Electronic Supplementary Information

Nickel(II)-catalyzed asymmetric intramolecular Alder-ene reaction of 1,7-dienes

Wen Liu, Pengfei Zhou, Jiawen Lang, Shunxi Dong,* Xiaohua Liu and Xiaoming Feng*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

E-mail: dongs@scu.edu.cn, xmfeng@scu.edu.cn; Fax: +86 28 85418249

Table of Contents

Table of Contents	1
General Remarks	2
General Procedure for the Synthesis of Substrate	2
General Procedure for the Racemic Alder-Ene Reaction	
General Procedure for the Asymmetric Alder-Ene Reaction	
Experimental Procedure for the Gram-scale Reaction and Transformations of the Products	
Unsuccessful Substrate Scope	
Determination of Absolute Configuration and the X-ray Structure of 2s	
The Stereocontrol Model of the Asymmetric Alder-Ene Reaction	5
Characterization of the Substrates.	5
Characterization of the Products	
References	
Copies of NMR Spectra for Substrates and Products	

General Remarks

Unless otherwise noted, all commercially available compounds were used without further purification. CH_2Cl_2 and CH_2ClCH_2Cl (DCE) were distilled from CaH₂. Enantiomeric excesses (ee) were determined by HPLC analysis using the corresponding commercial chiral column as stated in the experimental procedures at 23 °C with UV or PDA detector. The chiral HPLC methods were calibrated with the corresponding racemic mixtures. ¹H NMR and ¹³C{¹H} NMR were recorded on a Bruker AMX-400 spectrometer in CDCl₃. Data for ¹H NMR are reported as follows: chemical shift in reference to residual CHCl₃ at 7.26 ppm (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, m = multiplet), coupling constants (*J*) are in Hertz (Hz), and integration. Data for ¹³C{¹H} NMR are reported in terms of chemical shift in reference to the CDCl₃ solvent signal (77.16 ppm). ¹⁹F{¹H} NMR spectra were collected on commercial instruments (376 MHz) with complete proton decoupling. HRMS was recorded on Thermo Scientific Q Exactive hybrid quadrupole-Orbitrap mass spectrometer (ESI Source). IR was recorded on Bruker Tensor II spectrometer with Plantium ATR accessory. Optical rotations were measured at 589 nm on a Rudolph Autopol V automatic polarimeter and are reported as follows: [α]^T_D (*c* g/100 mL, in solvent). Unless otherwise indicated, reagents obtained from commercial sources were used without further purification. The chiral *N*,*N*¹-dioxide ligands were synthesized by the same procedure in the literature.¹

General Procedure for the Synthesis of Substrate

General procedure for the synthesis of **1a-1r** and **1x**.

 K_2CO_3 (30 mmol, 1.5 equiv) was added in one portion to a stirring solution of 2-hydroxybenzaldehyde **A** (20 mmol, 1.0 equiv) in DMF (60 mL), the resulting mixture was stirred at r.t. (room temperature) for 15 mins. Then prenyl bromide **B** (30 mmol, 1.5 equiv) was added via a syringe over a period of a few minutes and the resulting mixture was stirred at r.t. for 10–12 h (monitored by TLC). The reaction was then diluted with H₂O (20 mL) and extracted with EtOAc (3×20 mL). The organic layer was washed with H₂O (20 mL) and brine (20 mL), then dried over NaSO₄, filtered. The solvent was removed in vacuo and the residue was subjected to column chromatography (SiO₂, eluent: petroleum ether/ethyl acetate = 20:1). After drying in vacuo, compound **C** was obtained as a colorless oil.

A solution of benzaldehyde **C** (20.0 mmol, 1.0 equiv), dimethyl malonate **D** (20.0 mmol, 1.0 equiv), AcOH (2.0 mmol, 0.1 equiv) and piperidine (3.6 mmol, 0.18 equiv) in toluene (60 mL) was heated at 120 °C for 10 h in a round-bottomed flask fitted with a Dean–Stark apparatus. After the reaction was complete (monitored by TLC), the solvent was removed in vacuo and the residue was subjected to column chromatography (SiO₂, eluent: petroleum ether/ethyl acetate = 50:1). After drying in vacuo, compound **1b** was obtained as a white solid.

The intermediate bromide of substrate **1d–1g** was prepared according to the literature procedure.² The 2-mercaptobenzaldehyde of substrate **1x** was prepared according to the literature procedure.³

General procedure for the synthesis of 1s-1v.

A solution of 2-aminobenzylalcohol **E** (80.0 mmol, 1.0 equiv) and pyridine (96.0 mmol, 1.2 equiv) in dry CH_2Cl_2 (200 mL) was treated dropwise with a solution of TsCl (160.0 mmol, 2.0 equiv) in dry CH_2Cl_2 (50 mL). The mixture was stirred at room temperature until the reaction was complete as confirmed by TLC. The reaction was then diluted with CH_2Cl_2 (50 mL) and washed with water (50 mL) and brine (50 mL). The organic phase was separated, dried over NaSO₄, filtered, and evaporated to give a crude product. The product **F** was purified by recrystallization from EtOAc to give a white solid.

A solution of PCC (80.0 mmol, 2.0 equiv) in dry CH_2Cl_2 (200 mL) was treated dropwise with a solution of *N*-(2-(hydroxymethyl)phenyl)-4-methylbenzenesulfonamide **F** (40.0 mmol, 1.0 equiv) in dry CH_2Cl_2 (25 mL). The mixture was stirred at room temperature until the reaction was complete as confirmed by TLC (2–3 h). The reaction was then diluted with Et_2O (100 mL) and stirred for another 30 mins. The mixture was filtered through silica and washed with Et_2O (3×30 mL), the filtrate was concentrated in vacuo. The residue was subjected to column chromatography (SiO₂, eluent: petroleum ether/ethyl acetate = 4:1). After drying in vacuo, compound **G** was obtained as a white solid. The last two steps were similar to the general procedure for the synthesis of **1a–1r**.

Compound 1w was prepared according to the literature procedure.4

General Procedure for the Racemic Alder-Ene Reaction

An oven-dried test tube was charged with 1a (0.1 mmol), $ZnCI_2$ (2.0 equiv, 0.2 mmol) and CH_2CI_2 (1.0 mL). The reaction mixture was stirred at 35 °C and detected by TLC. After the reaction was completed, the residue was subjected to column chromatography (SiO₂, eluent: petroleum ether/ethyl acetate = 10:1) to afford the racemic product 2a.

General Procedure for the Asymmetric Alder-Ene Reaction

An oven-dried test tube was charged with L-RaPr₂ (0.005 mmol, 5 mol%), Ni(NTf₂)₂ (0.005 mmol, 5 mol%) and CH₂Cl₂ (1.0 mL) and the resulting solution was stirred at 30 °C for 30 min. After removing the solvent under vacuo, **1a** (0.1 mmol) was weighted into the tube followed by adding DCE (1.0 mL). Then, the reaction mixture was stirred at 60 °C and detected by TLC. After the reaction was completed, the residue was subjected to column chromatography (SiO₂, eluent: petroleum ether/ethyl acetate = 10:1) to afford the enantioenriched product **2a**.

Experimental Procedure for the Gram-scale Reaction and Transformations of the Products

A dry reaction 50 mL round-bottom flask was charged with Ni(NTf₂)₂ (0.15 mol, 5 mol%, 93.0 mg), L-RaPr₂ (0.15 mol, 5 mol%, 105.0 mg) and CH₂Cl₂ (30.0 mL) and the resulting solution was stirred at 30 °C for 30 min. After removing the solvent under vacuo, the substrate**1s** (3.0 mmol, 1.37g) were weighted into the round-bottom flask followed by adding DCE (30.0 mL). Then, the reaction mixture was stirred at 60 °C for 36 hours. After the reaction was completed, the reaction mixture was concentrated in vacuo and the residue was subjected to column chromatography (SiO2, eluent: petroleum ether/ethyl acetate = 4:1) to afford the desired product **2s** (1.31 g, 95% yield, 98% ee, 96:4 dr).

- 1) An oven-dried test tube was charged with 2s (0.4 mmol, 183.0 mg) or 2b (0.6 mmol, 182.4 mg) and DMSO (0.5 M) followed by adding LiCl (2.1 equiv) and H₂O (1.1 equiv). The reaction mixture was stirred at 130 °C for 5 hours and detected by TLC. After the reaction was completed, the reaction was quenched with EtOAc/H₂O (3 mL/3 mL)and extracted with EtOAc (2×10 mL). The organic layer was dried over NaSO₄ and filtered. The solvent was removed in vacuo and the residue was subjected to column chromatography (SiO₂, eluent: petroleum ether/ethyl acetate = 4:1 for 3s, petroleum ether/ethyl acetate = 10:1 for 3b) to afford the desired product 3s (150.9 mg, 94% yield, 98% ee) or 3b (141.6 mg, 96% yield, 95% ee).
- 2) To a solution of **3s** (0.36 mmol, 144.5 mg) or **3b** (0.4 mmol, 98.7 mg) in CH₂Cl₂ (1.0 mL) was added *i*Bu₂AlH (2.6 equiv) at -40 °C in N₂ atmosphere. The reaction mixture was stirred at -40 °C for 4 hours and then stirred at room temperature. After the reaction was completed, the reaction was quenched with MeOH (2 mL) and 2 M HCl (2 mL), extracted with CH₂Cl₂ and the organic layer was dried over NaSO₄ and filtered. The solvent was removed in vacuo and the residue was subjected to column chromatography (SiO₂, eluent: petroleum ether/ethyl acetate = 4:1 for **4s**, petroleum ether/ethyl acetate = 10:1 for **4b**) to afford the desired product **4s** (120.0 mg, 90% yield, 98% ee) or **4b** (80.9 mg, 93% yield, 95% ee).
- 3) To a solution of 4s (0.1 mmol, 37.1 mg) or 4b (0.26 mmol, 57.6 mg) in CH₂Cl₂ (1.0 mL) was added NIS (1.2 equiv), the mixture was stirred at room temperature for 12 h and detected by TLC. After the reaction was completed, the residue was subjected to column chromatography (SiO₂, eluent: petroleum ether/ethyl acetate = 4:1 for 5s, petroleum ether/ethyl acetate = 10:1 for 5b) to afford the desired product 5s (37.3 mg, 75% yield, 98% ee) or 5b (66.8 mg, 75% yield, 98% ee, 79:21 dr).

Unsuccessful Substrate Scope

Determination of Absolute Configuration and the X-ray Structure of 2s

The absolute configuration of the optically active product **2s** was determined to be (R, R) by X-ray crystal analysis. The single crystal of **2S** was obtained from mixed solvents of CH₂Cl₂ and petroleum ether. CCDC 1889731 contains the supplementary crystallographic data which can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

The Stereocontrol Model of the Asymmetric Alder-Ene Reaction

According to our previous work⁵ and the absolution configuration of the Alder-ene product, a stereocontrol model was proposed. The alkylidene malonate was activated by chiral *N*,*N*'-dioxide/nickel complex via a bidentate coordination fashion. Due to the steric hinderance of the amide moiety, *Re*-face of dimethyl alkene approached the β -*Si*-face of the alkylidene malonate, affording the (*R*, *R*) product. When the substrate with 5- and 6-subtitutions, the steric hinderance between the 5- or 6-substituted phenyl group and the amide moiety increased sharply, leading to the decrease of diastereoselectivity.

Characterization of the Substrates

.CO₂Et FtO₂C

Diethyl 2-{2-[(3-methylbut-2-en-1-yl)oxy]benzylidene}malonate (1a): Pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.41 – 7.37 (m, 1H), 7.34 – 7.28 (m, 1H), 6.91 – 6.85 (m, 2H), 5.51 – 5.41 (m, 1H), 4.55 (d, *J* = 6.4 Hz, 2H), 4.31 – 4.23 (m, 4H), 1.76 (s, 3H), 1.71 (s, 3H), 1.31 (t, *J* = 7.2 Hz, 3H), 1.22 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.9, 164.4, 157.5, 138.5, 137.7, 131.9, 129.1, 125.9, 122.7, 120.4, 119.5, 112.3, 65.6, 61.4, 61.4, 25.8, 18.3, 14.2, 13.9.

HRMS (ESI) Calculated for $C_{19}H_{24}O_5$ ([M]+Na⁺) = 355.1516, Found 355.1508.

IR (neat): 2982, 1721, 1620, 1598, 1485, 1453, 1375, 1255, 1201, 1163, 1112, 1063, 992, 751 cm⁻¹.

Dimethyl 2-{2-[(3-methylbut-2-en-1-yl)oxy]benzylidene}malonate (1b):

White solid, m.p. = 50 - 53 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.36 – 7.29 (m, 2H), 6.92 – 6.86 (m, 2H), 5.49 – 5.42 (m, 1H), 4.56 (d, *J* = 6.4 Hz, 2H), 3.82 (s, 3H), 3.76 (s, 3H), 1.77 (s, 3H), 1.72 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.3, 164.7, 157.5, 139.2, 137.7, 132.1, 128.8, 125.1, 122.5, 120.4, 119.5, 112.4, 65.5, 52.4, 52.4, 25.7, 18.2.

