)	(%)		(%)	n.a.

99.521

3.150

8.483

12.340

450.987

10.257

96.93

3.07

n.a.

n.a.

2.22

For comparison of Chinese and English of the HPLC data table.

	1			0							
序号	峰名	保留时间	峰	面	积	峰	高	相对山	峰面	相对峰高	样品量
	称	(min)	(mA	U*mi	n)	(mA	U)	积 (%)	(%)	n.a.
Entry	Peak	Retention	Peak	k area		Peak	κ	Relativ	/e	Relative	Sample
	name	time (min)	(mA	(mAU*min)		heig	ht	peak	area	Peak height	volume
						(mA	.U)	(%)		(%)	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0							
序号	峰名	保留时间	峰	面	积	峰	高	相对山	峰面	相对峰高	样品量
	称	(min)	(mA	U*mi	n)	(mA	U)	积 (%)	(%)	n.a.
Entry	Peak	Retention	Peak	area		Peak	K	Relativ	ve	Relative	Sample
	name	time (min)	(mA	(mAU*min)		heig	ht	peak	area	Peak height	volume
						(mA	.U)	(%)		(%)	n.a.

序号	峰名称	保留时间	峰面积	峰高	相对峰面积	相对峰高	样品量
		min	mAU*min	mAU	%	%	n.a.
1		8.707	17.199	84.028	50.09	54.14	n.a.
2		10.037	17.138	71,171	49.91	45.86	n.a. 🖌

For comparison of Chinese and English of the HPLC data table.

	1			0							
序号	峰名	保留时间	峰	面	积	峰	高	相对	峰面	相对峰高	样品量
	称	(min)	(mA	U*mi	n)	(mA	U)	积 (%)	(%)	n.a.
Entry	Peak	Retention	Peak	k area		Peak	K	Relativ	ve	Relative	Sample
	name	time (min)	(mA	(mAU*min)		heig	ht	peak	area	Peak height	volume
						(mA	.U)	(%)		(%)	n.a.

			trj	") (min)			
序号	峰名称	保留时间	峰面积	峰高	相对峰面积	相对峰高	样品量
		min	mAU*min	mAU	%	%	n.a.
1		8.233	63.542	295.545	91.35	94.36	n.a.
2		13.267	6.019	17.671	8.65	5.64	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0							
序号	峰名	保留时间	峰	面	积	峰	高	相对峙	夆面	相对峰高	样品量
	称	(min)	(mA	U*mi	n)	(mA	.U)	积 (%))	(%)	n.a.
Entry	Peak	Retention	Peak	k area		Peal	c	Relativ	e	Relative	Sample
	name	time (min)	(mA	(mAU*min)		height		peak	area	Peak height	volume
						(mA	U)	(%)		(%)	n.a.

序号	峰名称	保留时间	峰面积	峰高	相对峰面积	相对峰高	样品量
		min	mAU*min	mAU	%	%	n.a.
1		11.163	42.860	141.713	95.00	95.53	n.a.
2		13.550	2.258	6.636	5.00	4.47	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0						
序号	峰名	保留时间	峰	面	积	峰	高	相对峰正	面 相对峰高	样品量
	称	(min)	(mA	U*mi	n)	(mA	U)	积 (%)	(%)	n.a.
Entry	Peak	Retention	Peal	k area		Peak	κ	Relative	Relative	Sample
	name	time (min)	(mA	(mAU*min)		heig	ht	peak are	ea Peak height	volume
						(mA	U)	(%)	(%)	n.a.

Æ	影号	峰名称	保留时间	峰面积	峰高	相对峰面积	相对峰高	样品量
			min	mAU*min	mAU	%	%	n.a.
1			8.193	2.910	14.804	50.61	60.10	n.a.
2			11.867	2.840	9.827	49.39	39.90	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0							
序号	峰名	保留时间	峰	面	积	峰	亶	相对山	峰面	相对峰高	样品量
	称	(min)	(mA	.U*mi	n)	(mA	.U)	积 (%)	(%)	n.a.
Entry	Peak	Retention	Peal	k area		Peak	κ.	Relativ	ve	Relative	Sample
	name	time (min)	(mA	(mAU*min)		heig	ht	peak	area	Peak height	volume
						(mA	.U)	(%)		(%)	n.a.

0.0	2.0	4.0	6.0	8.0	10.0	12.0	14.0 15.0	3
			f .	† (🖲 [min]				4

序号	峰名称	保留时间	峰面积	峰高	相对峰面积	相对峰高	样品量
		min	mAU*min	mAU	%	%	n.a.
1		8.090	261.334	1225.964	95.48	96.65	n.a.
2		10.840	12.376	42.434	4.52	3.35	n.a.

