Electronic Supplementary Information

Metal-free construction of contiguous quaternary stereocentres with polycyclic framework
Wei-Bin Lin, ${ }^{\text {a, }}{ }^{\text {b }}$ Yong Mou, ${ }^{\text {b }}$ Hai-Yan Lu, ${ }^{*, \mathrm{~b}}$ Zhi-Qiang Hu, ${ }^{\text {c }}$ and Chuan-FengChen ${ }^{*, a, b}$
${ }^{\text {a }}$ Beijijng National Laboratory for Molecular Sciences, CAS Key Laboratory ofMolecular Recognition and Function, Institute of Chemistry, Chinese Academy ofSciences, Beijing 100190, China. ${ }^{\text {b }}$ University of Chinese Academy of Sciences,Beijing 100049, China. ${ }^{\text {c }}$ Qingdao University of Science and Technology, Qingdao,266042, China.
E-mail: cchen@iccas.ac.cn; haiyanlu@ucas.ac.cn

Table of Contents

1. Synthesis and characterization of dienes 1a-1 S2
2. Synthesis and characterization of products 2a-1. S8
3. References S12
4. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds S13
5. X-Ray crystallographic data S32

All reactions were carried out under argon using oven-dried glassware. Flash column chromatography was performed on $100-200$ mesh silica gel. ${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ spectra were recorded on Bruker AVIII $300 \mathrm{MHz}, 400 \mathrm{MHz}$ or 500 MHz spectrometers at room temperature. High-resolution mass spectra (HRMS) were measured in the APCI mode. X-ray crystallographic data were collected by Rigaku Saturn 724 with graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation. Commercial reagents were used without further purification. Anhydrous solvents were dried from $4 \AA$ molecular sieves.

1. Synthesis and characterization of dienes 1a-l

1.1 General procedure A^{1} for $\mathbf{1 a - 1 h}, \mathbf{1 j}$

A mixture of the dibromide (4 mmol), boronic acid (10 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}(40 \mathrm{mmol})$ dissolved in toluene (80 mL), $\mathrm{EtOH}(80 \mathrm{~mL})$ and water $(40 \mathrm{~mL})$ under argon atmosphere was added catalytic amount of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (around $10 \% \mathrm{~mol}$). The resulting mixture was stirred for 12 hours at $80^{\circ} \mathrm{C}$ under argon atmosphere, cooled to room temperature, and then added ethyl acetate $(50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The organic layer was washed with water twice more $(2 \times 50 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, and then concentrated in vacuo. The residue was subjected to silica gel column chromatography to afford the pure product 1 .

1.2 Synthesis of 1i

Similar to geneal procrdure A, a mixture of the 8-bromo-7-methoxy-1-tetralone (1.016 $\mathrm{g}, 4 \mathrm{mmol})$, 2-methoxy-phenylboronic acid $(0.76 \mathrm{~g}, 5 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.52 \mathrm{~g}, 40$ mmol) dissolved in toluene (80 mL), $\mathrm{EtOH}(80 \mathrm{~mL})$ and water (40 mL) under argon atmosphere was added catalytic amount of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (280 mg, around $\left.10 \% \mathrm{~mol}\right)$. The resulting mixture was stirred for 12 hours at $80^{\circ} \mathrm{C}$ under argon atmosphere, cooled to room temperature, and then added ethyl acetate $(50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The organic layer was washed with water twice more $(2 \times 50 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, and then concentrated in vacuo. The residue was subjected to silica gel column chromatography to afford the 8-(o-methoxy)-phenyl-7-methoxy-1- tetralone (90\%).

Similar to the synthesis of the dienes reported previously, ${ }^{2}$ to a solution of 8-(o-methoxy)-phenyl-7-methoxy-1-tetralone ($564 \mathrm{mg}, 2 \mathrm{mmol}$) and Zn powder (250 mg , $4 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, trimethylsillylcholoride $(0.5 \mathrm{~mL}, 5.8 \mathrm{mmol})$ and conc. $\mathrm{HCl}(1 \mathrm{~mL}, 11 \mathrm{mmol})$ was added over 10 min with vigorous stirring. After the temperature was warmed to room temperature, the mixture was stirred overnight. A yellow solution was obtained. After the solvents were evaporated under reduced pressure, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and water (50 mL) were added. The separated organic phase was dried by anhydrous MgSO_{4}. After the solvent was removed by rotary evaporation, the crude product was subjected to silica gel column chromatography to get $\mathbf{1 i}$.