HRMS (ESI) Calculated for $C_{17}H_{20}O_5$ ([M]+Na⁺) = 327.1203, Found 327.1195.

IR (neat): 2991, 1717, 1615, 1597, 1488, 1449, 1375, 1260, 1207, 1164, 1112, 1067, 957, 756 cm⁻¹.

Diisopropyl 2-{2-[(3-methylbut-2-en-1-yl)oxy]benzylidene}malonate (1c):

Yellow solid, m.p. = 40 - 43 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.46 – 7.41 (m, 1H), 7.34 – 7.29 (m, 1H), 6.91 – 6.85 (m, 2H), 5.52 – 5.44 (m, 1H), 5.25 – 5.17 (m, 1H), 5.17 – 5.09 (m, 1H), 4.56 (d, *J* = 6.4 Hz, 2H), 1.78 (d, *J* = 1.4 Hz, 3H), 1.73 (d, *J* = 1.3 Hz, 3H), 1.30 (d, *J* = 6.4 Hz, 6H), 1.25 (d, *J* = 6.0 Hz, 6H).

¹³C{¹H} NMR (101 Mz, CDCl₃) δ 166.5, 163.9, 157.5, 137.7, 137.5, 131.7, 129.0, 126.7, 122.8, 120.3, 119.6, 112.3, 68.9, 68.9, 65.5, 25.7, 21.8, 21.5, 18.3.

HRMS (ESI) Calculated for $C_{21}H_{28}O_5$ ([M]+Na⁺) = 383.1829, Found 383.1821.

IR (neat): 2979, 1727, 1710, 1624, 1598, 1453, 1342, 1262, 1211, 1103, 1062, 984, 757 cm⁻¹.

Dimethyl 2-[2-(2-cyclopentylideneethoxy)benzylidene]malonate (1d): Colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.36 – 7.30 (m, 2H), 6.93 – 6.87 (m, 2H), 5.62 – 5.54 (m, 1H), 4.56 (d, *J* = 6.4 Hz, 2H), 3.84 (s, 3H), 3.78 (s, 3H), 2.35 – 2.26 (m, 4H), 1.76 – 1.68 (m, 2H), 1.68 – 1.60 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.4, 164.8, 157.6, 149.1, 139.4, 132.0, 128.9, 125.1, 122.5, 120.4, 115.0, 112.4, 67.0, 52.5, 52.5, 33.8, 29.1, 26.3, 26.0.

HRMS (ESI) Calculated for $C_{19}H_{22}O_5$ ([M]+Na⁺) = 353.1359, Found 353.1351.

IR (neat): 2951, 1725, 1598, 1487, 1453, 1435, 1262, 1210, 1113, 1066, 985, 752 cm⁻¹.

Dimethyl 2-[2-(2-cyclohexylideneethoxy)benzylidene]malonate (1e): Corlorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.36 – 7.30 (m, 2H), 6.92 – 6.86 (m, 2H), 5.44 – 5.37 (m, 1H), 4.60 (d, *J* = 6.4 Hz, 2H), 3.84 (s, 3H), 3.78 (s, 3H), 2.25 – 2.10 (m, 4H), 1.60 – 1.54 (m, 6H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.4, 164.8, 157.6, 145.8, 139.4, 132.0, 128.9, 125.0, 122.6, 120.5, 116.1, 112.5, 64.9, 52.5, 52.5, 36.9, 29.3, 28.3, 27.6, 26.6.

HRMS (ESI) Calculated for $C_{20}H_{24}O_5$ ([M]+Na⁺) = 367.1516, Found 367.1508.

IR (neat): 2927, 2851, 1724, 1598, 1485, 1452, 1261, 1210, 1066, 984, 751 cm⁻¹.

Dimethyl 2-[2-(2-cycloheptylideneethoxy)benzylidene]malonate (1f):

White solid, m.p. = 64 - 66 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.36 – 7.31 (m, 2H), 6.93 – 6.87 (m, 2H), 5.47 (t, *J* = 6.4 Hz, 1H), 4.59 (d, *J* = 6.0 Hz, 2H), 3.84 (s, 3H), 3.78 (s, 3H), 2.35 – 2.26 (m, 4H), 1.65 – 1.58 (m, 4H), 1.55 – 1.49 (m, 4H).

 $^{13}\text{C}{}^{1}\text{H}$ NMR (101 MHz, CDCl₃) δ 167.3, 164.8, 157.6, 147.0, 139.3, 132.0, 128.9, 125.1, 122.6, 120.4, 119.7, 112.4, 65.4, 52.5, 52.4, 37.6, 30.5, 29.8, 29.1, 28.8, 27.1.

HRMS (ESI) Calculated for $C_{21}H_{26}O_5$ ([M]+Na⁺) = 381.1672, Found 381.1665.

IR (neat): 2921, 1720, 1619, 1598, 1489, 1450, 1215, 952, 754 cm⁻¹.

Dimethyl (E)-2-{2-[(3-phenylbut-2-en-1-yl)oxy]benzylidene}malonate (1g): White solid, m.p. = 72 - 75 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.45 – 7.41 (m, 2H), 7.38 – 7.31 (m, 4H), 7.30 – 7.25 (m, 1H), 6.98 – 6.90 (m, 2H), 6.06 – 6.00 (m, 1H), 4.81 (d, J = 6.0 Hz, 2H), 3.83 (s, 3H), 3.78 (s, 3H), 2.17 – 2.11 (m, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.3, 164.8, 157.3, 142.4, 139.2, 139.0, 132.1, 129.1, 128.3, 127.5, 125.8, 125.4, 122.6, 122.5, 120.7, 112.4, 66.1, 52.6, 52.5, 16.5.

HRMS (ESI) Calculated for $C_{22}H_{22}O_5$ ([M]+Na⁺) = 389.1359, Found 389.1351. **IR (neat)**: 2983, 1718, 1628, 1595, 1434, 1358, 1273, 1220, 988, 763 cm⁻¹.

Dimethyl (E)-2-{2-[(3,7-dimethylocta-2,6-dien-1-yl)oxy]benzylidene}malonate (1h): Colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.36 – 7.28 (m, 2H), 6.92 – 6.84 (m, 2H), 5.52– 5.42 (m, 1H), 5.12 – 5.01 (m, 1H), 4.60 (d, *J* = 6.0 Hz, 2H), 3.81 (s, 3H), 3.76 (s, 3H), 2.17 – 2.03 (m, 4H), 1.72 (s, 3H), 1.66 (s, 3H), 1.60 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.2, 164.7, 157.5, 140.9, 139.1, 132.0, 131.7, 128.9, 125.2, 123.7, 122.5, 120.5, 119.4, 112.5, 65.6, 52.4, 52.3, 39.4, 26.2, 25.6, 17.7, 16.6.

HRMS (ESI) Calculated for $C_{22}H_{28}O_5$ ([M]+Na⁺) = 395.1829, Found 395.1820.

IR (neat): 2985, 1726, 1620, 1598, 1485, 1453, 1372, 1261, 1210, 1066, 985, 751 cm⁻¹.

Dimethyl 2-{3-fluoro-2-[(3-methylbut-2-en-1-yl)oxy]benzylidene}malonate (1i): Colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.16 – 7.08 (m, 2H), 7.02 – 6.95 (m, 1H), 5.48 (t, *J* = 7.2 Hz, 1H), 4.60 (d, *J* = 7.2 Hz, 2H), 3.86 (s, 3H), 3.78 (s, 3H), 1.75 (s, 3H), 1.65 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.7, 164.4, 155.8 (d, J = 247.5 Hz), 145.6 (d, J = 11.7 Hz), 140.3, 138.3 (d, J = 3.5 Hz), 129.2 (d, J = 3.0 Hz), 126.8, 123.9 (d, J = 3.4 Hz), 123.7 (d, J = 7.9 Hz), 119.2, 118.8 (d, J = 19.4 Hz), 70.9 (d, J = 5.5 Hz), 52.7 (d, J = 2.7 Hz), 52.6 (d, J = 2.6 Hz), 25.8, 17.9.

¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –128.7 (s, 1F).

HRMS (ESI) Calculated for $C_{17}H_{19}FO_5$ ([M]+Na⁺) = 345.1109, Found 345.1116.

IR (neat): 2986, 1727, 1577, 1460, 1436, 1369, 1219, 1078, 935, 787, 745 cm⁻¹.

Dimethyl 2-{3-methoxy-2-[(3-methylbut-2-en-1-yl)oxy]benzylidene}malonate (1j): Yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.04 – 6.99 (m, 1H), 6.97 – 6.91 (m, 2H), 5.54 – 5.47 (m, 1H), 4.51 (d, *J* = 7.6 Hz, 2H), 3.87 (s, 3H), 3.85 (s, 3H), 3.78 (s, 3H), 1.74 (s, 3H), 1.64 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.1, 164.6, 153.1, 147.3, 139.5, 139.5, 128.3, 125.9, 124.0, 120.1, 119.8, 114.4, 70.1, 55.9, 52.6, 52.5, 25.8, 17.8.

HRMS (ESI) Calculated for $C_{18}H_{22}O_6$ ([M]+Na⁺) = 357.1309, Found 357.1302. **IR (neat)**: 2986, 1725, 1624, 1576, 1436, 1369, 1209, 1062, 956, 785, 739 cm⁻¹.

MeO₂C CO₂Me н

Dimethyl 2-{4-chloro-2-[(3-methylbut-2-en-1-yl)oxy]benzylidene}malonate (1k):

White solid, m.p. = 53 - 56 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.30 – 7.22 (m, 1H), 6.92 – 6.84 (m, 2H), 5.44 (s, 1H), 4.55 (d, *J* = 6.0 Hz, 2H), 3.82 (s, 3H), 3.77 (s, 3H), 1.78 (s, 3H), 1.73 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.9, 164.4, 157.9, 138.4, 137.8, 137.5, 129.6, 125.6, 121.1, 120.6, 118.8, 112.9, 65.9, 52.4, 52.3, 25.6, 18.2.

HRMS (ESI) Calculated for $C_{17}H_{19}^{34.9689}$ CIO₅ ([M]+Na⁺) = 361.0813, Found 361.0817.

HRMS (ESI) Calculated for $C_{17}H_{19}^{36.9659}$ CIO₅ ([M]+Na⁺) = 363.0784, Found 363.0784.

IR (neat): 2993, 1719, 1619, 1484, 1410, 1369, 1211, 978, 821 cm⁻¹.

Dimethyl 2-{4-methyl-2-[(3-methylbut-2-en-1-yl)oxy]benzylidene}malonate (11):

White solid, m.p. = 69 - 73 °C.

1H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.24 – 7.19 (m, 1H), 6.75 – 6.68 (m, 2H), 5.53 – 5.42 (m, 1H), 4.55 (d, *J* = 6.4 Hz, 2H), 3.83 (s, 3H), 3.79 (s, 3H), 2.35 (s, 3H), 1.79 (s, 3H), 1.74 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.7, 165.0, 157.6, 143.0, 139.2, 137.7, 128.7, 123.9, 121.4, 119.7, 119.5, 113.2, 65.5, 52.5, 52.4, 25.8, 22.0, 18.3.

HRMS (ESI) Calculated for $C_{18}H_{22}O_5$ ([M]+Na⁺) = 341.1359, Found 341.1352.

IR (neat): 2990, 1716, 1603, 1437, 1250, 1206, 1170, 1117, 1067, 1016, 839 cm⁻¹.

Dimethyl 2-{5-chloro-2-[(3-methylbut-2-en-1-yl)oxy]benzylidene}malonate (1m):

White solid, m.p. = 44 - 47 °C.

1**H NMR** (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.30 – 7.25 (m, 2H), 6.89 – 6.79 (m, 1H), 5.47 – 5.39 (m, 1H), 4.55 (d, *J* = 8.4 Hz, 2H), 3.84 (s, 3H), 3.81 (s, 3H), 1.78 (s, 3H), 1.73 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.7, 164.5, 156.0, 138.3, 137.7, 131.5, 128.5, 126.3, 125.4, 123.9, 119.0, 113.6, 66.0, 52.6, 52.5, 31.6, 25.8, 22.7, 18.3, 14.1.

HRMS (ESI) Calculated for $C_{17}H_{19}^{34.9689}$ CIO₅ ([M]+Na⁺) = 361.0813, Found 361.0813.

HRMS (ESI) Calculated for $C_{17}H_{19}^{36.9659}$ CIO₅ ([M]+Na⁺) = 363.0784, Found 363.0780.

IR (neat): 2986, 1726, 1622, 1481, 1410, 1369, 1266, 1212, 1130, 1066, 980, 893, 808 cm¹.

Dimethyl 2-{5-bromo-2-[(3-methylbut-2-en-1-yl)oxy]benzylidene}malonate (1n):

White solid, m.p. = 43 - 47 °C.

