Supporting Information for:

Finding a Soft Spot for Vanadium: A P-Bound OCP Ligand**

Lauren N. Grant, ${ }^{a}$ Jurek Krzystek, ${ }^{b}$ Balazs Pinter, ${ }^{c}$ Joshua Telser, ${ }^{d}$ Hansjörg Grützmacher, ${ }^{e}$ and Daniel J. Mindiola ${ }^{a^{*}}$
[a,*] Prof. Dr. D. J. Mindiola, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104 (USA). E-mail: mindiola@sas.upenn.edu
[b] Dr. J. Krzystek, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (USA)
[c] Prof. Dr. B. Pinter, Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso, 2390123 (Chile)
[d] Prof. Dr. J. Telser, Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, IL 60605 (USA)
[e] Prof. Dr. H. Grïtzmacher, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 1, Hönggerberg, 8093, Zürich, (Switzerland)

*Corresponding author: E-mail, mindiola@sas.upenn.edu

Table of Contents

Synthetic Details S2
NMR Spectral Data S3
IR Spectral Data S4
X-ray Crystallography Experimental Details. S5
Molecular Structures and Crystallographic Tables S5-S6
SQUID Experimental and Magnetometry Data S7-S8
HFEPR Experimental and Spectral Data S8-S9
Computational Details S10-
S14
References S15

Synthetic Details

General Procedures

Unless otherwise stated, all operations were performed in a M. Braun Lab Master double-dry box under an atmosphere of purified dinitrogen or using high vacuum standard Schlenk techniques under an argon or dinitrogen atmosphere. Hexanes, tetrahydrofuran (THF) and toluene were purchased from Fisher Scientific and $\mathrm{Et}_{2} \mathrm{O}$ was purchased from Sigma Aldrich. Solvents were sparged with argon for 20 minutes and dried using a two-column solvent purification system where columns designated for hexanes and toluene were packed with Q5 and alumina respectively, and columns designated for $\mathrm{Et}_{2} \mathrm{O}$ and THF were packed with alumina. Deuterated benzene was purchased from Cambridge Isotope Laboratories (CIL) and was sparged with nitrogen for 20 minutes, then was dried over a potassium mirror, vacuum transferred to a collection flask, and degassed by freeze-pump-thaw cycles. All solvents were transferred into a dry box and were stored over $4 \AA$ sieves. All sieves were heated to $200^{\circ} \mathrm{C}$ under vacuum overnight prior to use. Celite used for filtrations was heated to $200^{\circ} \mathrm{C}$ under vacuum overnight prior to use. IR spectra were recorded on a JASCO FT/IR-4600LE Spectrometer using clear disks and mini KBr plates. Elemental analyses were measured by Midwest Microlab.

Synthesis of precursors

NaOAr was synthesized from $\mathrm{HOAr}\left(\mathrm{Ar}=2,6-{ }^{i} \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ and $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ in toluene followed by filtration of the pale solid, and washed with copious amounts of toluene, and then dried under reduced pressure. [(nacnac) $\left.\mathrm{VCl}_{2}\right]$ (nacnac $\left.{ }^{-}=\left[\mathrm{ArNC}\left(\mathrm{CH}_{3}\right)\right]_{2} \mathrm{CH} ; \mathrm{Ar}=2,6-{ }^{i} \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$, $[($ nacnac $) \mathrm{VCl}(\mathrm{OAr})]$ and $\left.[\mathrm{Na}(\mathrm{OCP}) \text { (dioxane })_{2.5}\right]$ were prepared according to published literature procedures. ${ }^{1-3}$

Synthesis of [(nacnac)V(OAr)(PCO)] (2)

To a dark green solution of [(nacnac) $\mathrm{VCl}(\mathrm{OAr})](329.1 \mathrm{mg}, 0.48 \mathrm{mmol}, 1$ equiv.) in 10 mL toluene in a 20 mL vial was added a 5 mL toluene slurry of $[\mathrm{Na}(\mathrm{OCP})$ (dioxane) 2.5$]$ (154.8 mg , $0.48 \mathrm{mmol}, 1$ equiv). After stirring for 16 hours, the reaction mixture turned a lighter green color, and a noticeable precipitate had formed, NaCl . The solution was filtered over Celite for removal of alkaline side product. All volatiles were removed in vacuo, and the green residue was dissolved in a minimum (5 mL) of toluene, and was stored at $-35^{\circ} \mathrm{C}$ overnight, resulting in the deposition of large green crystals suitable for single crystal X-ray diffraction. These were decanted and dried over vacuum and isolated good yield. Yield: ($303 \mathrm{mg}, 0.43 \mathrm{mmol}, 89 \%$). Multiple attempts to obtain satisfactorily elemental analysis were unsuccessful most likely due to the thermal sensitivity of this complex.
Anal. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PV}$: C, 71.57; H, 8.29; N, 3.97. Found: C, 69.99; H, 8.23; N, 3.76.