1.3 Synthesis of 1 k

The reaction conditions are similar to the synthesis of the reported dienes. ${ }^{2,3}$

To a solution of indanone ($6.48 \mathrm{~g}, 40 \mathrm{mmol}$) and NBS (N -bromosuccinimide, 7.48 g , $42 \mathrm{mmol})$ in $\mathrm{MeCN}(100 \mathrm{~mL}), \mathrm{FeCl}_{3}(648 \mathrm{mg}$, around $10 \% \mathrm{~mol})$ was added. The resulting mixture was stirred for half an hour at room temperature, and then added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and water (100 mL). The organic layer was washed with water twice more $(2 \times 50 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, and then concentrated in vacuo. The residue was subjected to a flash silica gel column chromatography to afford 7-bromo-6-methoxy-1-indanone (99\%).

A mixture of activated aluminum flake ($270 \mathrm{mg}, 10 \mathrm{mmol}$), 7-bromo-6-methoxy-1-indanone ($2.34 \mathrm{~g}, 10 \mathrm{mmol}$), toluene (7 mL), absolute ethanol (4 mL), $\mathrm{HgCl}_{2}(25 \mathrm{mg}$, 0.092 mmol) was heated to reflux for 10 h . After the reaction mixture was cooled to room temperature, aqueous $\mathrm{HCl}(10 \%, 10 \mathrm{~mL})$ and excess sulfur were added and vigorously
stirred for another 12 h . The mixture was filtrated, and the filtrate was extracted with ethyl acetate $(3 \times 150 \mathrm{~mL})$. The combined organic layer was washed with water, dried over MgSO_{4}, and then concentrated under reduced pressure to give a residue. To the residue was added anhydride (2.1 mL) and acetic acid (1.5 mL), and the mixture was heated to reflux for 6 h . The remained anhydride and acetic acid were then removed under reduced pressure to give deep red sticky residue, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed by NaHCO_{3} aqueous solution $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with water, dried over MgSO_{4}, and then concentrated under reduced pressure to give a residue, which was separated by chromatography to give diene 7,7'-dibromo-6,6'-dimethoxy-3H,3'H-1,1'-biindene.

Treatment of diene 7,7'-dibromo-6,6'-dimethoxy-3H,3'H-1,1'-biindene by general procedure A afforded the diene $\mathbf{1 k}$.

1.4 Synthesis of 11

Similar to geneal procrdure A , a mixture of the dibromide (4 mmol), 4-methoxyphenylboronic acid ($0.76 \mathrm{~g}, 5 \mathrm{mmol}$), 4-chloro-phenylboronic acid ($0.78 \mathrm{~g}, 5 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.52 \mathrm{~g}, 40 \mathrm{mmol})$ dissolved in toluene $(80 \mathrm{~mL}), \mathrm{EtOH}(80 \mathrm{~mL})$ and water $(40 \mathrm{~mL})$ under argon atmosphere was added catalytic amount of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(280 \mathrm{mg}$, around 10% $\mathrm{mol})$. The resulting mixture was stirred for 12 hours at $80^{\circ} \mathrm{C}$ under argon atmosphere, cooled to room temperature, and then added ethyl acetate (50 mL) and water (50 mL). The organic layer was washed with water twice more ($2 \times 50 \mathrm{~mL}$), dried over anhydrous
MgSO_{4}, and then concentrated in vacuo. The residue was subjected to silica gel column chromatography to afford the $\mathbf{1 1}(45 \%)$.

1.5 Characterization of new compounds

Compound 1h: Brown solid (62%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.25-6.86(\mathrm{~m}, 4 \mathrm{H})$, $6.74(\mathrm{~s}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.41-6.33(\mathrm{~m}, 2 \mathrm{H}), 6.17-5.82(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H})$, $3.48(\mathrm{~s}, 6 \mathrm{H}), 2.28-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.38(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=157.4,155.1,138.0,134.2,131.3,129.7,128.8,126.7,125.9$, 116.6, 113.2, 109.4, 56.3, 55.32, 55.27, 54.9, 28.3, 22.8 ppm. HRMS (ACPI): m / z $531.2530[\mathrm{M}+\mathrm{H}]^{+}$; found: 531.2532.