1H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.45 – 7.40 (m, 2H), 6.81 – 6.76 (m, 1H), 5.46 – 5.40 (m, 1H), 4.55 (d, J = 6.4 Hz, 2H), 3.85 (s, 3H), 3.82 (s, 3H), 1.78 (s, 3H), 1.73 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.7, 164.5, 156.5, 138.3, 137.7, 134.4, 131.5, 126.4, 124.5, 119.0, 114.1, 112.6, 65.9, 52.7, 25.8, 18.3.

HRMS (ESI) Calculated for $C_{17}H_{19}^{78.9183}BrO_5$ ([M]+Na⁺) = 405.0308, Found 405.0308. **HRMS** (ESI) Calculated for $C_{17}H_{19}^{80.9163}BrO_5$ ([M]+Na⁺) = 407.0288, Found 407.0287.

IR (neat): 2950, 1731, 1703, 1586, 1433, 1376, 1285, 1222, 1064, 977, 807, 765 cm⁻¹.

Dimethyl 2-{5-methyl-2-[(3-methylbut-2-en-1-yl)oxy]benzylidene}malonate (10):

White solid, m.p. = 48 - 50 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.16 – 7.10 (m, 2H), 6.80 (d, J = 8.4 Hz, 1H), 5.49 – 5.43 (m, 1H), 4.54 (d, J = 6.4 Hz, 2H), 3.84 (s, 3H), 3.78 (s, 3H), 2.25 (s, 3H), 1.78 (s, 3H), 1.72 (s, 3H).

 $^{13}C\{^{1}H\} \text{ NMR } (101 \text{ MHz, CDCI}_{3}) \\ \delta 167.4, 164.9, 155.6, 139.4, 137.6, 132.6, 129.7, 129.4, 124.8, 122.3, 119.7, 112.5, 65.8, 52.5, 52.4, 124.8, 122.3, 119.7, 112.5, 120.4, 1$ 25.8, 20.5, 18.3.

HRMS (ESI) Calculated for C₁₈H₂₂O₅ ([M]+Na⁺) = 341.1359, Found 341.1352.

IR (neat): 3028, 1749, 1493, 1363, 1266, 1212, 1066, 979, 816, 795 cm⁻¹.

Dimethyl 2-{5-methoxy-2-[(3-methylbut-2-en-1-yl)oxy]benzylidene}malonate (1p): Yellow solid, m.p. = 42 - 46 °C.

¹**H NMR** (400 MHz, $CDCl_3$) δ 8.11 (s, 1H), 6.93 – 6.88 (m, 2H), 6.88 – 6.82 (m, 1H), 5.48 – 5.42 (m, 1H), 4.52 (d, *J* = 6.4 Hz, 2H), 3.84 (s, 3H), 3.81 (s, 3H), 3.73 (s, 3H), 1.78 (s, 3H), 1.72 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.3, 164.7, 153.4, 152.0, 139.0, 137.8, 125.3, 123.2, 119.7, 118.1, 114.2, 113.3, 66.5, 55.7, 52.5, 52.5, 25.8, 18.2.

HRMS (ESI) Calculated for $C_{18}H_{22}O_6$ ([M]+Na⁺) = 357.1309, Found 357.1301.

IR (neat): 2982, 1721, 1625, 1493, 1360, 1212, 1067, 1037, 982, 796, 702 cm⁻¹.

Dimethyl 2-{2-fluoro-6-[(3-methylbut-2-en-1-yl)oxy]benzylidene}malonate (1q): Yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.32 – 7.25 (m, 1H), 6.72 – 6.64 (m, 2H), 5.48 – 5.38 (m, 1H), 4.57 (d, *J* = 6.4 Hz, 2H), 3.85 (s, 3H), 3.73 (s, 3H), 1.78 (s, 3H), 1.72 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 165.9, 165.2, 160.9 (d, J = 251.1 Hz), 158.1 (d, J = 6.6 Hz), 137.9, 135.2, 131.8 (d, J = 11.3 Hz), 128.0 (d, J = 2.8 Hz), 119.2, 111.8 (d, J = 16.1 Hz), 107.9 (d, J = 5.5 Hz), 107.8 (d, J = 14.4 Hz), 66.2, 52.6 (d, J = 2.7 Hz), 52.1 (d, J = 2.8 Hz), 25.8, 18.3.

¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –109.4 (s, 1F).

HRMS (ESI) Calculated for $C_{17}H_{19}FO_5$ ([M]+Na⁺) = 345.1109, Found 345.1114.

IR (neat): 2987, 1718, 1611, 1574, 1460, 1436, 1373, 1255, 1221, 1075, 1046, 777, 740 cm⁻¹.

Dimethyl 2-{{2-[(3-methylbut-2-en-1-yl)oxy]naphthalen-1-yl}methylene}malonate (1r): Yellow solid, m.p. = 84 – 87 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.82 (dd, *J* = 8.4, 3.6 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.51 – 7.45 (m, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.23 (d, *J* = 9.2 Hz, 1H), 5.48 – 5.42 (m, 1H), 4.67 (d, *J* = 6.4 Hz, 2H), 3.90 (s, 3H), 3.52 (s, 3H), 1.76 (s, 3H), 1.72 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 165.8, 165.3, 154.2, 140.8, 137.4, 132.2, 131.6, 129.0, 128.7, 128.4, 127.3, 124.1, 123.6, 119.9, 117.1, 114.5, 66.6, 52.6, 51.8, 25.8, 18.3.

HRMS (ESI) Calculated for $C_{21}H_{22}O_5$ ([M]+Na⁺) = 377.1359, Found 377.1352.

IR (neat): 2988, 1739, 1698, 1614, 1507, 1435, 1264, 1072, 1045, 816, 782, 750 cm⁻¹.

Dimethyl 2-{2-{[4-methyl-N-(3-methylbut-2-en-1-yl)phenyl]sulfonamido}benzylidene}malonate (1s): White solid, m.p. = 100 - 104 °C.

 $\label{eq:main_stars} \begin{array}{l} ^{1}\text{H NMR} (400 \text{ MHz, CDCl}_3) \ \delta \ 7.92 \ (\text{s}, 1\text{H}), \ 7.62 \ (\text{d}, \ \textit{J} = 8.4 \ \text{Hz}, 2\text{H}), \ 7.42 - 7.37 \ (\text{m}, 1\text{H}), \ 7.33 - 7.25 \ (\text{m}, 4\text{H}), \ 6.98 - 6.92 \ (\text{m}, 1\text{H}), \ 5.12 - 5.00 \ (\text{m}, 1\text{H}), \ 4.35 - 3.95 \ (\text{m}, 2\text{H}), \ 3.84 \ (\text{s}, 3\text{H}), \ 3.73 \ (\text{s}, 3\text{H}), \ 2.44 \ (\text{s}, 3\text{H}), \ 1.57 \ (\text{s}, 3\text{H}), \ 1.38 \ (\text{s}, 3\text{H}). \end{array}$

 $^{13}\text{C}^{1}\text{H}$ NMR (101 MHz, CDCl₃) δ 166.7, 164.1, 143.7, 140.5, 139.0, 138.7, 136.1, 134.8, 130.7, 130.0, 129.6, 128.7, 128.5, 127.9, 127.0, 117.7, 52.6, 52.5, 49.7, 25.6, 21.6, 17.5.

HRMS (ESI) Calculated for $C_{24}H_{27}NO_6S$ ([M]+Na⁺) = 480.1451, Found 480.1442.

IR (neat): 3027, 1721, 1595, 1374, 1338, 1253, 1216, 1091, 1065, 875, 708, 572, 551 cm⁻¹.

Dimethyl 2-{4-methoxy-2-{[4-methyl-N-(3-methylbut-2-en-1-yl)phenyl]sulfonamido}benzylidene}malonate (1t): White solid, m.p. = 100 - 103 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.8 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 6.83 (dd, *J* = 8.8, 2.0 Hz, 1H), 6.56 - 6.48 (m, 1H), 5.14 - 5.04 (m, 1H), 4.11 (d, *J* = 85.6 Hz, 2H), 3.81 (s, 3H), 3.76 (s, 3H), 3.71 (s, 3H), 2.43 (s, 3H), 1.58 (s, 3H), 1.41 (s, 3H).

 $^{13}C{^{1}H}$ NMR (101 MHz, CDCl₃) δ 167.2, 164.4, 161.4, 143.7, 140.8, 139.7, 138.9, 136.1, 129.7, 129.6, 127.9, 126.7, 124.7, 117.7, 115.5, 114.6, 55.5, 52.5, 49.7, 25.6, 21.6, 17.5.

HRMS (ESI) Calculated for $C_{25}H_{29}NO_7S$ ([M]+Na⁺) = 510.1557, Found 510.1550.

IR (neat): 2988, 1729, 1597, 1498, 1369, 1245, 1206, 1158, 1123, 1033, 925, 819, 658, 546 cm⁻¹.

Dimethyl 2-{5-chloro-2-{[4-methyl-N-(3-methylbut-2-en-1-yl)phenyl]sulfonamido}benzylidene}malonate (1u): Colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 2.0 Hz, 1H), 7.32 – 7.25 (m, 3H), 6.86 (d, *J* = 8.4 Hz, 1H), 5.08 – 5.00 (m, 1H), 4.21 (s, 1H), 3.98 (s, 1H), 3.84 (s, 3H), 3.78 (s, 3H), 2.44 (s, 3H), 1.58 (s, 3H), 1.41 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.0, 163.8, 144.0, 139.1, 138.9, 137.5, 136.4, 135.7, 134.3, 131.0, 130.5, 129.7, 128.6, 128.1, 127.8, 117.4, 52.7, 52.6, 49.6, 25.6, 17.5.

HRMS (ESI) Calculated for $C_{24}H_{26}^{34.9689}$ CINO₆S ([M]+Na⁺) = 514.1062, Found 514.1064.

HRMS (ESI) Calculated for $C_{24}H_{26}^{36.9659}$ CINO₆S ([M]+Na⁺) = 516.1032, Found 516.1035.

IR (neat): 2987, 1729, 1587, 1477, 1437, 1345, 1251, 1217, 1158, 1064, 874, 814, 708, 665, 579, 546 cm⁻¹.

Dimethyl 2-{2-methyl-6-{[4-methyl-N-(3-methylbut-2-en-1-yl)phenyl]sulfonamido}benzylidene}malonate (1v): White solid, m.p. = 101 - 104 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 7.6 Hz, 2H), 7.16 (d, *J* = 7.6 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.62 (d, *J* = 7.6 Hz, 1H), 5.13 – 5.07 (m, 1H), 4.07 (d, *J* = 6.8 Hz, 2H), 3.89 (s, 3H), 3.59 (s, 3H), 2.45 (s, 3H), 2.21 (s, 3H), 1.59 (s, 3H), 1.45 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 164.9, 164.3, 146.0, 143.5, 137.5, 137.1, 137.1, 136.5, 136.0, 130.3, 129.7, 129.4, 128.3, 128.1, 126.4, 118.5, 52.7, 52.2, 49.6, 25.7, 21.6, 20.0, 17.7.

HRMS (ESI) Calculated for $C_{25}H_{29}NO_6S$ ([M]+Na⁺) = 494.1608, Found 494.1598.

IR (neat): 2988, 1729, 1717, 1338, 1263, 1222, 1158, 1064, 828, 676 cm⁻¹.

Dimethyl 2-{3-{[4-methyl-N-(3-methylbut-2-en-1-yl)phenyl]sulfonamido}propylidene}malonate (1w):

White solid, m.p. = 43 - 46 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.6 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 4.99 (t, *J* = 7.2 Hz, 1H), 3.86 (s, 3H), 3.82 (s, 3H), 3.79 – 3.75 (m, 2H), 3.60 – 3.55 (m, 1H), 3.29 – 3.15 (m, 2H), 2.43 (s, 3H), 2.02 – 1.90 (m, 1H), 1.78 – 1.68 (m, 1H), 1.67 (s, 3H), 1.62 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.1, 165.1, 143.3, 137.8, 136.4, 129.7, 127.3, 118.5, 60.2, 53.4, 53.1, 46.4, 44.0, 33.3, 29.1, 25.7, 21.5, 17.8.

HRMS (ESI) Calculated for $C_{20}H_{27}NO_6S$ ([M]+Na⁺) = 432.1451, Found 432.1450.

IR (neat): 2982, 1730, 1597, 1440, 1374, 1273, 1220, 1157, 1048, 895, 802, 652, 549 cm⁻¹.

Dimethyl 2-{2-[(3-methylbut-2-en-1-yl)thio]benzylidene}malonate (1x):

Yellow solid, m.p. = 51 - 54 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.36 – 7.29 (m, 2H), 7.20 (t, *J* = 7.6 Hz, 1H), 5.31 – 5.24 (m, 1H), 3.86 (s, 3H), 3.71 (s, 3H), 3.49 (d, *J* = 7.6 Hz, 2H), 1.70 (s, 3H), 1.54 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.6, 164.4, 142.0, 137.8, 137.1, 134.9, 131.6, 130.2, 128.3, 127.0, 126.7, 118.8, 52.6, 52.4, 33.2, 25.6, 17.6.