For co	mpa	ariso	on of Chinese	e and	Engli	sh of	the	HPL	C data table.	
序号	峰	名	保留时间	峰	面	积	峰	堲	相对峰面	相对

N

序号	峰 名	保留时间	峰	面利	积	峰	刯	相对	夆面	相对峰高	样品量
	称	(min)	(mAU*min)		(mAU)		积 (%)		(%)	n.a.	
Entry	Peak	Retention	Peak area		Peak		Relativ	re	Relative	Sample	
	name	time (min)	(mAU	J*min)		heigl	ht	peak	area	Peak height	volume
						(mA	U)	(%)		(%)	n.a.

序号	峰名称	保留时间	峰面积	峰高	相对峰面积	相对峰高	样品量 】
		min	mAU*min	mAU	%	%	n.a.
1		17.023	42.688	77.196	50.19	60.29	n.a.
2		24.590	42.372	50.845	49.81	39.71	n.a.

序号	峰名称	保留时间	峰面积	峰高	相对峰面积	相对峰高	样品量
		min	mAU*min	mAU	%	%	n.a.
1		16.293	310.932	560.272	94.03	95.91	n.a.
2		23.873	19.724	23.907	5.97	4.09	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0							
序号	峰名	保留时间	峰	面	积	峰	高	相对	峰面	相对峰高	样品量
	称	(min)	(mAU*min)		(mAU)		积 (%)	(%)	n.a.	
Entry	Peak	Retention	Peak area		Peak		Relative		Relative	Sample	
	name	time (min)	(mAU*min)		height		peak	area	Peak height	volume	
						(mA	.U)	(%)		(%)	n.a.

For comparison of Chinese and English of the HPLC data table.

序号	峰名	保留时间	峰	面	积	峰	高	相对峰	面	相对峰高	样品量
	称	(min)	(mA	(mAU*min)		(mAU)		积 (%)		(%)	n.a.
Entry	Peak	Retention	Peak area		Peak		Relative		Relative	Sample	
	name	time (min)	(mAU*min)		height		peak a	area	Peak height	volume	
						(mA	U)	(%)		(%)	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			\mathcal{U}						
序号	峰名	保留时间	峰	面	积	峰	高	相对峰面	相对峰高	样品量
	称	(min)	(mA	U*mi	n)	(mA	U)	积 (%)	(%)	n.a.
Entry	Peak	Retention	Peak	area		Peak	K	Relative	Relative	Sample
	name	time (min)	(mA	U*mi	n)	heig	ht	peak area	Peak height	volume
						(mA	U)	(%)	(%)	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0						
序号	峰名	保留时间	峰	面	积	峰	高	相对峰正	面 相对峰高	样品量
	称	(min)	(mA	U*mi	n)	(mA	U)	积 (%)	(%)	n.a.
Entry	Peak	Retention	Peak	k area		Peak	κ	Relative	Relative	Sample
	name	time (min)	(mA	U*mi	n)	heig	ht	peak are	ea Peak heigh	nt volume
						(mA	U)	(%)	(%)	n.a.

序号	峰名称	保留时间	峰面积	峰高	相对峰面积	相对峰高	样品量
		min	mAU*min	mAU	%	%	n.a.
1		5.793	500.884	2837.454	92.24	92.81	n.a.
2		7.033	42.166	219.972	7.76	7.19	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0							
序号	峰名	保留时间	峰	面	积	峰	刯	相对山	峰面	相对峰高	样品量
	称	(min)	(mA	U*mi	n)	(mA	U)	积 (%)	(%)	n.a.
Entry	Peak	Retention	Peak	area		Peak	C C	Relativ	/e	Relative	Sample
	name	time (min)	(mA	U*mi	n)	heig	ht	peak	area	Peak height	volume
						(mA	U)	(%)		(%)	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0							
序号	峰名	保留时间	峰	面	积	峰	高	相对山	峰面	相对峰高	样品量
	称	(min)	(mA	.U*mi	n)	(mA	.U)	积 (%)	(%)	n.a.
Entry	Peak	Retention	Peal	k area		Peak	c	Relativ	ve	Relative	Sample
	name	time (min)	(mA	.U*mi	n)	heig	ht	peak	area	Peak height	volume
						(mA	U)	(%)		(%)	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0						
序号	峰名	保留时间	峰	面	积	峰	高	相对峰正	面 相对峰高	样品量
	称	(min)	(mA	U*mi	n)	(mA	U)	积 (%)	(%)	n.a.
Entry	Peak	Retention	Peal	k area		Peak	κ	Relative	Relative	Sample
	name	time (min)	(mA	U*mi	n)	heig	ht	peak are	ea Peak height	volume
						(mA	U)	(%)	(%)	n.a.