Compound 8-(o-methoxy)-phenyl-7-methoxy-1-tetralone: Yellow powder (99\%). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 6 \mathrm{H}), 2.93(\mathrm{t}, J=5.9$ $\mathrm{Hz}, 2 \mathrm{H}), 2.53(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.07-2.09(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta$ $=198.4,156.5,156.1,136.8,132.9,130.0,128.9,128.1,127.8,127.0,120.4,116.2$, 110.7, 56.5, 55.7, 40.2, 30.0, 23.3 ppm. HRMS (ACPI): m/z $283.1329[\mathrm{M}+\mathrm{H}]^{+}$; found: 283.1327.

Compound 1i: Yellow powder (48\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.17(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.89-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.36(\mathrm{~m}, 7 \mathrm{H}), 6.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-5.77(\mathrm{~m}$, $2 \mathrm{H}), 3.64-3.33(\mathrm{~m}, 10 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 2.09-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.43$ (m, 2H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=158.2,155.2,141.6,134.3,134.0,132.7$,
$130.4,129.3,128.6,126.2,111.5,109.2,56.2,55.3,31.0,28.4,22.8 \mathrm{ppm}$. HRMS (ACPI): $m / z 531.2530[\mathrm{M}+\mathrm{H}]^{+}$; found: 531.2520.

Compound 1j: Yellow powder (72\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.20(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.83-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.13(\mathrm{~s}$, $2 \mathrm{H}), 3.56(\mathrm{~s}, 6 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 4 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta=155.6,141.1,136.8,135.6,133.8,132.1,130.1,129.9,127.0,125.6,121.0$, 109.2, 56.3, 28.6, 22.9 ppm . HRMS (ACPI): $\mathrm{m} / \mathrm{z} 483.1447[\mathrm{M}+\mathrm{H}]^{+}$; found: 483.1435.

Compound 7,7'-dibromo-6,6'-dimethoxy-3H,3'H-1,1'-biindene: Yellow powder (49\%). ${ }^{1} \mathrm{H}$
NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~s}$, $2 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 3.43(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=155.0,142.1$, 137.6, 136.2, 122.6, 108.6, 56.8, 37.5, 30.6, 29.9 ppm. HRMS (ACPI): $m / z 446.9595$ $[\mathrm{M}+\mathrm{H}]^{+}$; found: 446.9596 .

Compound 1k: Yellow powder (78\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.13(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97-6.90$ $(\mathrm{m}, 2 \mathrm{H}), 6.75(\mathrm{dt}, J=11.9,7.9 \mathrm{~Hz}, 4 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 3.04(\mathrm{~d}, J=23.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.64(\mathrm{~d}, J=23.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=141.0,136.7$, $135.3,134.9,130.9,130.4,126.09,126.05,126.0,125.4,122.3,107.5,56.4,37.0 \mathrm{ppm}$. HRMS (ACPI): $m / z 443.2006[\mathrm{M}+\mathrm{H}]^{+}$; found: 443.2003.

Compound 11: Yellow powder (45\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=6.99(\mathrm{dd}, J=7.2$,
$7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{dd}, J=17.6,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{dd}, J=8.2$,
$3.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{dd}, J=22.6,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.33(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.13-5.99(\mathrm{~m}, 2 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.20(\mathrm{dd}, J=35.8,13.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{dq}, J=11.5$, $5.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.53-1.36(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=158.3,155.3$, $154.8,141.5,141.2,135.1,134.3,134.13,134.06,133.8,133.06,133.05,132.6,132.1$, 131.0, 130.7, 129.1, 128.8, 127.6, 126.8, 126.4, 126.1, 125.9, 125.8, 111.5, 109.4, 109.2, $100.0,56.2,56.1,55.3,28.2,28.0,22.76,22.75 \mathrm{ppm}$. HRMS (ACPI): m/z 535.2035 $[\mathrm{M}+\mathrm{H}]^{+}$; found: 535.2034.