NMR Spectral Data

Fig. S1. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}, 298 \mathrm{~K}$.

IR Spectral Data

Fig. S2. IR Spectrum of 2. The $v(\mathrm{C}-\mathrm{O})$ of $1876 \mathrm{~cm}^{-1}$ has been annotated with a red dot. This spectrum was recorded on a JASCO FT/IR-4600LE Spectrometer using clear disks and mini KBr plates. The calculated $v(\mathrm{C}-\mathrm{O})$ is $2000 \mathrm{~cm}^{-1}$

Crystallographic Experimental Details

Crystallographic data are summarized Table S1. A suitable crystal for X-ray analysis of $\mathbf{2}$ was placed on the end of a Cryoloop coated in NVH oil. Data for single crystal structure determination of 2 were taken on a Bruker D8 with CMOS area detector employing graphite-monochromated Mo-K α radiation $(\lambda=0.71073 \AA$) at a temperature of $100(1) \mathrm{K}$. Rotation frames were integrated using SAINT, ${ }^{4}$ producing a listing of non-averaged F^{2} and $\sigma\left(F^{2}\right)$ values. The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABS. ${ }^{5}$ The initial structure of 2 was solved by dual methods - SHELXT. ${ }^{6}$ Refinement was by full-matrix least squares based on F^{2} using SHELXL. ${ }^{7}$ All reflections were used during refinement.

Molecular Structure and Crystallographic Table

Fig. S3. Molecular structure of complex 2 showing thermal ellipsoids at the 50% probability level. The ${ }^{i} \operatorname{Pr}$ groups on the nacnac aryls and aryloxides have been omitted for clarity.

Table S1. Crystallographic Data for 2

Molecular formula	C 42 H 58 N 2 O 2 PV
Formula weight	704.81
Temperature (K)	$100(1)$
Crystal system	Monoclinic
Space group	$\mathrm{P} 121 / \mathrm{n} 1$
Cell constants:	
$\mathrm{a}(\AA)$	$11.7814(6)$
$\mathrm{b}(\AA)$	$21.2101(10)$
$\mathrm{c}(\AA)$	$17.8807(8)$
Beta Angle	$109.211(2)$
Volume (\AA^{3})	$4219.3(4)$
Z	4
Density (calcd mg/m ${ }^{3}$)	1.110
Abs coeff (mm ${ }^{-1}$)	0.307
$\mathrm{~F}(000)$	1512
Wavelength	0.71073
θ range for data collection $\left(^{\circ}\right)$	3.084 to 27.565
	$-15 \leq \mathrm{h} \leq 15$
h, k, l ranges collected	$-23 \leq \mathrm{k} \leq 27$
	$-23 \leq 1 \leq 23$
\# Reflns collected	9712
	Full-matrix least-
Refinement method	squares on F^{2}
R_{l}^{a}	0.0358
$w R_{2}{ }^{b}$	0.0883
Goodness-of-fit on F^{2}	1.025

SQUID Magnetometry Experimental Details:

Magnetic susceptibility data for 2 was collected on a Quantum Design Magnetic Property Measurement System (MPMS-7). Temperature-dependent data were collected under applied 1 T DC fields from 2 to 300 K . Corrections for the intrinsic diamagnetism of 2 was made using Pascal's constants. ${ }^{8}$ Samples of microcrystalline $2(10-20 \mathrm{mg})$ in the glove box were loaded into plastic drinking straws that had been evacuated overnight, and had been previously sealed at one end ($\sim 9.5 \mathrm{~cm}$ from the top) with heated forceps. Quartz wool ($<10 \mathrm{mg}$, dried at $250^{\circ} \mathrm{C}$) was used to cap the sample, followed by sealing of the other end of the straw. The sample and quartz wool masses were weighed to the nearest 0.1 mg , and the value used was the average of four mass measurements. The data were fitted by use of the locally written program DSUSFITP, ${ }^{9}$ which employs the Hamiltonian in eq. 1 assuming an isolated ground spin state and collinear \boldsymbol{D} (axial component D , rhombic component E) and g matrixes, along with a temperature independent paramagnetism (TIP) term (not shown in eq. (1)) to account for contributions from excited spin states. True powder averages in three dimensions are calculated. A least-squares minimization using experimental data optimizes the spin Hamiltonian parameters. For simplicity, fits with only an isotropic g were employed, and the effect of E was not explored since rhombicity is best obtained from HFEPR spectroscopy (see main text). Error associated with these parameters was estimated using the standard deviations of several fits with very similar goodness-of-fit values.