HRMS (ESI) Calculated for $C_{17}H_{20}O_4S$ ([M]+Na⁺) = 343.0975, Found 343.0970. **IR (neat)**: 2984, 1729, 1699, 1621, 1433, 1370, 1256, 1220, 1065, 976, 752 cm⁻¹.

Characterization of the Products

Diethyl 2-[3-(prop-1-en-2-yl)chroman-4-yl]malonate (2a):

11:1 dr, the major diastereomer was isolated as colorless oil in 80% yield, 97% ee, $[\alpha]^{22}_{D} = -100.5$ (c = 0.39, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 5.37 min, t_{r2} = 7.31 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.16 – 7.07 (m, 2H), 6.83 – 6.75 (m, 2H), 4.88 (s, 1H), 4.85 (s, 1H), 4.30 – 4.13 (m, 4H), 4.05 – 3.95 (m, 2H), 3.80 – 3.70 (m, 2H), 2.61 (q, *J* = 4.4 Hz, 1H), 1.79 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.05 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.4, 168.1, 154.3, 143.2, 129.8, 128.3, 120.7, 120.3, 116.7, 113.3, 65.8, 61.7, 61.4, 57.3, 42.2, 37.4, 21.6, 14.1, 13.8.

HRMS (ESI) Calculated for $C_{19}H_{24}O_5$ ([M]+Na⁺) = 355.1516, Found 355.1508.

IR (neat): 2980, 1728, 1647, 1608, 1583, 1491, 1450, 1386, 1227, 1174, 1151, 1052, 900, 755, 736 cm⁻¹.

	Retention Time	Area	% Area
1	4.876	415858	4.29
2	5.544	4411539	45.54
3	6.223	424801	4.39
4	7.840	4435045	45.78

	Retention Time	Area	% Area
1	5.366	51351	1.35
2	7.314	3743670	98.65

Dimethyl 2-[3-(prop-1-en-2-yl)chroman-4-yl]malonate (2b):

9:1 dr, the major diastereomer was isolated as white solid in 89% yield, m.p. = 40 - 42 °C, ee = 95%, [α]²²_D = -108.3 (*c* = 1.41, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 5.92 min, t_{r2} = 8.27 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.14 – 7.07 (m, 2H), 6.84 – 6.76 (m, 2H), 4.88 (s, 1H), 4.85 (s, 1H), 4.24 (dd, *J* = 11.6, 3.6 Hz, 1H), 4.17 (dd, *J* = 11.6, 4.8 Hz, 1H), 3.80 – 3.74 (m, 5H), 3.55 (s, 3H), 2.60 (q, *J* = 3.6 Hz, 1H), 1.80 (s, 3H).

 $^{13}\text{C}{}^{1}\text{H}$ NMR (101 MHz, CDCl₃) δ 168.7, 168.4, 154.3, 143.2, 129.6, 128.4, 120.5, 120.4, 116.8, 113.3, 65.7, 57.1, 52.7, 52.3, 42.0, 37.6, 21.6.

HRMS (ESI) Calculated for $C_{17}H_{20}O_5$ ([M]+Na⁺) = 327.1203, Found 327.1196.

IR (neat): 2889, 1741, 1646, 1582, 1491, 1436, 1333, 1305, 1270, 1227, 1199, 1097, 994, 871, 821, 763 cm⁻¹.

	Retention Time	Area	% Area
1	5.921	447519	2.56
2	8.266	17025242	97.44

Diisopropyl 2-[3-(prop-1-en-2-yl)chroman-4-yl]malonate (2c):

12:1 dr, the major diastereomer was isolated as colorless oil in 84% yield, ee = 95%, $[\alpha]^{22}_{D}$ = -93.3 (*c* = 1.06, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 4.72 min, t_{r2} = 5.92 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.19 (d, J = 7.6 Hz, 1H), 7.12 – 7.06 (m, 1H), 6.82 – 6.74 (m, 2H), 5.11 (hept, J = 6.4 Hz, 1H), 4.91 – 4.81 (m, 3H), 4.26 (dd, J = 11.2, 3.6 Hz, 1H), 4.16 (dd, J = 11.6, 5.2 Hz, 1H), 3.80 – 3.71 (m, 1H), 3.67 (d, J = 7.2 Hz, 1H), 2.62 (q, J = 4.8 Hz, 1H), 1.80 (s, 3H), 1.26 (t, J = 6.0 Hz, 6H), 1.15 (d, J = 6.0 Hz, 3H), 0.95 (d, J = 6.0 Hz, 3H).

 $^{13}C{^{1}H}$ NMR (101 MHz, CDCI₃) δ 168.2, 167.5, 154.4, 143.3, 130.1, 128.2, 120.9, 120.3, 116.6, 113.4, 69.2, 69.1, 66.0, 57.4, 42.5, 37.3, 21.7, 21.7, 21.6, 21.5, 21.3.

HRMS (ESI) Calculated for $C_{21}H_{28}O_5$ ([M]+Na⁺) = 383.1829 Found 383.1831.

IR (neat): 2980, 1723, 1647, 1608, 1583, 1491, 1453, 1374, 1228, 1174, 1098, 901, 828, 755 cm⁻¹.

	Retention Time	Area	% Area
1	4.721	144900	2.45
2	5.921	5758420	97.55

Dimethyl 2-[3-(cyclopent-1-en-1-yl)chroman-4-yl]malonate (2d):

11:1 dr, the major diastereomer was isolated as colorless oil in 77% yield, ee = 76%, $[\alpha]^{20}_{D}$ = -102.2 (*c* = 0.42, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 6.40 min, t_{r2} = 15.73 min.

¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.02 (m, 2H), 6.83 – 6.74 (m, 2H), 5.47 (s, 1H), 4.26 – 4.16 (m, 2H), 3.76 (s, 3H), 3.75 (s, 2H), 3.56 (s, 3H), 2.66 (s, 1H), 2.35 – 2.27 (m, 2H), 2.27 – 2.19 (m, 2H), 1.81 (p, J = 7.4 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.6, 168.5, 154.3, 142.0, 129.7, 128.4, 127.0, 120.5, 120.2, 116.8, 65.2, 57.6, 52.7, 52.4, 37.8, 37.3, 33.9, 32.6, 23.0.

HRMS (ESI) Calculated for $C_{19}H_{22}O_5$ ([M]+Na⁺) = 353.1359, Found 353.1356.

IR (neat): 2951, 2845, 1733, 1608, 1583, 1490, 1434, 1313, 1227, 1194, 1148, 1018, 966, 757 cm⁻¹.

	Retention Time	Area	% Area
1	6.397	736438	11.92
2	15.729	5440805	88.08

Dimethyl 2-[3-(cyclohex-1-en-1-yl)chroman-4-yl]malonate (2e):

>19:1 dr, the major diastereomer was isolated as colorless oil in 89% yield, ee = 98%, $[\alpha]^{20}_{D}$ = -109.6 (c = 0.45, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 6.14 min, t_{r2} = 11.40 min.

¹H NMR (400 MHz, CDCl₃) δ 7.13 – 7.05 (m, 2H), 6.84 – 6.76 (m, 2H), 5.56 (s, 1H), 4.19 (dd, J = 11.3, 3.7 Hz, 1H), 4.08 (dd, J = 11.3, 5.9 Hz, 1H), 3.81 – 3.72 (m, 5H), 3.55 (s, 3H), 2.52 (q, J = 5.2 Hz, 1H), 2.02 – 1.90 (m, 4H), 1.62 – 1.56 (m, 2H), 1.55 – 1.47 (m, 2H). 1³C{¹H} NMR (101 MHz, CDCl₃) δ 169.0, 168.5, 154.6, 135.5, 129.4, 128.2, 124.3, 121.2, 120.3, 116.8, 66.5, 56.7, 52.6, 52.3, 42.8, 37.5, 27.2, 25.3, 22.9, 22.2.

HRMS (ESI) Calculated for $C_{20}H_{24}O_5$ ([M]+Na⁺) = 367.1516, Found 367.1513.

IR (neat): 2926, 1733, 1607, 1583, 1491, 1434, 1310, 1227, 1193, 1146, 1115, 1022, 997, 756 cm⁻¹.

	Retention Time	Area	% Area
1	5.905	2876545	12.61
2	6.458	8485046	37.21
3	9.829	2884186	12.65
4	13.895	8558545	37.53

	Retention Time	Area	% Area
1	6.139	435193	1.03
2	11.395	41936033	98.97

Dimethyl 2-[3-(cyclohept-1-en-1-yl)chroman-4-yl]malonate (2f):

16:1 dr, the major diastereomer was isolated as colorless oil in 90% yield, ee = 99%, [α]²¹_D = -89.2 (*c* = 0.46, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 6.04 min, t_{r2} = 7.89 min.

¹H NMR (400 MHz, CDCl₃) δ 7.13 - 7.06 (m, 2H), 6.83 - 6.75 (m, 2H), 5.74 (t, *J* = 6.6 Hz, 1H), 4.20 (dd, *J* = 11.4, 3.9 Hz, 1H), 4.06 (dd, J = 11.4, 6.1 Hz, 1H), 3.80 (d, J = 7.0 Hz, 1H), 3.77 (s, 3H), 3.70 (t, J = 6.3 Hz, 1H), 3.52 (s, 3H), 2.60 (q, J = 5.5 Hz, 1H), 2.17 (t, J = 5.5 Hz, 2H), 2.07 – 2.01 (m, 2H), 1.74 – 1.66 (m, 2H), 1.50 – 1.35 (m, 3H), 1.34 – 1.23 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.1, 168.5, 154.6, 142.0, 129.7, 129.5, 128.2, 121.1, 120.3, 116.7, 66.4, 56.6, 52.6, 52.2, 44.5,

37.3, 32.7, 31.3, 28.3, 27.0, 26.8.

HRMS (ESI) Calculated for C₂₁H₂₆O₅ ([M]+Na⁺) = 381.1672, Found 381.1669.

IR (neat): 2918, 2846, 1733, 1608, 1583, 1491, 1450, 1434, 1317, 1227, 1193, 1151, 1007, 756 cm⁻¹.

	Retention Time	Area	% Area
1	5.737	207898	3.36
2	6.034	2888126	46.65
3	7.883	2885196	46.60
4	8.382	210247	3.40

	Retention Time	Area	% Area
1	6.043	22062	0.48
2	7.888	4551968	99.52

Dimethyl 2-[3-(1-phenylvinyl)chroman-4-yl]malonate (2g):

>19:1 dr, the major diastereomer was isolated as colorless oil in 83% yield, ee = 98%, [α]²¹_D = -223.1 (*c* = 0.49, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 7.76 min, t_{r2} = 13.15 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 5H), 7.15 – 7.05 (m, 2H), 6.86 – 6.75 (m, 2H), 5.47 (s, 1H), 4.96 (s, 1H), 4.53 – 4.39 (m, 2H), 3.88 – 3.83 (m, 1H), 3.67 (d, *J* = 4.3 Hz, 1H), 3.56 (s, 3H), 3.52 – 3.43 (m, 1H), 3.21 (s, 3H).

 $^{13}\text{C}{}^{1}\text{H}$ NMR (101 MHz, CDCl₃) δ 169.1, 168.8, 153.9, 146.5, 140.1, 130.5, 128.7, 128.5, 128.3, 126.5, 121.2, 119.8, 116.3, 114.2, 64.8, 53.9, 52.5, 52.1, 39.3, 36.1.

HRMS (ESI) Calculated for C₂₂H₂₂O₅ ([M]+Na⁺) = 389.1359, Found 389.1360.

IR (neat): 2951, 1731, 1608, 1583, 1491, 1454, 1433, 1225, 1147, 1066, 1039, 1023, 904, 779, 756, 699 cm⁻¹.

	Retention Time	Area	% Area
1	7.761	274777	0.85
2	13.151	31957080	99.15

Dimethyl 2-[3-(6-methylhepta-1,5-dien-2-yl)chroman-4-yl]malonate (2h):

5:1 dr, the major diastereomer was isolated as colorless oil in 72% yield, ee = 98%, $[\alpha]^{22}_{D}$ = -143.4 (c = 0.30, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 6.24 min, t_{r2} = 7.35 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.13 – 7.07 (m, 2H), 6.83 – 6.77 (m, 2H), 5.31 (t, *J* = 7.2 Hz, 1H), 5.00 (t, *J* = 7.2 Hz, 1H), 4.20 (dd, *J* = 11.2, 4.0 Hz, 1H), 4.07 (dd, *J* = 11.2, 6.4 Hz, 1H), 3.80 (d, *J* = 6.8 Hz, 1H), 3.77 – 3.74 (m, 4H), 3.52 (s, 3H), 2.69 – 2.62 (m, 3H), 1.66 (s, 6H), 1.56 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.1, 168.5, 154.7, 132.4, 131.9, 129.3, 128.1, 127.2, 122.5, 121.3, 120.3, 116.8, 66.9, 56.3, 52.6, 52.2, 44.0, 37.6, 27.1, 25.6, 17.7, 14.8.

HRMS (ESI) Calculated for $C_{22}H_{28}O_5$ ([M]+Na⁺) = 395.1829, Found 395.1830.