2. Synthesis and characterization of products 2a-l

2.1 General procedure

In a solutin of diene $(0.5 \mathrm{mmol})$ dissolved in $\mathrm{DCM}(5 \mathrm{~mL}), \mathrm{CF}_{3} \mathrm{SOOH}(0.05 \mathrm{mmol})$ was added. The reaction was stirred for 1 minute at room temperature, and then added water $(5 \mathrm{~mL})$. The organic layer was washed with water twice more $(2 \times 5 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, and then concentrated in vacuo. The residue was subjected to silica gel column chromatography to afford the pure product $\mathbf{2}$.

2.2 Characterization of the new compounds

Compound 2a: Yellow powder (99\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.95(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.76$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 2.91-2.70(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.71$ (m, 2H), 1.63-1.59 (m, 6H) ppm. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=154.8,143.4,137.7$, 131.7, 131.1, 129.1, 128.0, 127.5, 125.6, 125.3, 123.1, 110.9, 55.6, 46.9, 29.8, 28.8, 19.1
ppm. HRMS (ACPI): $m / z 471.2319[\mathrm{M}+\mathrm{H}]^{+}$; found: 471.2311.
Compound 2b: White powder (94\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.83(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=10 \mathrm{~Hz}, 2 \mathrm{H}), 6.25$ $(\mathrm{s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 2.85(\mathrm{dd}, J=15.8,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.81-2.70(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{t}, J=12.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.58(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=154.6,143.6,137.5,135.0$, $131.1,129.0,128.5,128.2,127.9,125.9,123.3,110.8,55.7,46.9,29.8,28.9,21.4,19.0$ ppm. HRMS (ACPI): $m / z 499.26316[\mathrm{M}+\mathrm{H}]^{+}$; found: 499.2623.

Compound 2c: Yellow powder (82%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.06(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.9 \mathrm{~Hz}, 8 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 14 \mathrm{H}), 6.76(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 2.74-2.63(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.56$ (m, 6H) ppm. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=154.4,147.3,145.3,136.6,130.68$, $129.0,128.7,128.5,123.7,122.2,122.0,121.0,110.3,55.3,46.9,29.8,29.7,28.7,19.2$, 14.1 ppm . HRMS (ACPI): $m / z 805.3789[\mathrm{M}+\mathrm{H}]^{+}$; found: 805.3765 .

Compound 2d: Yellow powder (86%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.98(\mathrm{dd}, J=8.8$, $6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{td}, J=8.6,2.9 \mathrm{~Hz}$, $2 \mathrm{H}), 6.18(\mathrm{dd}, J=10.2,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 2.87-2.72(\mathrm{~m}, 4 \mathrm{H}), 1.83-1.73(\mathrm{~m}, 2 \mathrm{H})$, 1.64-1.55 (m, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=161.7,159.7,154.6,146.3$, $146.3,136.4,131.0,123.0,129.9,129.3,127.89,127.86,122.2,114.6,114.4,112.2$, $112.0,111.2,55.6,47.0,29.6,28.6,18.9 \mathrm{ppm} . \operatorname{HRMS}(\mathrm{ACPI}): m / z 507.2130[\mathrm{M}+\mathrm{H}]^{+}$; found: 507.2122.

Compound 2e: Yellow powder (81%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.02(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.66(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 2.91-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.73(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.64-1.58 (m, 4H), 1.52-1.48 (m, 2H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=155.0$, $143.8,136.6,135.2,131.1,130.7,128.3,127.2,127.0,125.3,123.80,123.77,123.1$, $122.39,122.36,121.5,111.3,55.6,47.0,29.5,28.4,18.9 \mathrm{ppm} . \operatorname{HRMS}$ (ACPI): m/z $607.2072[\mathrm{M}+\mathrm{H}]^{+}$; found: 607.2051.

Compound 2f: Yellow powder (85%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.94(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.41(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 2.88-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.70(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.72$ $(\mathrm{m}, 2 \mathrm{H}), 1.60-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=$ $154.8,145.4,136.4,131.3,131.0,130.3,129.7,129.6,127.2,125.7,121.9,111.2,55.6$, 47.0, 29.5, 28.5, 18.9 ppm . HRMS (ACPI): $\mathrm{m} / \mathrm{z} 539.1539[\mathrm{M}+\mathrm{H}]^{+}$; found: 539.1530.