$$
\begin{equation*}
H=\beta_{e} B \cdot \boldsymbol{g} \cdot \hat{S}+D\left[\hat{S}_{z}^{2}-S(S+1) / 3\right]+E\left(\hat{S}_{x}^{2}-\hat{S}_{y}^{2}\right) \tag{1}
\end{equation*}
$$

Fig. S4. Plot of experimental molar χT values (black triangles; two datasets are included: one as up triangles and one as down triangles). Fit lines using both positive (green line) and negative (red line) D values are shown with the fit parameters for each given on the plot.

HFEPR Experimental Details:

HFEPR spectra were recorded using a spectrometer that has been described previously, ${ }^{10}$ with a difference of using a Virginia Diodes (Charlottesville, VA) source operating at $13 \pm 1 \mathrm{GHz}$, amplified and multiplied by a cascade of frequency multipliers. Multifrequency HFEPR data were fitted using the spin Hamiltonian in eq. (1), as used with the magnetic susceptibility data.

Fig. S5. An HFEPR spectrum of 2 at 10 K and 113 GHz . The black trace is experiment in which the $\mathrm{V}(\mathrm{IV})$ impurity signal at $g=1.98$ was left out; the colored traces are simulations using following spin Hamiltonian (sH) parameters: $S=1,|D|=2.62 \mathrm{~cm}^{-1},|E|=0.36 \mathrm{~cm}^{-1}, g_{\mathrm{x}}=1.96, g_{\mathrm{y}}$ $=1.94, g_{\mathrm{z}}=1.95$. Blue trace: negative D; red trace: positive D. These parameters represent the best fit at this particular frequency and thus differ slightly from those in the main text, which result from consensus fits of spectra recorded at multiple frequencies (see Figure 3).

Computational Details:

All calculations were carried out using DFT as implemented in the ORCA (version 4.0.1.2) program package. ${ }^{11}$ Geometry optimizations were performed with B3LYP functional ${ }^{12}$ and the all-electron def2-SV $(\mathrm{P})^{13}$ basis set in combination with the auxiliary basis set def2-SV(P)/J. ${ }^{14}$ To accelerate geometry optimizations we used the resolution of the identity approximation for Coulomb and chain of spheres approximation for exchange interactions (RIJCOSX). ${ }^{15}$ Already for optimizations a tight convergence of the wavefunction was demanded on grid quality of Grid4 and GridX4. Grimme's D3 method ${ }^{16}$ was employed to take dispersion effects into account in all these calculations. We also carried out harmonic vibrational frequency calculations at the same level of theory that was for used for optimizations (B3LYP/def2-SV(P)) in order to confirm that the obtained structures indeed correspond to local minima of the potential energy surface.
Subsequent single point calculations for refined energies have been carried out using the B3LYP functional in combination with def2-TZVP basis set (without RI, on Grid5 and Grid5x). The electronic structure of $\mathbf{2}$ has been scrutinized, including QRO's, at the latter level of theory.

Fig. S6. Singly occupied and high lying doubly occupied QROs of 2.
Table S2. Cartesian Coordinates of 2