IR (neat): 2953, 1732, 1608, 1583, 1491, 1452, 1434, 1131, 1228, 1195, 1151, 1118, 1020, 758 cm⁻¹.

	Retention Time	Area	% Area
1	6.237	49440	0.82
2	7.354	5974004	99.18

Dimethyl 2-[8-fluoro-3-(prop-1-en-2-yl)chroman-4-yl]malonate (2i):

7:1 dr, the major diastereomer was isolated as white solid in 76% yield, m.p. = 56 - 60 °C, ee = 96%, $[\alpha]^{22}_{D}$ = -105.5 (*c* = 0.40, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 6.18 min, t_{r2} = 8.57 min.

¹**H NMR** (400 MHz, CDCl₃) δ 6.97 – 6.85 (m, 2H), 6.77 – 6.70 (m, 1H), 4.90 (s, 1H), 4.86 (s, 1H), 4.34 – 4.24 (m, 2H), 3.82 – 3.74 (m, 5H), 3.56 (s, 3H), 2.63 (q, *J* = 3.3, 2.8 Hz, 1H), 1.80 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.5, 168.2, 151.5 (d, J = 244.8 Hz), 142.7 (d, J = 11.3 Hz), 142.7, 124.5 (d, J = 3.6 Hz), 123.1, 119.6 (d, J = 7.2 Hz), 114.8 (d, J = 17.8 Hz), 113.6, 66.0, 56.9, 52.8 (d, J = 3.0 Hz), 52.4 (d, J = 2.5 Hz), 41.7, 37.2, 21.6. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -136.8 (s, 1F).

HRMS (ESI) Calculated for $C_{17}H_{19}FO_5$ ([M]+Na⁺) = 345.1109, Found 345.1110.

IR (neat): 2955, 1745, 1645, 1588, 1491, 1431, 1272, 1257, 1197, 1145, 1080, 985, 892, 785, 770, 712 cm⁻¹.

1	6.184	78433	1.99
2	8.569	3864901	98.01

Dimethyl 2-[8-methoxy-3-(prop-1-en-2-yl)chroman-4-yl]malonate (2j):

7.5:1 dr, the major diastereomer was isolated as white solid in 83% yield, m.p. = 32 - 35 °C, ee = 98%, [α]²²_D = -110.2 (*c* = 0.40, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 8.10 min, t_{r2} = 33.78 min.

¹**H NMR** (400 MHz, CDCl₃) δ 6.80 – 6.68 (m, 3H), 4.88 (s, 1H), 4.85 (s, 1H), 4.30 (d, *J* = 4.2 Hz, 2H), 3.85 (s, 3H), 3.78 (d, *J* = 2.0 Hz, 2H), 3.76 (s, 3H), 3.56 (s, 3H), 2.59 (s, 1H), 1.80 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.6, 168.4, 148.2, 143.7, 143.0, 121.3, 121.2, 119.8, 113.4, 110.0, 65.9, 57.2, 55.8, 52.7, 52.3, 41.7, 37.4, 21.7.

HRMS (ESI) Calculated for $C_{18}H_{22}O_6$ ([M]+Na⁺) = 357.1309, Found 357.1309.

IR (neat): 2953, 1737, 1643, 1586, 1489, 1434, 1341, 1302, 1258, 1221, 1147, 1115, 994, 885, 733, 627 cm⁻¹.

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00 42.00 44.00 Minutes

	Retention Time	Area	% Area
1	8.102	387330	50.26
2	33.705	383301	49.74

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00 42.00 44.00 Minutes

	Retention Time	Area	% Area
1	8.104	408275	0.94
2	33.777	42971566	99.06

Dimethyl 2-[7-chloro-3-(prop-1-en-2-yl)chroman-4-yl]malonate (2k):

9:1 dr, the major diastereomer was isolated as white solid in 90% yield, m.p. = 36 - 38 °C, ee = 96%, $[\alpha]^{22}_{D} = -107.2$ (c = 0.42, in CH₂Cl₂).

HPLC: Chiralcel IA, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 5.54 min, t_{r2} = 6.41 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.03 (d, *J* = 8.1 Hz, 1H), 6.83 – 6.76 (m, 2H), 4.89 (s, 1H), 4.83 (s, 1H), 4.27 – 4.14 (m, 2H), 3.77 (s, 3H), 3.74 – 3.69 (m, 2H), 3.57 (s, 3H), 2.57 (q, *J* = 3.4 Hz, 1H), 1.79 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.5, 168.2, 154.9, 142.8, 133.6, 130.6, 120.6, 119.1, 117.0, 113.5, 65.8, 56.9, 52.8, 52.4, 41.7, 37.1, 21.6.

HRMS (ESI) Calculated for $C_{17}H_{19}^{34.9689}$ ClO₅ ([M]+Na⁺) = 361.0813, Found 361.0809.

HRMS (ESI) Calculated for $C_{17}H_{19}^{36.9659}$ CIO₅ ([M]+Na⁺) = 363.0784, Found 363.0777.

IR (neat): 2953, 1745, 1600, 1487, 1429, 1299, 1270, 1226, 1196, 1147, 1130, 1082, 997, 922, 872, 810, 778 cm⁻¹.

	Retention Time	Area	% Area
1	5.539	8074913	97.94
2	6.412	169730	2.06

Dimethyl 2-[7-methyl-3-(prop-1-en-2-yl)chroman-4-yl]malonate (2l):

12:1 dr, the major diastereomer was isolated as white solid in 85% yield, m.p. = 38 - 40 °C, ee = 97%, [α]²³_D = -115.5 (c = 0.42, in CH₂Cl₂).

HPLC: Chiralcel IA, hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 5.39 min, t_{r2} = 6.31 min.

¹**H NMR** (400 MHz, CDCl₃) δ 6.95 (d, J = 8.0 Hz, 1H), 6.66 – 6.58 (m, 2H), 4.87 (s, 1H), 4.85 (s, 1H), 4.23 – 4.13 (m, 2H), 3.78 – 3.70 (m, 5H), 3.58 (s, 3H), 2.55 (q, J = 4.0 Hz, 1H), 2.24 (s, 3H), 1.79 (s, 3H).

 $^{13}\text{C}{}^{1}\text{H}$ NMR (101 MHz, CDCl₃) δ 168.7, 168.5, 154.0, 143.3, 138.5, 129.3, 121.4, 117.4, 117.2, 113.2, 65.5, 57.3, 52.7, 52.4, 41.9, 37.3, 21.7, 21.1.

HRMS (ESI) Calculated for $C_{18}H_{22}O_5$ ([M]+Na⁺) = 341.1359, Found 341.1357.

IR (neat): 2955, 1746, 1731, 1572, 1504, 1436, 1303, 1258, 1193, 1151, 1131, 1098, 887, 780, 630, 594 cm⁻¹.

	Retention Time	Area	% Area
1	5.389	3553371	44.90
2	5.678	361752	4.57
3	6.301	3684496	46.56
4	7.009	313824	3.97

-0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.00 -0.50 -0.00 -0

	Retention Time	Area	% Area
1	5.392	1158704	98.52
2	6.306	17428	1.48

Dimethyl 2-[6-chloro-3-(prop-1-en-2-yl)chroman-4-yl]malonate (2m):

3:1 dr, the major diastereomer was isolated as colorless oil in 62% yield, ee = 90%, $[\alpha]^{22}D = -82.8$ (c = 0.25, in CH₂Cl₂).

HPLC: Chiralcel IA, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 4.81 min, t_{r2} = 6.51 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.09 – 7.04 (m, 2H), 6.77 – 6.70 (m, 1H), 4.89 (s, 1H), 4.83 (s, 1H), 4.26 – 4.15 (m, 2H), 3.78 (s, 3H), 3.75 – 3.68 (m, 2H), 3.61 (s, 3H), 2.56 (q, J = 4.0 Hz, 1H), 1.79 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.4, 168.1, 152.9, 142.9, 129.2, 128.5, 125.0, 122.0, 118.2, 113.5, 65.6, 57.1, 52.80, 52.5, 41.5, 37.4, 21.6.

HRMS (ESI) Calculated for $C_{17}H_{19}^{34.9689}$ CIO₅ ([M]+Na⁺) = 361.0813, Found 361.0813.

HRMS (ESI) Calculated for $C_{17}H_{19}^{36.9659}$ CIO₅ ([M]+Na⁺) = 363.0784, Found 363.0780.

IR (neat): 2953, 1734, 1647, 1578, 1487, 1434, 1410, 1235, 1195, 1156, 1098, 1020, 900, 818, 635 cm⁻¹.

	Retention Time	Area	% Area
1	4.804	11823961	42.51
2	5.001	1955818	7.03
3	6.510	12087874	43.46
4	7.281	1948795	7.01
-	1.201	1010100	7.01

	Retention Time	Area	% Area
1	4.805	3162589	94.92
2	6.509	169289	5.08

The minor diastereomer was isolated as colorless oil in 17% yield, ee = 75%, [α]²⁰_D = -137.7 (*c* = 0.11, in CH₂Cl₂).

HPLC: Chiralcel IA, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 4.93 min, t_{r2} = 7.17 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.12 – 7.06 (m, 2H), 6.74 (d, *J* = 8.4 Hz, 1H), 4.95 (s, 1H), 4.57 (s, 1H), 4.31 – 4.25 (m, 2H), 4.03 – 3.98 (m, 1H), 3.73 (s, 3H), 3.56 (d, *J* = 6.4 Hz, 1H), 3.38 (s, 3H), 2.72 – 2.63 (m, 1H), 1.80 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.0, 168.5, 152.6, 142.5, 129.9, 128.8, 124.4, 122.8, 117.8, 112.3, 64.7, 54.2, 52.7, 52.3, 41.2, 35.8, 23.4.

HRMS (ESI) Calculated for $C_{17}H_{19}^{34.9689}$ CIO₅ ([M]+Na⁺) = 361.0813, Found 361.0813.

HRMS (ESI) Calculated for $C_{17}H_{19}^{36.9659}$ ClO₅ ([M]+Na⁺) = 363.0784, Found 363.0782.

IR (neat): 2952, 1733, 1646, 1487, 1434, 1268, 1147, 1025, 894, 816, 736, 670 cm⁻¹.

	Retention Time	Area	% Area
1	4.932	9192676	87.46
2	7.166	1317536	12.54

Dimethyl 2-[6-bromo-3-(prop-1-en-2-yl)chroman-4-yl]malonate (2n):

2.5:1 dr, the major diastereomer was isolated as colorless oil in 61% yield, ee = 90%, [α]²²_D = -63.8 (c = 0.28, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 4.85 min, t_{r2} = 5.20 min.

¹**H NMR** (400 MHz, $CDCl_3$) δ 7.23 – 7.18 (m, 2H), 6.71 – 6.65 (m, 1H), 4.88 (s, 1H), 4.83 (s, 1H), 4.21 (d, *J* = 4.0 Hz, 2H), 3.78 (s, 3H), 3.73 – 3.69 (m, 2H), 3.62 (s, 3H), 2.54 (q, *J* = 3.2 Hz, 1H), 1.80 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.4, 168.1, 153.4, 142.8, 132.2, 131.4, 122.5, 118.7, 113.5, 112.2, 65.5, 57.2, 52.8, 52.5, 41.4, 37.3, 21.7.

HRMS (ESI) Calculated for $C_{17}H_{19}^{78.9183}BrO_5$ ([M]+Na⁺) = 405.0308, Found 405.0307.

2

HRMS (ESI) Calculated for $C_{17}H_{19}^{80.9163}BrO_5$ ([M]+Na⁺) = 407.0288, Found 407.0285.

IR (neat): 2952, 1733, 1646, 1574, 1483, 1434, 1406, 1234, 1154, 1127, 1019, 900, 816, 612 cm⁻¹.

The minor diastereomer was isolated as colorless oil in 27% yield, ee = 75%, $[\alpha]^{20}_{D}$ = -112.6 (*c* = 0.41, in CH₂Cl₂). **HPLC**: Chiralcel IC, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 220 nm, t_{r1} = 5.11 min, t_{r2} = 6.16 min.

5.203

628421

95.08

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.19 (m, 2H), 6.69 (d, J = 8.8 Hz, 1H), 4.95 (s, 1H), 4.57 (s, 1H), 4.33 – 4.24 (m, 2H), 4.04 – 3.97 (m, 1H), 3.73 (s, 3H), 3.55 (d, J = 6.8 Hz, 1H), 3.39 (s, 3H), 2.71 – 2.64 (m, 1H), 1.80 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.9, 168.5, 153.2, 142.4, 132.8, 131.6, 123.4, 118.3, 112.2, 111.5, 64.7, 54.2, 52.7, 52.3, 41.1, 35.8, 23.4.

HRMS (ESI) Calculated for $C_{17}H_{19}^{78.9183}BrO_5$ ([M]+Na⁺) = 405.0308, Found 405.0307. **HRMS** (ESI) Calculated for $C_{17}H_{19}^{80.9163}BrO_5$ ([M]+Na⁺) = 407.0288, Found 407.0286. **IR (neat)**: 2951, 1732, 1645, 1576, 1484, 1434, 1239, 1146, 1025, 894, 815, 736, 659 cm⁻¹.