Compound 2g: White powder (99\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.95(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.07(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.57(\mathrm{~s}, 6 \mathrm{H}), 2.86-2.69(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 2 \mathrm{H})$, 1.70-1.54 (m, 6H) ppm. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=157.1,154.4,145.7,136.7$, $131.0,129.3,128.3,125.0,123.0,114.9,110.9,109.1,55.6,54.9,47.0,29.8,28.8,19.0$ ppm. HRMS (ACPI): $m / z 531.2530[\mathrm{M}+\mathrm{H}]^{+}$; found: 531.2521 .

Compound $\mathbf{2 h}$: Yellow powder (65%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.64(\mathrm{~s}, 2 \mathrm{H})$,
$7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.38-6.30(\mathrm{~m}, 4 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 3.67(\mathrm{~s}$, $6 \mathrm{H}), 2.87-2.69(\mathrm{~m}, 4 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}): \delta=156.9,154.9,138.1,136.1,132.5,131.1,129.3,128.2,122.9,114.0,110.9$, $110.8,55.7,55.0,46.5,29.8,29.0,19.0 \mathrm{ppm} . \operatorname{HRMS}$ (ACPI): $\mathrm{m} / \mathrm{z} 531.2530[\mathrm{M}+\mathrm{H}]^{+}$; found: 531.2528.

Compound 2i: Yellow powder (60%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.17(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.35$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 2.91-2.64(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 2 \mathrm{H})$, 1.64-1.35 (m, 6H) ppm. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=156.0,154.6,145.6,138.2$, $130.5,128.8,126.5,121.6,121.5,121.0,110.5,110.3,56.2,55.6,48.8,29.2,28.0,19.3$ ppm. HRMS (ACPI): $m / z 531.2530[\mathrm{M}+\mathrm{H}]^{+}$; found: 531.2532.

Compound 2j: Yellow powder (76\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.07(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.95$ $(\mathrm{s}, 6 \mathrm{H}), 2.85-2.77(\mathrm{~m}, 4 \mathrm{H}), 2.09(\mathrm{td}, J=12.9,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.55$ $(\mathrm{m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=152.2,144.3,135.4,130.7,129.8,128.1$, 127.3, 122.6, 119.8, 109.7, 55.5, 46.4, 29.9, 29.3, 19.7 ppm. HRMS (ACPI): m / z $483.1447[\mathrm{M}+\mathrm{H}]^{+}$; found: 483.1438 .

Compound 2k: Yellow powder (65%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.30(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.80$ $(\mathrm{m}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 6 \mathrm{H}), 2.98-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.76(\mathrm{~m}, 2 \mathrm{H})$,
2.56-2.44(m, 2H), $1.68(\mathrm{dd}, J=12.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ $=155.7,145.3,141.9,136.7,131.7,128.0,126.8,126.2,124.7,123.8,120.4,111.5,55.8$, 54.5, 35.5, 29.3 ppm . HRMS (ACPI): $m / z 443.2006[\mathrm{M}+\mathrm{H}]^{+}$; found: 443.2003.

Compound 21: White powder (82\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=8.7$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, $3.61(\mathrm{~s}, 3 \mathrm{H}), 2.93-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.70(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.48(\mathrm{~m}, 6 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=157.2,154.7,154.4,145.9,145.2,138.3,137.1$, $136.0,131.2,131.1,130.9,130.4,129.5,129.4,128.5,127.1,125.5,124.9,122.8,122.1$, $115.2,111.1,111.0,109.1,55.60,55.59,55.0,47.01,46.98,29.67,29.65,28.7,22.7,19.0$, 18.9 ppm. HRMS (ACPI): m/z $535.2035[\mathrm{M}+\mathrm{H}]^{+}$; found: 535.2031.

3. References

1. W.-B. Lin, M. Li, L. Fang, Y. Shen and C.-F. Chen, Chem. Asian J., 2017, 12, 86.
2. Y. Shen, H.-Y. Lu and C.-F. Chen, Angew. Chem., Int. Ed., 2014, 53, 4648.
3. Y. Y. Li, H.-Y. Lu, M. Li, X.-J. Li and C.-F. Chen, J. Org. Chem., 2014, 79, 2139.

4. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of new compounds

Fig. S1. ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 8-(o-methoxy)-phenyl-7-methoxy-1-tetralone.

Fig. S2. ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 8-(o-methoxy)-phenyl-7-methoxy-1-tetralone.

Fig. S3. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 i}$.

