## **Electronic Supplementary Information**

for

# Efficient photocatalytic proton-coupled electron-transfer reduction of O<sub>2</sub> by a saddle-distorted porphyrin as a photocatalyst

Emi Aoki,<sup>a</sup> Wataru Suzuki,<sup>a</sup> Hiroaki Kotani,<sup>a</sup> Tomoya Ishizuka,<sup>a</sup> Hayato Sakai,<sup>b</sup>

Taku Hasobe,<sup>b</sup> Takahiko Kojima<sup>\*a</sup>

<sup>a</sup> Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba and CREST (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan

<sup>b</sup> Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan.

### Contents

| 1. | Experimental section (Synthesis, Measurements) | Page S2- |
|----|------------------------------------------------|----------|
| 2. | Figure S1-S8                                   | Page S4- |
| 3. | References                                     | Page S12 |

#### **Experimental Section**

**General.** Spectroscopic grade acetonitrile (MeCN) were used as a solvent without further purification. Chemical reagents were purchased from commercial sources and used without further purification. AcrH<sub>2</sub> and H<sub>4</sub>DPP<sup>2+</sup>(Cl<sup>-</sup>)<sub>2</sub> were synthesized according to the previous reports.<sup>1,2</sup> <sup>1</sup>H NMR spectra were measured on a Bruker AVANCEHD400 spectrometer at 298 K.

<sup>1</sup>H NMR spectrum of  $H_4DPP^{2+}(Cl^{-})_2$  (1.16 mM) used in the study in CDCl<sub>3</sub> with dioxane (1.13 mM)



**Spectroscopic Measurements.** UV-Vis measurements were performed on Shimadzu UV-3600 and Agilent 8454 spectrometers at room temperature. The cell length (*l*) of a quartz cuvette was typically 10 mm unless otherwise noted. The amount of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) formed was determined by titration with iodide ion: A diluted MeCN solution (3.0 mL) of a reaction mixture (100  $\mu$ L) was treated with an excess NaI (0.1 M), and the amount of I<sub>3</sub><sup>-</sup> formed was determined by the absorption spectrum ( $\lambda_{max} = 361$  nm,  $\varepsilon = 2.8 \times 10^4$  M<sup>-1</sup> cm<sup>-1</sup>).<sup>3</sup>

**ns-Laser Flash Photolysis Measurements.** Nanosecond transient absorption measurements were carried out using an Unisoku TSP-2000 flash spectrometer. A Surelite-I Nd-YAG (Continuum, 4–6 ns fwhm) laser with the second harmonic at 532 nm was employed for the

flash photoirradiation. The photodynamics was monitored by continuous exposure to a xenon lamp (150 W) as a probe light and a photomultiplier tube (Hamamatsu R-2949) as a detector. Each sample solution was purged with Ar for at least 20 min prior to the measurement. All experiments were performed at room temperature.

**Electrochemical Measurements.** Cyclic voltammetric and differential pulse voltammetric measurements were carried out in MeCN containing  $0.1 \text{ M TBAPF}_6$  as an electrolyte at room temperature under Ar. All measurements were made using a BAS ALS-710D electrochemical analyzer with a glassy carbon as a working electrode, a platinum wire as a counter electrode, and Ag/AgNO<sub>3</sub> as a reference electrode.

#### Photocatalytic ORR by H<sub>4</sub>DPP<sup>2+</sup>.

Typically, photocatalytic ORR were performed in a quartz cuvette (path length = 10 mm) containing a MeCN solution of  $H_4DPP^{2+}$ , Acr $H_2$ , O<sub>2</sub>, and acids. The solution was irradiated with an ASAHI Spectra Co. Xe lamp MAX-300 (300 W), equipped with a band pass filter centred at 480 (ASAHI Spectra MX0480). Typically, the concentration of O<sub>2</sub> (0.29 mM) in MeCN was controlled by mixing air-saturated MeCN ([O<sub>2</sub>] = 2.6 mM) and Ar-saturated MeCN with the ratio (1:8 v/v).