序号	峰名称	保留时间	峰面积	峰高	相对峰面积	相对峰高	样品量
		min	mAU*min	mAU	%	%	n.a.
1		7.150	67.089	373.091	95.97	96.63	n.a.
2		7.980	2.820	13.031	4.03	3.37	n.a.

For comparison	of Chinese	and English	of the HPLC	data table.
1		0		

	-			<u> </u>							
序号	峰名	保留时间	峰	面	积	峰	高	相对	峰面	相对峰高	样品量
	称	(min)	(mA	U*mi	n)	(mA	.U)	积 (%)	(%)	n.a.
Entry	Peak	Retention	Peak	k area		Peak	c	Relativ	ve	Relative	Sample
	name	time (min)	(mA	U*mi	n)	heig	ht	peak	area	Peak height	volume
						(mA	U)	(%)		(%)	n.a.

序号	峰名称	保留时间	峰面积	峰高	相对峰面积	相对峰高	样品量
		min	mAU*min	mAU	%	%	n.a.
1		6.090	84.599	680.483	96.03	96.48	n.a.
2		6.910	3.500	24.823	3.97	3.52	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			\mathcal{C}							
序号	峰名	保留时间	峰	面	积	峰	高	相对峰	夆面	相对峰高	样品量
	称	(min)	(mA	U*mi	n)	(mA	.U)	积 (%))	(%)	n.a.
Entry	Peak	Retention	Peak	k area		Peal	c	Relative	e	Relative	Sample
	name	time (min)	(mA	U*mi	n)	heig	ht	peak	area	Peak height	volume
						(mA	U)	(%)		(%)	n.a.

序号	峰名称	保留时间	峰面积	峰高	相对峰面积	相对峰高	样品量
		min	mAU*min	mAU	%	%	n.a.
1		13.850	227.006	606.502	95.61	95.71	n.a.
2		14.723	10.412	27.211	4.39	4.29	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0						
序号	峰名	保留时间	峰	面	积	峰	高	相对峰正	面 相对峰高	样品量
	称	(min)	(mA	U*mi	n)	(mA	U)	积 (%)	(%)	n.a.
Entry	Peak	Retention	Peak area		Peak		Relative	Relative	Sample	
	name	time (min)	(mA	U*mi	n)	heig	ht	peak are	ea Peak heigh	nt volume
						(mA	U)	(%)	(%)	n.a.

序号	峰名称	保留时间	峰面积	峰高	相对峰面积	相对峰高	样品量
		min	mAU*min	mAU	%	%	n.a.
1		7.323	65.793	348.274	96.18	96.94	n.a.
2		9.553	2.612	10.998	3.82	3.06	n.a. 🧹

For comparison of Chinese and English of the HPLC data table.

	1			\mathcal{U}						
序号	峰名	保留时间	峰	面	积	峰	高	相对峰面	相对峰高	样品量
	称	(min)	(mA	U*mi	n)	(mA	U)	积 (%)	(%)	n.a.
Entry	Peak	Retention	Peak	area		Peak	K	Relative	Relative	Sample
	name	time (min)	(mA	U*mi	n)	heig	ht	peak area	Peak height	volume
						(mA	U)	(%)	(%)	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0							
序号	峰名	保留时间	峰	面	积	峰	高	相对峰直	面	相对峰高	样品量
	称	(min)	(mA	U*mi	n)	(mA	U)	积 (%)		(%)	n.a.
Entry	Peak	Retention	Peak	k area		Peak	κ	Relative		Relative	Sample
	name	time (min)	(mA	U*mi	n)	heig	ht	peak are	ea	Peak height	volume
						(mA	U)	(%)		(%)	n.a.

For comparison of Chinese and English of the HPLC data table.