®®\%		¢0\%	-\%	¢ ${ }_{\text {\% }}$
-		大ie	\%íb	-i¢ ${ }^{\text {® }}$
11	1	\checkmark	,	11

$1 i$

Fig. S4. ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 i}$.

1h

Fig. S5. ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 h}$.

1h

Fig. S6. ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 h}$.

Fig. S7. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 j}$.

1 j

Fig. S8. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 j}$.

Fig. S9. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7,7'-dibromo-6,6'-dimethoxy-3H, $3^{\prime} \mathrm{H}-1,1^{\prime}$ '-biindene.

~

7,7'-dibromo-6,6'-dimethoxy$3 \mathrm{H}, 3^{\prime} \mathrm{H}-1,1^{\prime}$-biindene

Fig. S10. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7,7'-dibromo-6,6'-dimethoxy-3H,3'H-1,1'-biindene.

Fig. S11. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 k}$.

Fig. S12. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 k}$.

Fig. S13. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1}$.

$\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
Fig. S14. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1}$.

Fig. S15. ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 a}$.

Fig. S16. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 a}$.

Fig. S17. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 b}$.

Fig. S18. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 b}$.

Fig. S19. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 c}$.

Fig. S20. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 c}$.

Fig. S21. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 d}$.

Fig. S22. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 d}$.

Fig. S23. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 e}$.

Fig. S24. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 e}$

Fig. S25. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 f}$.

Fig. S26. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 f}$.

Fig. S27. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 g}$.

Fig. S28. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 g}$.

Fig. S29. ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 h}$.

Fig. S30. ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 h}$.

Fig. S31. ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 i}$

2i

Fig. S32. ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 i}$.

Fig. S33. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 j}$.

Fig. S34. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 j}$.

Fig. S35. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 k}$.

Fig. S36. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 k}$.

21

Fig. S37. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 1}$.

Fig. S38. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 l}$.

5. X-Ray crystallographic data

Table 1. Crystal data and structure refinement for 2a.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=26.000^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
mx5290_sq
C34 H30 O2
470.58
173.1500 K
0.71073 A

Monoclinic
P 1 21/n 1
$a=8.3791(14) \AA \quad a=90^{\circ}$.
$\mathrm{b}=19.941(3) \AA \quad \mathrm{b}=93.294(2)^{\circ}$.
$\mathrm{c}=16.727(3) \AA \quad \mathrm{g}=90^{\circ}$.

4
$1.120 \mathrm{Mg} / \mathrm{m}^{3}$
$0.068 \mathrm{~mm}^{-1}$
1000
$0.213 \times 0.134 \times 0.072 \mathrm{~mm}^{3}$
1.591 to 27.474°.
$-10<=\mathrm{h}<=10,-24<=\mathrm{k}<=25,-21<=1<=14$
20272
$6369[\mathrm{R}(\mathrm{int})=0.0688]$
99.9 \%

Semi-empirical from equivalents
1.00000 and 0.85941

Full-matrix least-squares on F^{2}
6369 / 0 / 327
1.153
$R 1=0.0848, w R 2=0.1609$
$R 1=0.1027, w R 2=0.1697$
n/a
0.233 and -0.236 e. \AA^{-3}

Fig. S39 X-ray structure and crystal packing of 2b (CCDC 1893900).

Table 2. Crystal data and structure refinement for $\mathbf{2 b}$.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
mx7334
C36 H34 O2
498.63
173.15 K
0.71073 A

Triclinic

P-1

$\begin{array}{ll}\mathrm{a}=9.6540(3) \AA & \mathrm{a}=73.127(3)^{\circ} . \\ \mathrm{b}=9.8517(3) \AA & \mathrm{b}=81.424(2)^{\circ} . \\ \mathrm{c}=14.1628(4) \AA & \mathrm{g}=79.786(2)^{\circ} .\end{array}$
$1261.75(7) \AA^{3}$
2
$1.312 \mathrm{Mg} / \mathrm{m}^{3}$
$0.079 \mathrm{~mm}^{-1}$
532
$0.472 \times 0.194 \times 0.143 \mathrm{~mm}^{3}$
2.155 to 27.484°.
$-12<=\mathrm{h}<=12,-12<=\mathrm{k}<=12,-18<=1<=18$
15089
$5772[\mathrm{R}(\mathrm{int})=0.0339]$
99.9 \%

Semi-empirical from equivalents

Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
1.00000 and 0.94344

Full-matrix least-squares on F^{2}
5772 / 0 / 347
1.048
$\mathrm{R} 1=0.0452, \mathrm{wR} 2=0.1172$
R1 $=0.0526$, wR2 $=0.1241$
n/a
0.322 and $-0.207 \mathrm{e} . \mathrm{A}^{-3}$

Fig. S40 X-ray structure and crystal packing of 2c (CCDC 1893901).