V 3.57439330984635
P 3.06270226717931
O 2.56523213936315
O 3.92797233097161
N 3.52397813470715
N 5.44504420220315
C 4.22356956470245
C 5.32641924973298
H 5.80885243397315
C 5.96477255201269
C 2.70118306868659
C 1.31865289823651
C 0.58285112317208
H -0.48596717401426
C 1.19198176470849
H 0.60508187799314
C 2.55611555977912
H 3.02709337745779
C 3.33252874933213
C 0.59714080329220
H 1.34023416834879
C -0.37709930436764
H 0.14939792041738
H -0.87101573927002
H -1.14100187800312
C -0.14428757161737
H -0.94412124829812
H -0.59403855627951
H 0.52505654270526
C 4.81754245957538
H 5.18744116357853
C 5.07342759920869
H 4.73899230307819
H 6.14383090749323
H 4.55611626493437
C 5.60523761336845
H 5.51936496415618
H 6.66532913982004
H 5.24423825678940
C 3.81657496254440
H 2.82545113701561
H 4.52381670709274
H 3.74543169084586
C 7.28318754459392
H 7.92949019128949
H 7.78716813082101
H 7.11004940304057
C 6.19107475685428
C 6.19587136586409
C 6.90997636877651
H 6.91947671190790
C 7.59587887516151
H 8.14131270137226
$16.23025120323968 \quad 6.76444867535986$ $15.68433714308601 \quad 4.44793998796593$ $17.54526712383274 \quad 7.46924242951389$ $18.34483674922165 \quad 4.02034180865791$ $14.42955268290680 \quad 7.57877846125215$ $16.47288488085663 \quad 7.35053783832300$
$14.11162338224807 \quad 8.68033253079637$
$14.84851320163938 \quad 9.11345202115401$ $14.50236356157173 \quad 10.01697803191927$ 15.896266070223718 .43761954048123 $13.39712259903077 \quad 6.99746030920254$ $13.35912733272071 \quad 7.22859001172615$ $12.31081679044940 \quad 6.67441223066886$ $\begin{array}{lr}12.26815627731410 & 6.84939152938125\end{array}$ $11.32942195525514 \quad 5.90990723309487$ $10.51841369095584 \quad 5.49493089074498$ $11.40002117266502 \quad 5.66378247591194$ $10.64251427799320 \quad 5.04846371348717$ $12.43093073996839 \quad 6.18737779519097$ $14.42350722660187 \quad 8.02655253858567$ $15.13384262150179 \quad 8.39502050386727$ $15.18744476081150 \quad 7.12277598924763$ $15.63303174903146 \quad 6.27665859076506$ $15.98188984258010 \quad 7.68309953886866$ $14.51354690858235 \quad 6.72601252201115$ $13.84105346728169 \quad 9.23629545399549$ $13.16831069072909 \quad 8.91677166252658$ $14.64694456301120 \quad 9.82072511605302$ $13.27423334750860 \quad 9.88775023601672$ $12.48414064661400 \quad 5.87230297196580$ $13.45809079741980 \quad 6.19523711809655$ $12.36021012717729 \quad 4.36582015573466$ $11.39345926767509 \quad 3.98218855351835$ 12.440039073495834 .16313589206766 $13.14717232655568 \quad 3.81493600910786$ $11.40526883717328 \quad 6.62997031520040$ $11.52350979004292 \quad 7.71070671895731$ $11.46208118824046 \quad 6.36961170718324$ $10.40705471472486 \quad 6.36769960025268$ $12.90889173418937 \quad 9.49146096250312$ $13.07620911984039 \quad 9.91952912586896$ 12.7341752333538310 .30038132311883 12.014357563359678 .87336699904943 $16.36932593639543 \quad 8.99029545910579$ $16.75552734008554 \quad 8.20354649509962$ $15.55901260299983 \quad 9.51587695722160$ $17.17966872445024 \quad 9.70286935785386$ $17.47413066517027 \quad 6.62917641533071$ $18.81076468730372 \quad 7.06344969560139$ $19.74471851532324 \quad 6.31200456912970$ $20.78030845000035 \quad 6.63147541520154$ $19.37535948708651 \quad 5.16796949686055$ 20.116924000061624 .59622600295385