序号	峰名	保留时间	峰面	积	峰	高	相对山	峰面	相对峰高	样品量
	称	(min)	(mAU*min)		(mA	U)	积 (%)		(%)	n.a.
Entry	Peak	Retention	Peak area		Peak		Relativ	/e	Relative	Sample
	name	time (min)	(mAU*min)		heig	ht	peak	area	Peak height	volume
					(mA	U)	(%)		(%)	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0						
序号	峰名	保留时间	峰	面	积	峰	高	相对峰正	面 相对峰高	样品量
	称	(min)	(mA	U*mi	n)	(mA	U)	积 (%)	(%)	n.a.
Entry	Peak	Retention	Peak area		Peak		Relative	Relative	Sample	
	name	time (min)	(mA	U*mi	n)	heig	ht	peak are	ea Peak heigh	nt volume
						(mA	U)	(%)	(%)	n.a.

序号	峰名称	保留时间	峰面积	峰高	相对峰面积	相对峰高	样品量 】
		min	mAU*min	mAU	%	%	n.a.
1		6.013	244.246	1584.776	95.79	95.89	n.a.
2		6.577	10.741	67.904	4.21	4.11	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			\mathcal{C}							
序号	峰名	保留时间	峰	面	积	峰	高	相对	峰面	相对峰高	样品量
	称	(min)	(mAU*min)		(mA	U)	积 (%)	(%)	n.a.	
Entry	Peak	Retention	Peak area		Peak	κ	Relative		Relative	Sample	
	name	time (min)	(mA	(mAU*min)		height		peak	area	Peak height	volume
						(mA	.U)	(%)		(%)	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0							
序号	峰名	保留时间	峰	面	积	峰	亶	相对山	峰面	相对峰高	样品量
	称	(min)	(mA	U*mi	n)	(mA	.U)	积 (%)	(%)	n.a.
Entry	Peak	Retention	Peak area		Peak		Relativ	ve	Relative	Sample	
	name	time (min)	(mA	U*mi	n)	heig	ht	peak	area	Peak height	volume
						(mA	.U)	(%)		(%)	n.a.

For comparison of Chinese and English of the HPLC data table.

0

	1			0							
序号	峰名	保留时间	峰	面	积	峰	高	相对山	峰面	相对峰高	样品量
	称	(min)	(mA	.U*mi	n)	(mA	U)	积 (%)	(%)	n.a.
Entry	Peak	Retention	Peak area		Peak		Relativ	ve	Relative	Sample	
	name	time (min)	(mA	(mAU*min)		heig	ht	peak	area	Peak height	volume
						(mA	.U)	(%)		(%)	n.a.

序₹	峰名称	保留时间	峰面积	峰高	相对峰面积	相对峰高	样品量
		min	mAU*min	mAU	%	%	n.a.
1		8.040	11.530	37.562	49.25	52.98	n.a.
2		8.927	11.880	33.340	50.75	47.02	n.a.

n.a.

n.a.

4.35

For comparison of Chinese and English of the HPLC data table.

	1			0							
序号	峰名	保留时间	峰	面	积	峰	高	相对	峰面	相对峰高	样品量
	称	(min)	(mA	nAU*min)		(mAU)		积 (%)		(%)	n.a.
Entry	Peak	Retention	Peak area		Peak		Relative		Relative	Sample	
	name	time (min)	(mA	U*mi	n)	height		peak	area	Peak height	volume
						(mA	.U)	(%)		(%)	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0							
序号	峰名	保留时间	峰	面	积	峰	高	相对峰	面	相对峰高	样品量
	称	(min)	(mA	.U*mi	n)	(mA	U)	积 (%)		(%)	n.a.
Entry	Peak	Retention	Peak area		Peak		Relative		Relative	Sample	
	name	time (min)	(mA	.U*mi	n)	heig	ht	peak a	rea	Peak height	volume
						(mA	U)	(%)		(%)	n.a.

For comparison of Chinese and English of the HPLC data table.

	1			0							
序号	峰名	保留时间	峰	面	积	峰	高	相对	峰面	相对峰高	样品量
	称	(min)	(mA	(mAU*min)		(mAU)		积 (%)		(%)	n.a.
Entry	Peak	Retention	Peak area		Peak		Relative		Relative	Sample	
	name	time (min)	(mA	U*mi	n)	height		peak	area	Peak height	volume
						(mA	.U)	(%)		(%)	n.a.

序号	峰名	保留时间	峰	面	积	峰	回	相对山	峰面	相对峰高	样品量	
	称	(min)	(mAU*min)		(mAU)		积 (%)		(%)	n.a.		
Entry	Peak	Retention	Peak area		Peak		Relative		Relative	Sample		
	name	time (min)	(mA	.U*mi	n)	heig	ht	peak	area	Peak height	volume	
						(mAU)		(%)		(%)	n.a.	

For comparison of Chinese and English of the HPLC data table.

one-pot synthesis