Table 3. Crystal data and structure refinement for 2c.

Identification code	mx 7344	
Empirical formula	C 58 H 48 N 2 O 2	
Formula weight	804.98	
Temperature	173.15 K	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	
Space group	$\mathrm{C} 12 / \mathrm{c} 1$	$\mathrm{a}=90^{\circ}$.
Unit cell dimensions	$\mathrm{a}=24.780(7) \AA$	$\mathrm{b}=115.965(3)^{\circ}$.
	$\mathrm{b}=9.939(2) \AA$	$\mathrm{g}=90^{\circ}$.
	$\mathrm{c}=19.014(5) \AA$	
Volume	$4210.1(19) \AA^{3}$	
Z	4	
Density (calculated)	$1.270 \mathrm{Mg}^{\circ} \mathrm{m}^{3}$	
Absorption coefficient	$0.076 \mathrm{~mm}^{-1}$	
	S 34	

F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

1704
$0.544 \times 0.217 \times 0.217 \mathrm{~mm}^{3}$
1.828 to 27.469°.
$-32<=\mathrm{h}<=32,-12<=\mathrm{k}<=11,-24<=1<=23$
19466
$4801[\mathrm{R}(\mathrm{int})=0.0428]$
99.6 \%

Semi-empirical from equivalents
1.00000 and 0.84321

Full-matrix least-squares on F^{2}
4801 / 0 / 281
1.131
$\mathrm{R} 1=0.0594, \mathrm{wR} 2=0.1328$
$R 1=0.0639, w R 2=0.1358$
n/a
0.745 and -0.243 e. \AA^{-3}

Fig. S41 X-ray structure and crystal packing of 2d (CCDC 1893899).

Table 4. Crystal data and structure refinement for 2d.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
mx7327
C34 H28 F2 O2
506.56
173.15 K
$0.71073 \AA$

Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

Triclinic

P-1

$$
\begin{array}{ll}
\mathrm{a}=9.993(2) \AA & \mathrm{a}=77.48(3)^{\circ} . \\
\mathrm{b}=10.659(2) \AA & \mathrm{b}=84.57(3)^{\circ} . \\
\mathrm{c}=12.618(3) \AA & \mathrm{g}=70.54(3)^{\circ} .
\end{array}
$$

$$
1236.7(5) \AA^{3}
$$

2
$1.360 \mathrm{Mg} / \mathrm{m}^{3}$
$0.093 \mathrm{~mm}^{-1}$
532
$0.52 \times 0.37 \times 0.3 \mathrm{~mm}^{3}$
1.654 to 27.481°.
$-12<=\mathrm{h}<=12,-13<=\mathrm{k}<=13,-16<=1<=16$
16694
$5601[\mathrm{R}(\mathrm{int})=0.0278]$
99.1 \%

None
Full-matrix least-squares on F^{2}
5601 / 0 / 345
1.074
$\mathrm{R} 1=0.0424, \mathrm{wR} 2=0.1108$
$\mathrm{R} 1=0.0440, \mathrm{wR} 2=0.1121$
n/a
0.320 and -0.194 e. \AA^{-3}

Fig. S42 X-ray structure and crystal packing of 2e (CCDC 1893897).

Table 5. Crystal data and structure refinement for $\mathbf{2 e}$.