C 7.56894008706571
H 8.09248111823578
C 6.86845961120463
C 5.44434193024582
H 4.97829314959823
C 4.32959185256705
H 4.75101891914933
H 3.74247687589951
H 3.65912285283187
C 6.37929826309387
H 7.21294539009093
H 5.82660276787395
H 6.79933222082607
C 6.85629084611162
H 5.89142755392666
C 6.95963768787590
H 6.20132756335289
H 6.80671939720425
H 7.94379580544171
C 7.95696446920561
H 8.94289299576176
H 7.94053994371614
H 7.82484037216198
C 1.46266261742617
C 1.45620717922044
C 0.31667766374876
H 0.29239591234856
C -0.77895940518795
H -1.65559749969247
C -0.74775134288663
H -1.61001821196574
C 0.36115391559730
C 2.65604638624642
H 3.39312898628439
C 3.30006581370164
H 3.55081336824934
H 4.21324988486870
H 2.61480311367840
C 2.30307560597584
H 1.59313652780103
H 3.20239013002678
H 1.85450717036553
C 0.40455348368423
H 1.04365479558971
C 1.04742632669808
H 0.45042765204170
H 1.11194793927898
H 2.05501823737024
C -0.96903441009955
H -1.47226486862429
H -0.85152283982650
H -1.62105492734703
C 3.57668133583261
18.05364082125790
17.77437137347420 17.08260519750841 19.28497726756630 18.41764309008715
20.25880126108672
21.16190485663260 20.55617561280084 19.79547960137963 19.95119847356203 19.30316582969717 20.20730688545030 20.87488290470331 15.64152515906862 15.21952561882397 15.51627358629318 16.12454483023182 14.47705933063243 15.81876499196236 14.82159173150878 15.24146569168866 13.78888803394666 14.80276200793180 17.90538271016016 17.76365044039844 18.16901721325694 18.06666722289162 18.70249780492787 19.01129704932665 18.83608504138389 19.24272882393746 18.44032447553493 17.21917139674558 16.89964764305092 18.30850413896245 19.18815721734002 17.93401653483516 18.62299743898981 16.00214757658772 16.26960232678423 15.60528349366313 15.21055429220180 18.56823663272616 17.76327973628931 19.89896696584165 20.74019100058370 19.96350752891875 19.99517047095387 18.41737063333048 17.50389876976659 18.37773617662487 19.26515185179910 17.24556339333420
4.74570603490265
3.84073639695285
5.45597363863570
8.29219383921132
8.76160201589938
7.88981479949447
7.44142935424817
8.76200650133575
7.16997190426547
9.31132761278322
9.58751877881833
10.21840835543705
8.90580252180341
4.98229498137050
5.27346185334791
3.46108473801740
2.96553990131436
3.16631763068777
3.09361004701901
5.67077831678447
5.45420251939233
5.31295562994194
6.75345178156387
8.16966887276709
9.56834378315610
10.26220210864288
11.34178972493132
9.59946900038515
10.15647295277451
8.21580139171928
7.70151149904806
7.47370555948174
10.31715148653420
9.57707886635284 11.18564587182682 10.59263700430669 11.65694969296095 11.97718851449233 11.17815801673797 11.96495501755538 11.65657845200855 10.57887399791090 5.96437670679386
5.59157797686732
5.54497723349479
5.90816297590895
4.45604145837052
5.94677506822093
5.30555658509984 5.62848997206478 4.22020522596221
5.53306206573879
4.22037078090483

References

1 D. Adhikari, D. J. Mindiola, K. R. D. Johnson, P. G. Hayes, F. J. Zuno-Cruz and G. Sanchez Cabrera, Inorg. Synth., 2010, 35, 28.
2 F. F. Puschmann, D. Stein, D. Heift, C. Hendriksen, Z. A. Gal, H.-F. Grützmacher, and H. Grützmacher, Angew. Chem. Int. Ed., 2011, 50, 8420.

3 B. L. Tran, B. Pinter, A. J. Nichols, C.-H. Chen, F. T. Konopka, R. Thompson, J. Krzystek, A. Ozarowski, J. Telser, M.-H. Baik, K. Meyer and D. J. Mindiola, J. Am. Chem. Soc., 2012, 134, 13035.
4 SAINT; Bruker AXS Inc.: Madison, WI, USA. 2009.
5 G. M. Sheldrick, SADABS University of Gottingen: Germany, 2007.
6 G.M. Sheldrick, Acta Cryst., 2015, A71, 3.
7 G. M. Sheldrick, "Crystal Structure Refinement with SHELXL" Acta Crystallogr., 2015, C71, 3.
8 G. A. Bain and J. F. Berry, "Diamagnetic Corrections and Pascal's Constants" J. Chem. Educ., 2008, 85, 532.
9 J. Krzystek, A. T. Fiedler, J. J. Sokol, A. Ozarowski, S. A. Zvyagin, T. C. Brunold, J. R. Long, L.-C. Brunel and J. Telser, Inorg. Chem., 2004, 43, 5645.

10 A. K. Hassan, L. A. Pardi, J. Krzystek, A. Sienkiewicz, P. Goy, M. Rohrer and L. C. Brunel, J. Magn. Reson., 2000, 142, 300.
11 F. Neese, ORCA—An ab initio, Density Functional and Semiempirical Program Package Version 4.0.1. 2
12 (a) A.D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee, W. Yang, and R. G. Parr, Physical Review B, 1988, 37, 785.
13 (a) F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-305.; (b) F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057.
14 (a) K. Eichkorn, F. Weigend, O. Treutler, and R. Ahlrichs, Theor. Chem. Acc., 1997, 97, 119. (b) K. Eichkorn, O. Treutler, H. Öhm, M. Häser, and R. Ahlrichs, Chem. Phys. Lett., 1995, 240, 283.
15 F. Neese, F. Wennmohs, A. Hansen, and U. Becker, Chem. Phys., 2009, 356, 98.
16 S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys., 2010, 132, 154104.