	Retention Time	Area	% Area
1	5.114	554274	12.53
2	6.160	3868469	87.47

Dimethyl 2-[6-methyl-3-(prop-1-en-2-yl)chroman-4-yl]malonate (2o):

5:1 dr, the major diastereomer was isolated as white solid in 60% yield, m.p. = 32 - 34 °C, ee = 91%, [α]²³_D = -94.0 (c = 0.34, in CH₂Cl₂). **HPLC**: Chiralcel IA, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 210$ nm, $t_{r1} = 4.54$ min, $t_2 = 6.06$ min.

¹**H NMR** (400 MHz, CDCl₃) δ 6.94 – 6.89 (m, 1H), 6.87 (s, 1H), 6.69 (d, *J* = 8.0 Hz, 1H), 4.87 (s, 1H), 4.85 (s, 1H), 4.23 – 4.12 (m, 2H), 3.77 – 3.74 (m, 4H), 3.73 – 3.69 (m, 1H), 3.57 (s, 3H), 2.55 (q, *J* = 4.0 Hz, 1H), 2.21 (s, 3H), 1.80 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) & 168.7, 168.5, 152.0, 143.4, 129.8, 129.4, 129.2, 120.1, 116.5, 113.2, 65.5, 57.4, 52.6, 52.2, 42.0, 37.5, 21.7, 20.6.

HRMS (ESI) Calculated for $C_{18}H_{22}O_5$ ([M]+Na⁺) = 341.1359, Found 341.1358.

IR (neat): 2951, 1740, 1618, 1500, 1434, 1268, 1223, 1196, 1127, 995, 906, 828, 810, 556, 521 cm⁻¹.

	Retention Time	Area	% Area
1	4.484	2485235	50.08
2	6.169	2477763	49.92

Dimethyl 2-[6-methoxy-3-(prop-1-en-2-yl)chroman-4-yl]malonate (2p):

4:1 dr, the major diastereomer was isolated as white solid in 58% yield, m.p. = 28 - 32 °C, ee = 92%, $[\alpha]^{22}_{D} = -109.0$ (c = 0.20, in CH₂Cl₂).

HPLC: Chiralcel IA, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 220 nm, t_{r1} = 6.12 min, t_{r2} = 9.00 min.

¹**H NMR** (400 MHz, CDCl₃) δ 6.75 – 6.69 (m, 2H), 6.69 – 6.66 (m, 1H), 4.89 (d, J = 0.8 Hz, 1H), 4.85 (s, 1H), 4.19 (dd, J = 11.6, 3.6 Hz, 1H), 4.11 (dd, J = 11.6, 5.2 Hz, 1H), 3.80 – 3.77 (m, 1H), 3.77 (s, 3H), 3.74 (d, J = 4.2 Hz, 1H), 3.71 (s, 3H), 3.58 (s, 3H), 2.59 (q, J = 4.8 Hz, 1H), 1.79 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.7, 168.5, 153.2, 148.4, 143.2, 121.1, 117.4, 114.9, 113.7, 113.4, 65.9, 57.1, 55.6, 52.7, 52.4, 42.2, 37.8, 21.6.

HRMS (ESI) Calculated for $C_{18}H_{22}O_6$ ([M]+Na⁺) = 357.1309, Found 357.1310.

IR (neat): 2953, 1750, 1645, 1496, 1432, 1327, 1263, 1232, 1152, 1042, 967, 899, 805, 695 cm⁻¹.

	Retention Time	Area	% Area
1	6.124	1766348	96.08
2	9.005	72059	3.92

The minor diastereomer was isolated as colorless oil in 15% yield, ee = 80%, $[\alpha]^{22}_{D}$ = -112.4 (c = 0.20, in CH₂Cl₂).

HPLC: Chiralcel IA, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 220 nm, t_{r1} = 5.80 min, t_{r2} = 10.62 min.

¹**H NMR** (400 MHz, CDCl₃) δ 6.73 (d, *J* = 1.2 Hz, 2H), 6.65 – 6.63 (m, 1H), 4.93 (s, 1H), 4.56 (s, 1H), 4.28 – 4.21 (m, 2H), 4.03 – 3.98 (m, 1H), 3.72 (s, 6H), 3.59 (d, *J* = 6.8 Hz, 1H), 3.34 (s, 3H), 2.75 – 2.67 (m, 1H), 1.81 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.2, 168.9, 152.7, 147.9, 143.0, 121.5, 117.1, 115.8, 114.2, 112.0, 64.5, 55.8, 54.4, 52.6, 52.3, 41.6, 36.3, 23.5.

HRMS (ESI) Calculated for $C_{18}H_{22}O_6$ ([M]+Na⁺) = 357.1309, Found 357.1299.

IR (neat): 2951, 1733, 1645, 1499, 1483, 1241, 1211, 1148, 1027, 899, 815, 719 cm⁻¹.

	Retention Time	Area	% Area
1	5.804	5430913	90.02
2	10.618	602059	9.98

Dimethyl 2-[5-fluoro-3-(prop-1-en-2-yl)chroman-4-yl]malonate (2q):

1.5:1 dr, the minor diastereomer was isolated as colorless oil in 32% yield, ee = 81%, $[\alpha]^{22}_{D}$ = -260.6 (c = 0.10, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 220 nm, t_{r1} = 9.85 min, t_{r2} = 12.60 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.13 – 7.05 (m, 1H), 6.65 – 6.53 (m, 2H), 4.99 (s, 1H), 4.59 (s, 1H), 4.37 – 4.22 (m, 3H), 3.75 (s, 3H), 3.54 (d, *J* = 4.8 Hz, 1H), 3.34 (s, 3H), 2.65 (dt, *J* = 11.2, 4.0 Hz, 1H), 1.85 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.8, 168.8, 160.9 (d, J = 246.2 Hz), 155.1 (d, J = 6.9 Hz), 142.5, 128.9 (d, J = 10.7 Hz), 112.4, 112.0 (d, J = 2.9 Hz), 110.3 (d, J = 21.3 Hz), 106.1 (d, J = 22.1 Hz), 64.6, 53.0, 52.7, 52.2, 41.2, 30.2, 23.3.

¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –114.8 (s, 1F).

HRMS (ESI) Calculated for $C_{17}H_{19}FO_5$ ([M]+Na⁺) = 345.1109, Found 345.1102.

IR (neat): 2952, 1733, 1621, 1586, 1465, 1435, 1345, 1258, 1229, 1149, 1090, 1059, 1029, 979, 904, 785, 769 cm⁻¹.

1	9.848	930503	9.61
2	12.600	8747393	90.39

The major diastereomer was isolated as colorless oil in 43% yield, ee = 95%, $[\alpha]^{23}_{D}$ = -64.2 (*c* = 0.28, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 220 nm, t_{t1} = 6.98 min, t_{t2} = 8.13 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.12 - 7.05 (m, 1H), 6.64 - 6.56 (m, 2H), 4.85 (s, 1H), 4.82 (s, 1H), 4.23 - 4.18 (m, 1H), 4.16 (dd, J = 12.0, 3.6 Hz, 1H), 3.93 (dd, J = 7.6, 2.8 Hz, 1H), 3.86 (d, J = 7.2 Hz, 1H), 3.70 (s, 3H), 3.66 (s, 3H), 2.70 (q, J = 3.7 Hz, 1H), 1.82 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.5, 168.3, 161.5 (d, J = 244.6 Hz), 155.7 (d, J = 7.2 Hz), 143.5, 128.6 (d, J = 10.9 Hz), 112.9, 112.6 (d, J = 3.0 Hz), 109.2 (d, J = 19.3 Hz), 106.8 (d, J = 22.5 Hz), 65.3, 55.7, 52.5, 52.5, 40.8, 32.3, 21.7. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –115.9 (s, 1F).

HRMS (ESI) Calculated for $C_{17}H_{19}FO_5$ ([M]+Na⁺) = 345.1109, Found 345.1104.

IR (neat): 2953, 1735, 1622, 1586, 1466, 1435, 1303, 1237, 1196, 1152, 1105, 1087, 1012, 904, 776 cm⁻¹.

	Retention Time	Area	% Area
1	6.651	1691139	14.48
2	7.628	1705159	14.60
3	9.335	4137961	35.42
4	11.627	4146861	35.50

819 808 839 189 189 189 200 259 180 350 4.00 4.59 5.50 5.50 6.00 6.59 7.50 7.50 8.50 8.50 8.50 9.50 10.00 10.59 11.00 11.50 12.00 12.50 13.50 14.00 14.59 15.

	Retention Time	Area	% Area
1	6.981	259219	2.50
2	8.127	10112577	97.50

Dimethyl 2-{2-(prop-1-en-2-yl)-2,3-dihydro-1H-benzo[f]chromen-1-y}malonate (2r):

6:1 dr, the major diastereomer was isolated as white solid in 49% yield, m.p. = 74 - 78 °C, ee = 20%, [α]²³_D = -54.0 (*c* = 0.33, in CH₂Cl₂). **HPLC**: Chiralcel IC, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 5.52 min, t_{r2} = 7.11 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (d, J = 8.8 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.51 – 7.45 (m, 1H), 7.33 – 7.27 (m, 1H), 7.02 (d, J = 9.2 Hz, 1H), 4.99 (s, 1H), 4.81 – 4.76 (m, 1H), 4.63 (s, 1H), 4.46 – 4.35 (m, 2H), 3.78 (s, 3H), 3.57 (d, J = 5.6 Hz, 1H), 2.79 – 2.73 (m, 4H), 1.89 (s, 3H).

 $^{13}\text{C}{}^{1}\text{H}$ NMR (101 MHz, CDCl₃) δ 169.7, 168.7, 151.7, 142.9, 132.8, 129.3, 128.7, 128.0, 126.3, 123.2, 123.2, 118.4, 113.5, 112.1, 64.3, 54.3, 52.7, 51.7, 41.6, 31.7, 23.5.

HRMS (ESI) Calculated for $C_{21}H_{22}O_5$ ([M]+Na⁺) = 377.1359, Found 377.1352.

IR (neat): 2950, 1728, 1621, 1600, 1434, 1295, 1226, 1157, 1095, 1028, 907, 818, 760 cm⁻¹.

	Retention Time	Area	% Area
1	5.538	3278540	49.91
2	7.159	3290691	50.09

Dimethyl 2-[3-(prop-1-en-2-yl)-1-tosyl-1,2,3,4-tetrahydroquinolin-4-yl]malonate (2s):

>19:1 dr, the major diastereomer was isolated as white solid in 89% yield, m.p. = 74 - 76 °C, ee = 98%, $[\alpha]^{23}_{D}$ = -97.1 (*c* = 0.76, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 210 nm, t_1 = 15.30 min, t_2 = 16.66 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.4 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.22 – 7.16 (m, 1H), 7.08 (d, *J* = 7.2 Hz, 1H), 6.99 (t, *J* = 7.2 Hz, 1H), 4.76 (s, 1H), 4.67 (s, 1H), 3.92 (dd, *J* = 5.6, 12.8 Hz, 1H), 3.72 (s, 3H), 3.66 (dd, *J* = 13.2, 5.6 Hz, 1H), 3.59 (dd, *J* = 8.8, 5.2 Hz, 1H), 3.41 (s, 3H), 2.94 (d, *J* = 8.8 Hz, 1H), 2.66 (q, *J* = 5.2 Hz, 1H), 2.40 (s, 3H), 1.66 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.3, 167.9, 143.9, 143.4, 136.8, 135.9, 129.8, 129.8, 128.0, 127.9, 127.2, 124.2, 123.0, 113.5, 55.5, 52.7, 52.1, 47.7, 43.6, 40.3, 21.6, 20.7.

HRMS (ESI) Calculated for C₂₄H₂₇NO₆S ([M]+Na⁺) = 480.1451, Found 480.1446.

IR (neat): 2953, 1733, 1647, 1599, 1490, 1434, 1351, 1245, 1160, 1089, 1027, 966, 899, 841, 813, 759, 676, 652, 574, 540 cm⁻¹.

	Retention Time	Area	% Area
1	15.257	15777750	47.51
2	16.621	16579551	49.93
3	18.034	849980	2.56

	Retention Time	Area	% Area
1	15.304	57220	1.08
2	16.665	5249005	98.92

Dimethyl 2-[7-methoxy-3-(prop-1-en-2-yl)-1-tosyl-1,2,3,4-tetrahydroquinolin-4-yl]malonate (2t):

>19:1 dr, the major diastereomer was isolated as colorless oil in 75% yield, ee = 90%, $[\alpha]^{21}_{D} = -138.7$ (*c* = 0.84, in CH₂Cl₂). **HPLC**: Chiralcel IB, hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 210$ nm, $t_{r1} = 12.08$ min, $t_{r2} = 13.12$ min.

¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 2.4 Hz, 1H), 7.28 (d, *J* = 8.4 Hz, 2H), 6.97 (d, *J* = 8.4 Hz, 1H), 6.56 (dd, J = 8.4, 2.4 Hz, 1H), 4.76 (s, 1H), 4.67 (s, 1H), 3.88 (dd, J = 12.8, 5.6 Hz, 1H), 3.78 (s, 3H), 3.74 - 3.65 (m, 4H), 3.54 (dd, J = 9.2, 4.8 Hz, 1H), 3.43 (s, 3H), 2.85 (d, J = 9.2 Hz, 1H), 2.59 (q, J = 5.2 Hz, 1H), 2.41 (s, 3H), 1.66 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.4, 167.9, 159.0, 144.0, 143.4, 137.5, 135.7, 130.5, 129.8, 127.2, 119.8, 113.4, 110.6, 108.0, 55.8, 55.3, 52.7, 52.2, 47.5, 43.2, 39.7, 21.6, 20.8.

HRMS (ESI) Calculated for C₂₅H₂₉NO₇S ([M]+Na⁺) = 510.1557, Found 510.1554.

IR (neat): 2953, 1735, 1611, 1505, 1434, 1351, 1264, 1161, 1090, 1038, 897, 812, 732, 703, 655, 581, 544 cm⁻¹.

	Retention Time	Area	% Area
1	12.080	3704833	94.92
2	13.122	198431	5.08

Dimethyl 2-[6-chloro-3-(prop-1-en-2-yl)-1-tosyl-1,2,3,4-tetrahydroquinolin-4-yl]malonate (2u):

6:1 dr, the major diastereomer was isolated as colorless oil in 76% yield, ee = 94%, $[\alpha]^{22}_{D} = -85.6$ (c = 0.40, in CH₂Cl₂).

HPLC: Chiralcel IA, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 6.31 min, t_{r2} = 8.92 min.

¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.8 Hz, 1H), 7.66 – 7.61 (m, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.17 (dd, J = 8.8, 2.4 Hz, 1H), 7.07 (d, J = 2.4 Hz, 1H), 4.77 (s, 1H), 4.65 (s, 1H), 3.84 (dd, J = 13.2, 6.0 Hz, 1H), 3.73 (s, 3H), 3.69 (dd, J = 13.2, 5.2 Hz, 1H), 3.52 (dd, J = 9.2, 4.8 Hz, 1H), 3.47 (s, 3H), 2.78 (d, J = 9.2 Hz, 1H), 2.59 (q, J = 5.2 Hz, 1H), 2.41 (s, 3H), 1.65 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.0, 167.5, 144.2, 142.9, 135.3, 135.3, 129.9, 129.7, 129.6, 129.5, 128.1, 127.2, 124.4, 113.7, 55.3, 52.8, 52.3, 47.3, 43.0, 40.0, 21.6, 20.8.

HRMS (ESI) Calculated for $C_{24}H_{26}^{34.9689}$ CINO₆S ([M]+Na⁺) = 514.1062, Found 514.1058. **HRMS** (ESI) Calculated for $C_{24}H_{26}^{36.9659}$ CINO₆S ([M]+Na⁺) = 516.1032, Found 516.1033.

IR (neat): 2953, 1735, 1648, 1598, 1485, 1434, 1352, 1164, 1089, 1025, 970, 900, 814, 664, 546 cm⁻¹.

	Retention Time	Area	% Area
1	6.410	6092353	49.88
2	9.203	6120943	50.12

	Retention Time	Area	% Area
1	6.306	6461187	96.97
2	8.918	201783	3.03

Dimethyl 2-[5-methyl-3-(prop-1-en-2-yl)-1-tosyl-1,2,3,4-tetrahydroquinolin-4-yl]malonate (2v):

1:1 dr, the major diastereomer was isolated as colorless oil in 44% yield, ee = 85%, $[\alpha]^{21}_{D}$ = -94.9 (c = 0.37, in CH₂Cl₂).

HPLC: Chiralcel ADH, hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 220 nm, t_{r1} = 9.07 min, t_{r2} = 17.39 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.05 (t, *J* = 8.0 Hz, 1H), 6.86 (d, *J* = 7.6 Hz, 1H), 4.94 (s, 1H), 4.76 (s, 1H), 4.20 (dd, *J* = 8.0, 2.8 Hz, 1H), 4.04 – 3.89 (m, 2H), 3.67 (s, 3H), 3.41 (d, *J* = 8.0 Hz, 1H), 3.07 (s, 3H), 2.41 (s, 3H), 2.37 – 2.30 (m, 4H), 1.79 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.8, 168.7, 143.8, 142.4, 137.0, 136.9, 136.6, 129.7, 128.7, 127.2, 125.7, 119.2, 111.7, 52.5, 51.9, 51.2, 44.9, 43.2, 35.0, 23.2, 21.6, 20.0.

HRMS (ESI) Calculated for C₂₅H₂₉NO₆S ([M]+Na⁺) = 494.1608, Found 494.1606.

IR (neat): 2951, 1734, 1646, 1595, 1469, 1434, 1350, 1284, 1246, 1162, 1093, 1035, 813, 655, 575 cm⁻¹.

	Retention Time	Area	% Area
1	9.069	627026	7.58
2	17.394	7641357	92.42

The minor diastereomer was isolated as colorless oil in 43% yield, ee = 78%, $[\alpha]^{22}_{D} = -46.2$ (c = 0.19, in CH₂Cl₂). **HPLC**: Chiralcel ADH, hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{r1} = 8.27$ min, $t_2 = 11.96$ min. ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 – 7.77 (m, 2H), 7.54 (d, J = 8.4 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.07 (t, J = 8.0 Hz, 1H), 6.87 (d, J = 7.2 Hz, 1H), 4.64 (s, 1H), 4.48 (s, 1H), 4.00 (dd, J = 12.4, 8.0 Hz, 1H), 3.89 (dd, J = 11.2, 2.0 Hz, 1H), 3.76 (s, 3H), 3.50 (dd, J = 12.4, 4.0 Hz, 1H), 3.35 (d, J = 10.8 Hz, 1H), 3.30 (s, 3H), 2.96 – 2.90 (m, 1H), 2.41 (s, 3H), 2.23 (s, 3H), 1.62 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.6, 168.4, 144.5, 143.7, 137.8, 137.0, 136.6, 129.8, 127.7, 127.4, 127.3, 126.5, 120.1, 112.5, 54.2, 52.7, 52.1, 47.2, 45.1, 37.1, 21.6, 21.1, 19.3.

HRMS (ESI) Calculated for $C_{25}H_{29}NO_6S$ ([M]+Na⁺) = 494.1608, Found 494.1598.

	Retention Time	Area	% Area
1	8.266	368168	10.94
2	11.957	2998212	89.06

Dimethyl 2-[3-(prop-1-en-2-yl)-1-tosylpiperidin-4-yl]malonate (2w):

6:1 dr, the major diastereomer was isolated as white solid in 80% yield, m.p. = 76 – 80 °C, ee = 81%, [α]²³_D = -62.0 (*c* = 0.52, in CH₂Cl₂). **HPLC**: Chiralcel IA, hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 5.55 min, t_{r2} = 6.86 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 4.94 (s, 1H), 4.78 (s, 1H), 3.87 – 3.80 (m, 1H), 3.78 – 3.70 (m, 4H), 3.68 (s, 3H), 3.57 (d, J = 3.2 Hz, 1H), 2.44 (s, 3H), 2.36 (td, J = 11.2, 4.0 Hz, 1H), 2.26 (td, J = 12.0, 2.4 Hz, 1H), 2.09 (t, J = 11.2 Hz, 1H), 2.04 – 1.89 (m, 2H), 1.73 – 1.62 (m, 4H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.3, 168.3, 143.6, 143.2, 133.0, 129.7, 127.7, 114.6, 52.5, 52.2, 51.9, 51.0, 46.5, 46.3, 38.3, 26.8, 21.5, 20.7.

HRMS (ESI) Calculated for C₂₀H₂₇NO₆S ([M]+Na⁺) = 432.1451, Found 432.1451.

IR (neat): 2919, 1759, 1734, 1435, 1379, 1336, 1264, 1185, 905, 850, 815, 755, 657, 547 cm⁻¹.

	Retention Time	Area	% Area
1	5.554	6450180	90.48
2	6.857	678572	9.52

Dimethyl 2-[3-(prop-1-en-2-yl)thiochroman-4-yl]malonate (2x):

4:1 dr, the major diastereomer was isolated as white solid in 71% yield, m.p. = 36 - 38 °C, ee = 80%, $[\alpha]^{23}_{D} = -123.5$ (*c* = 0.43, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 4.90 min, t_{r2} = 6.74 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.15 – 7.11 (m, 1H), 7.11 – 7.06 (m, 1H), 7.06 – 7.03 (m, 1H), 6.99 – 6.94 (m, 1H), 4.85 (s, 1H), 4.72 (q, J = 1.2 Hz, 1H), 3.99 (d, J = 11.2 Hz, 1H), 3.82 – 3.77 (m, 4H), 3.45 (s, 3H), 3.24 (dd, J = 12.8, 6.4 Hz, 1H), 3.04 (ddd, J = 12.9, 3.5, 1.0 Hz, 1H), 2.88 – 2.83 (m, 1H), 1.71 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.5, 168.2, 144.2, 133.6, 131.7, 131.0, 127.6, 127.1, 124.4, 112.2, 54.6, 52.8, 52.3, 42.6, 41.0, 27.3, 21.4.

HRMS (ESI) Calculated for $C_{17}H_{20}O_4S$ ([M]+Na⁺) = 343.0975, Found 343.0970.

IR (neat): 2953, 1745, 1724, 1650, 1433, 1290, 1256, 1182, 1142, 1070, 935, 907, 754, 730 cm⁻¹.

	Retention Time	Area	% Area
1	4.846	1148918	33.69
2	5.090	543183	15.93
3	5.823	545848	16.01
4	6.473	1171980	34.37

	Retention Time	Area	% Area
1	4.895	1510584	9.90
2	6.735	13746207	90.10

Methyl 2-[3-(prop-1-en-2-yl)-1-tosyl-1,2,3,4-tetrahydroquinolin-4-yl]acetate (3s):

The product was isolated as colorless oil in 94% yield, ee = 98%, $[\alpha]^{22}_{D}$ = -65.3 (*c* = 0.98, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 14.33 min, t_{r2} = 16.18 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.26 – 7.17 (m, 3H), 7.14 – 7.09 (m, 2H), 4.83 (t, *J* = 1.2 Hz, 1H), 4.65 (s, 1H), 4.02 (dd, *J* = 13.6, 4.4 Hz, 1H), 3.59 (s, 3H), 3.39 (dd, *J* = 13.6, 10.4 Hz, 1H), 3.20 – 3.13 (m, 1H), 2.40 (s, 3H), 2.21 (dd, *J* = 15.6, 6.4 Hz, 1H), 2.13 – 2.01 (m, 2H), 1.65 (s, 3H).

 $^{13}\textbf{C} \{ ^{1}\textbf{H} \} \textbf{NMR} (101 \text{ MHz}, \textbf{CDCl}_3) \\ \delta 172.6, 144.0, 143.3, 136.7, 136.5, 132.8, 129.7, 128.1, 127.2, 126.9, 125.5, 125.0, 114.0, 51.6, 49.4, 45.7, 39.8, 36.0, 19.6. \\$

HRMS (ESI) Calculated for $C_{22}H_{25}NO_4S$ ([M]+Na⁺) = 422.1397, Found 422.1392.

IR (neat): 2950, 2924, 1733, 1489, 1436, 1349, 1159, 1068, 890, 814, 761, 713, 651 cm⁻¹.

	Retention Time	Area	% Area
1	14.332	320070	1.12
2	16.177	28311228	98.88

2-[3-(Prop-1-en-2-yl)-1-tosyl-1,2,3,4-tetrahydroquinolin-4-yl]ethan-1-ol (4s):

The product was isolated as colorless oil in 90% yield, ee = 98%, $[\alpha]^{23}_{D} = -57.8$ (*c* = 1.20, in CH₂Cl₂).

HPLC: Chiralcel IA, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 15.60 min, t_{r2} = 23.56 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 1H), 7.55 (d, *J* = 8.4 Hz, 2H), 7.26 – 7.15 (m, 4H), 7.11 (t, *J* = 7.2 Hz, 1H), 4.85 (s, 1H), 4.69 (s, 1H), 4.06 (dd, *J* = 13.6, 4.4 Hz, 1H), 3.34 (dd, *J* = 13.6, 10.0 Hz, 1H), 3.26 – 3.11 (m, 2H), 2.87 (q, *J* = 6.4 Hz, 1H), 2.38 (s, 3H), 2.23 – 2.13 (m, 1H), 1.68 (s, 3H), 1.58 – 1.38 (m, 2H), 1.24 (s, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.5, 143.9, 136.8, 136.8, 133.2, 129.6, 128.8, 127.3, 126.6, 125.3, 124.9, 113.2, 59.6, 49.7, 44.6, 37.2, 36.5, 21.5, 20.5.

HRMS (ESI) Calculated for $C_{21}H_{25}NO_3S$ ([M]+Na⁺) = 394.1447, Found 394.1429.