Identification code	mx7328
Empirical formula	C36 H28 F6 O2
Formula weight	606.58
Temperature	173.15 K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	C 1 2/c 1
Unit cell dimensions	$a=19.2726(9) \AA$ ® $\quad \mathrm{a}=90^{\circ}$.
	$\mathrm{b}=16.7645(9) \AA \quad \mathrm{d}=94.329(3)^{\circ}$.
	$\mathrm{c}=8.6005(3) \AA$ A $\quad \mathrm{g}=90^{\circ}$.
Volume	2770.9(2) \AA^{3}
Z	4
Density (calculated)	$1.454 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.116 \mathrm{~mm}^{-1}$
F(000)	1256
Crystal size	$0.52 \times 0.38 \times 0.13 \mathrm{~mm}^{3}$
Theta range for data collection	1.612 to 25.999°.
Index ranges	$-23<=h<=23,-20<=k<=20,-10<=1<=10$
Reflections collected	8403
Independent reflections	$2733[\mathrm{R}(\mathrm{int})=0.0234]$
Completeness to theta $=25.242^{\circ}$	99.8 \%
Absorption correction	None
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2733 / 72 / 229
Goodness-of-fit on F^{2}	1.055
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0455, \mathrm{wR} 2=0.1107$
R indices (all data)	$\mathrm{R} 1=0.0535, \mathrm{wR} 2=0.1158$
Extinction coefficient	n / a
Largest diff. peak and hole	0.290 and -0.215 e. \AA^{-3}

Fig. S43 X-ray structure and crystal packing of $\mathbf{2 f}$ (CCDC 1893898).

Table 6. Crystal data and structure refinement for $\mathbf{2 f}$.
Identification
Empirical for
Formula weig
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

> mx7348

C34 H28 Cl2 O2
539.46
173.15 K
0.71073 A

Triclinic

P-1

$$
\begin{array}{ll}
\mathrm{a}=9.615(2) \AA & \mathrm{a}=73.061(8)^{\circ} . \\
\mathrm{b}=9.899(2) \AA & \mathrm{b}=81.149(10)^{\circ} . \\
\mathrm{c}=14.184(3) \AA & \mathrm{g}=79.776(9)^{\circ} .
\end{array}
$$

Volume
$1263.3(5) \AA^{3}$
Z
Density (calculated)
2

Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
$1.418 \mathrm{Mg} / \mathrm{m}^{3}$

Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
$0.290 \mathrm{~mm}^{-1}$
564
$0.443 \times 0.18 \times 0.17 \mathrm{~mm}^{3}$
1.510 to 27.489°.
$-12<=\mathrm{h}<=12,-12<=\mathrm{k}<=12,-18<=\mathrm{l}<=18$
16079
$5769[\mathrm{R}(\mathrm{int})=0.0312]$
99.5 \%

Semi-empirical from equivalents
1.00000 and 0.82118

Full-matrix least-squares on F^{2}

Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

5769 / 0 / 345
1.086
$\mathrm{R} 1=0.0518, \mathrm{wR} 2=0.1338$
$R 1=0.0539, w R 2=0.1357$
n/a
0.686 and -0.593 e. \AA^{-3}

Fig. S44 X-ray structure and crystal packing of $\mathbf{2 j}$ (CCDC 1893902).

Table 7. Crystal data and structure refinement for $\mathbf{2 j}$.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z

Density (calculated)
a_sq
C33 H26 O2 S2
518.66
173.15 K
0.71073 Å

Orthorhombic
Pben

$$
\begin{array}{ll}
\mathrm{a}=19.288(4) \AA & \mathrm{a}=90^{\circ} . \\
\mathrm{b}=18.960(4) \AA & \mathrm{b}=90^{\circ} . \\
\mathrm{c}=14.565(3) \AA & \mathrm{g}=90^{\circ} .
\end{array}
$$

$$
5326.3(19) \AA^{3}
$$

8
$1.294 \mathrm{Mg} / \mathrm{m}^{3}$

Absorption coefficient	$0.229 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	2176
Crystal size	$0.469 \times 0.423 \times 0.411 \mathrm{~mm}^{3}$
Theta range for data collection	2.055 to 27.473°.
Index ranges	$-25<=\mathrm{h}<=25,-24<=\mathrm{k}<=24,-18<=\mathrm{l}<=18$
Reflections collected	39721
Independent reflections	$6078[\mathrm{R}(\mathrm{int})=0.0520]$
Completeness to theta $=25.242^{\circ}$	99.6%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.86541
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$6078 / 0 / 309$
Goodness-of-fit on F^{2}	1.138
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0511, \mathrm{wR} 2=0.1134$
R indices (all data)	$\mathrm{R} 1=0.0518, \mathrm{wR} 2=0.1137$
Extinction coefficient	n / a
Largest diff. peak and hole	0.253 and $-0.264 \mathrm{e} . \mathrm{A}^{-3}$