#### Determination of the Quantum Yield for Photocatalytic ORR.

A standard actinometer (potassium ferrioxalate)<sup>4</sup> was used for the quantum yield determination. Under the conditions of actinometry experiments, the actinometer absorbed essentially all the incident light of  $\lambda = 480$  nm. The fraction of light absorption of H<sub>4</sub>DPP<sup>2+</sup> was estimated by considering the absorbance at 480 nm. The light intensity of monochromatized light of  $\lambda = 480$  nm was determined to be  $5.8 \times 10^{-8}$  einstein s<sup>-1</sup>. Then,  $\Phi$  was defined as  $\{100\% \times [\text{product / mol}]/[\text{absorbed photon / einstein}]\}$  as an internal quantum yield (maximum is 100%).



**Fig S1.** Iodometry titration of  $H_2O_2$  in the resulting solution after 20 min photocatalytic ORR before (a black line) and after addition of 0.1 M NaI (a blue line) and the differential spectrum (a red line). Conditions:  $[H_4DPP^{2+}] = 10 \ \mu\text{M}$ ,  $[AcrH_2] = 5 \ \text{mM}$ ,  $[MCA] = 0.1 \ \text{M}$ , and  $[O_2] = 0.29 \ \text{mM}$  in MeCN at 298 K.



**Fig S2.** Time profiles of [AcrH<sup>+</sup>] and [H<sub>2</sub>O<sub>2</sub>] during photocatalytic ORR. Conditions:  $H_4DPP^{2+}$  (10  $\mu$ M), AcrH<sub>2</sub> (50 mM), and MCA (0.1 M) in O<sub>2</sub>-saturated MeCN at 298 K.



**Fig S3.** Acid concentration dependence ((a) TFA and (b) MCA) of v values during photocatalytic ORR with or without H<sub>4</sub>DPP<sup>2+</sup> in MeCN containing AcrH<sub>2</sub> (5 mM) and O<sub>2</sub> (0.29 mM) at 298 K.



**Fig S4.** (a) The plots of v values vs.  $pK_a$  of acids.<sup>5</sup> Conditions:  $[H_4DPP^{2+}] = 10 \ \mu\text{M}$ ,  $[AcrH_2] = 5 \ \text{mM}$ ,  $[acids] = 10 \ \text{mM}$ , and  $[O_2] = 0.29 \ \text{mM}$  in MeCN at 298 K. (b)  $E_{red}$  values of  $O_2 \ vs. \ pK_a$  value. Conditions:  $[acids] = 10 \ \text{mM}$ , and  $[O_2] = 0.13 \ \text{mM}$  in MeCN at 298 K.



**Fig S5.** A time profile of  $[H_2O_2]$  in photocatalytic ORR. Conditions:  $[H_4DPP^{2+}] = 10 \ \mu\text{M}$ ,  $[\text{Acr}H_2] = 50 \text{ mM}$ , and [MCA] = 0.1 M in  $O_2$ -saturated MeCN at 298 K.



**Fig S6.** (a) Transient absorption spectra of  $H_4DPP^{2+}$  (50 µM) with TFA (0.1 M) in deaerated MeCN at 298 K taken at 1.6 µs (red) and 150 µs (blue) after nano-second laser excitation at 532 nm. (b) The decay time profile at 560 nm.



**Fig S7.** (a) The decay time profiles at 560 nm in the presence of various concentrations of AcrH<sub>2</sub> and TFA (0.1 M) in deaerated MeCN at 298 K. (b) A plot of  $k_{obs} vs.$  [AcrH<sub>2</sub>].



*Fig S8.* (a) The decay time profiles at 520 nm in the presence of various concentrations of  $O_2$ , AcrH<sub>2</sub> (15 mM) and TFA (0.1 M) in MeCN at 298 K. (b) A plot of  $k_{obs} vs$ . [O<sub>2</sub>].

## References

- S. Fukuzumi, Y. Tokuda, T. Kitano, T. Okamoto and J. Otera, J. Am. Chem. Soc., 1993, 115, 8960-8968.
- 2 C. J. Medforth, M. O. Senge, K. M. Smith, L. D. Sparks and J. A. Shelnutt, *J. Am. Chem. Soc.*, 1992, **114**, 9859-9869.
- 3 K. Mase, K. Ohkubo and S. Fukuzumi, J. Am. Chem. Soc., 2013, **135**, 2800-2808.
- 4 C. G. Hatchard and C. A. Parker, Proc. R. Soc. London, Ser. A 1956, 235, 518-536.
- 5 K. Izutsu, in *Acid–Base Dissociation Constants in Dipolar Aprotic Solvents*, Blackwell Scientific Publications, Oxford, 1990.