IR (neat): 2936, 1645, 1597,1487, 1448, 1344, 1159, 1089, 1071, 1043, 966, 896, 813, 759, 734, 712, 659, 572 cm⁻¹.

	Retention Time	Area	% Area
1	15.595	12359104	99.10
2	23.556	112520	0.90

4-(Iodomethyl)-4-methyl-6-tosyl-1,4,4a,5,6,10b-hexahydro-2H-pyrano[3,4-c]quinolone (5s):

The product was isolated as colorless oil in 75% yield, ee = 98%, [α]²²_D = +17.3 (*c* = 0.59, in CH₂Cl₂).

HPLC: Chiralcel IB, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 15.16 min, t_{r2} = 18.30 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.26 – 7.20 (m, 3H), 7.19 – 7.10 (m, 2H), 4.12 (dd, *J* = 13.2, 4.8 Hz, 1H), 3.80 (dd, *J* = 12.4, 4.4 Hz, 1H), 3.55 – 3.41 (m, 2H), 3.24 (dd, *J* = 13.2, 11.6 Hz, 1H), 3.10 (d, *J* = 11.2 Hz, 1H), 2.43 – 2.33 (m, 4H), 2.13 – 2.05 (m, 1H), 1.67 – 1.59 (m, 1H), 1.39 – 1.25 (m, 4H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.1, 136.2, 136.0, 132.8, 129.7, 127.2, 125.4, 124.8, 72.2, 61.0, 47.2, 43.9, 34.0, 29.6, 27.5, 21.6, 10.3.

HRMS (ESI) Calculated for $C_{21}H_{24}INO_3S$ ([M]+Na⁺) = 520.0414, Found 520.0407.

IR (neat): 2935, 1598, 1486, 1449, 1347, 1162, 1125, 1089, 962, 890, 873, 814, 759, 732, 713, 698, 662, 585, 564, 539 cm⁻¹.

Methyl 2-[3-(prop-1-en-2-yl)chroman-4-yl]acetate (3b):

The product was isolated as colorless oil in 96% yield, ee = 95%, $[\alpha]^{23}_{D} = -63.0$ (*c* = 0.38, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 220 nm, t_{r1} = 5.34 min, t_{r2} = 5.73 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.04 – 6.98 (m, 2H), 6.78 (td, *J* = 7.6, 0.8 Hz, 1H), 6.71 (d, *J* = 8.4 Hz, 1H), 4.85 – 4.83 (m, 1H), 4.76 (s, 1H), 4.08 (dd, *J* = 11.2, 3.2 Hz, 1H), 3.97 (dd, *J* = 11.2, 7.2 Hz, 1H), 3.60 (s, 3H), 3.36 (q, *J* = 6.8 Hz, 1H), 2.60 (d, *J* = 6.0 Hz, 2H), 2.39 (td, *J* = 7.2, 3.2 Hz, 1H), 1.71 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.9, 154.2, 143.4, 128.5, 127.7, 124.5, 120.8, 116.8, 113.6, 66.9, 51.7, 44.5, 40.3, 34.5, 21.3.

HRMS (ESI) Calculated for $C_{15}H_{18}O_3$ ([M]+Na⁺) = 269.1149, Found 269.1146.

IR (neat): 2950, 1733, 1645, 1607, 1581, 1489, 1435, 1359, 1311, 1225, 1160, 1119, 1052, 1014, 898, 752 cm⁻¹.

	Retention Time	Area	% Area
1	5.343	237471	2.21
2	5.731	10515595	97.79

2-[3-(Prop-1-en-2-yl)chroman-4-yl]ethan-1-ol (4b):

The product was isolated as colorless oil in 93% yield, ee = 95%, $[\alpha]^{23}_{D} = -44.0$ (*c* = 0.45, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 210 nm, t_{r1} = 4.61 min, t_{r2} = 4.93 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.19 (d, J = 7.6 Hz, 1H), 7.12 – 7.06 (m, 1H), 6.88 (td, J = 7.6, 1.2 Hz, 1H), 6.79 (dd, J = 8.0, 1.2 Hz, 1H), 4.91 – 4.88 (m, 1H), 4.80 (s, 1H), 4.17 (dd, J = 11.2, 3.6 Hz, 1H), 4.10 – 4.03 (m, 1H), 3.78 – 3.66 (m, 2H), 3.07 (q, J = 6.0 Hz, 1H), 2.46 – 2.40 (m, 1H), 2.07 – 1.99 (m, 1H), 1.99 – 1.90 (m, 1H), 1.80 (s, 3H), 1.72 (s, 1H).

 $^{13}\textbf{C} \end{tabular} \textbf{MMR} (101\ \text{MHz}, \textbf{CDCI}_3) \ \delta \ 154.3, \ 144.3, \ 129.2, \ 127.3, \ 125.1, \ 120.6, \ 116.7, \ 112.8, \ 66.6, \ 60.1, \ 43.9, \ 38.7, \ 34.5, \ 21.8.$

HRMS (ESI) Calculated for $C_{14}H_{18}O_2$ ([M]+Na⁺) = 241.1199, Found 241.1202.

2 4.931 4837704 97.42	
-----------------------	--

4-(lodomethyl)-4-methyl-1,4a,5,10b-tetrahydro-2H,4H-pyrano[3,4-c]chromene (5b):

79:21 dr, the product was isolated as colorless oil in 75% yield, ee = 97%, $[\alpha]^{22}_{D}$ = +127.8 (*c* = 0.98, in CH₂Cl₂).

HPLC: Chiralcel IC, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 220 nm, t_{r1} = 4.86 min, t_{r2} = 5.15 min, t_{r3} = 6.62 min, t_{r4} = 9.20 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.17 – 7.08 (m, 2H), 6.94 – 6.86 (m, 1H), 6.83 – 6.76 (m, 1H), 4.30 (dd, *J* = 10.4, 3.2 Hz, 1H), 3.96 – 3.89 (m, 1H), 3.80 – 3.72 (m, 2H), 3.62 (td, *J* = 12.4, 2.4 Hz, 1H), 3.00 (d, *J* = 10.8 Hz, 1H), 2.92 (td, *J* = 12.0, 4.0 Hz, 1H), 2.30 – 2.20 (m, 1H), 2.14 (td, *J* = 12.0, 3.2 Hz, 1H), 1.53 (qd, *J* = 12.8, 4.8 Hz, 1H), 1.42 – 1.38 (m, 3H).

 $^{13}\textbf{C}\{^{1}\textbf{H}\}\textbf{NMR} (101 \text{ MHz}, \textbf{CDCl}_{3}) \\ \delta 153.5, 127.9, 126.0, 124.5, 120.6, 116.6, 71.7, 66.8, 61.3, 43.8, 32.9, 29.8, 27.8, 11.1.$

HRMS (ESI) Calculated for $C_{14}H_{17}IO_2$ ([M]+Na⁺) = 367.0165, Found 367.0173.

IR (neat): 2937, 2860, 1606, 1580, 1488, 1450, 1377, 1314, 1226, 1148, 1090, 1073, 1045, 988, 838, 716 cm⁻¹.

	Retention Time	Area	% Area
1	4.860	1093835	4.89
2	5.148	3637123	16.26
3	6.621	17241922	77.07
4	9.200	398233	1.78

References

- 1 Y. H. Wen, X. Huang, J. L. Huang, Y. Xiong, B. Qin and X. M. Feng, Synlett, 2005, 2445.
- 2 R. J. Comito, F. G. Finelli and D. W. C. MacMillan, J. Am. Chem. Soc., 2013, 135, 9358.
- 3 M. Li, J. L. Petersen and J. M. Hoover, *Org. Lett.*, 2017, **19**, 638.
- 4 S. M. Walker, J. T. Williams, A. G. Russell, B. M. Kariuki and J. S. Snaith, Org. Biomol. Chem., 2007, 5, 2925.
- 5 X. H. Liu, H. F. Zheng, Y. Xia, L. L. Lin and X. M. Feng, Acc. Chem. Res., 2017, 50, 2621.

Copies of NMR Spectra for Substrates and Products

Diethyl 2-{2-[(3-methylbut-2-en-1-yl)oxy]benzylidene}malonate (1a):

Dimethyl 2-{2-[(3-methylbut-2-en-1-yl)oxy]benzylidene}malonate (1b):

36
Dimethyl 2-[2-(2-cyclopentylideneethoxy)benzylidene]malonate (1d):

Dimethyl 2-[2-(2-cyclohexylideneethoxy)benzylidene]malonate (1e):

Dimethyl 2-[2-(2-cycloheptylideneethoxy)benzylidene]malonate (1f):

Dimethyl (E)-2-{2-[(3,7-dimethylocta-2,6-dien-1-yl)oxy]benzylidene}malonate (1h):

Dimethyl 2-{3-fluoro-2-[(3-methylbut-2-en-1-yl)oxy]benzylidene}malonate (1i):

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3.0

3.5

3.0

2.1₌

4.5 4.0 f1 (ppm) 3.0 3.0

1.5 1.0 0.5 0.0 -0.5

3.0-

2.5 2.0

Ţ

5.5

9.5 9.0 8.5 8.0

1.0-

5.0 f1 (ppm)

7.5

2.1⊒

1.0-

7.0 6.5 6.0

2.1⊥

4.5

<u>†</u>

5.5

5.0

Dimethyl 2-{2-[(3-methylbut-2-en-1-yl)thio]benzylidene}malonate (1x):

Dimethyl 2-[3-(prop-1-en-2-yl)chroman-4-yl]malonate (2b):

Dimethyl 2-[3-(cyclopent-1-en-1-yl)chroman-4-yl]malonate (2d):

Dimethyl 2-[3-(cyclohex-1-en-1-yl)chroman-4-yl]malonate (2e):

Dimethyl 2-[3-(1-phenylvinyl)chroman-4-yl]malonate (2g):

Dimethyl 2-[3-(6-methylhepta-1,5-dien-2-yl)chroman-4-yl]malonate (2h):

Dimethyl 2-[8-fluoro-3-(prop-1-en-2-yl)chroman-4-yl]malonate (2i):

3.2H

6.5

6.0

5.5

7.0

8.0

7.5

<u>ب</u> م

5.0

2.0₌

4.5

4.0 3.5 f1 (ppm)

1.0H

2.5

3.0

3.0₌

1.5

1.0

0.5

0.0

-0.5 -1

2.0

4.304.284.264.244.224.204.184.164.144.12 f1 (ppm)

1.0[™]

5.0

2.1

4.5

3.0⁴ 3.0⁴

4.0 3.5 f1 (ppm) 1.01

2.5

3.0

3.0<u>F</u>

1.5

1.0

0.5

0.0

-0.5

2.0

1.0H 2.0H

7.0

6.5

6.0

5.5

8.0

7.5

Dimethyl 2-[6-chloro-3-(prop-1-en-2-yl)chroman-4-yl]malonate (2m) (major):

Dimethyl 2-[6-chloro-3-(prop-1-en-2-yl)chroman-4-yl]malonate (2m) (minor):

Dimethyl 2-[6-bromo-3-(prop-1-en-2-yl)chroman-4-yl]malonate (2n) (minor):

Dimethyl 2-[5-fluoro-3-(prop-1-en-2-yl)chroman-4-yl]malonate (2q) (minor):

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) Dimethyl 2-[5-fluoro-3-(prop-1-en-2-yl)chroman-4-yl]malonate (2q) (major):

Dimethyl 2-{2-(prop-1-en-2-yl)-2,3-dihydro-1H-benzo[f]chromen-1-y}malonate (2r):

Dimethyl 2-[3-(prop-1-en-2-yl)-1-tosyl-1,2,3,4-tetrahydroquinolin-4-yl]malonate (2s):

Dimethyl 2-[7-methoxy-3-(prop-1-en-2-yl)-1-tosyl-1,2,3,4-tetrahydroquinolin-4-yl]malonate (2t):

Dimethyl 2-[5-methyl-3-(prop-1-en-2-yl)-1-tosyl-1,2,3,4-tetrahydroquinolin-4-yl]malonate (2v) (minor):

77.54 77.55 77

$\begin{array}{c} 7,1,1\\ 7,$

Methyl 2-[3-(prop-1-en-2-yl)-1-tosyl-1,2,3,4-tetrahydroquinolin-4-yl]acetate (3s):

2-[3-(Prop-1-en-2-yl)-1-tosyl-1,2,3,4-tetrahydroquinolin-4-yl]ethan-1-ol (4s):

4-(Iodomethyl)-4-methyl-6-tosyl-1,4,4a,5,6,10b-hexahydro-2H-pyrano[3,4-c]quinolone (5s):

NOESY spectra of 5s:

Methyl 2-[3-(prop-1-en-2-yl)chroman-4-yl]acetate (3b):

2-[3-(Prop-1-en-2-yl)chroman-4-yl]ethan-1-ol (4b):

4-(Iodomethyl)-4-methyl-1,4a,5,10b-tetrahydro-2H,4H-pyrano[3,4-c]chromene (5b):

COSY spectra of 5b:

NOESY spectra of 5b:

