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1. Experimental section

1.1 Materials preparation

0.1 g of AgNO3 and 0.1 g of CS(NH2)2 were dissolved into 200 mL of deionized water in a flask 

under stirring for 10 min. The solution above was refluxed at 80 °C for 2 h. The gray product was 

washed with deionized water and ethanol for several times, and dried at 60 ℃ for 12 h to 

obtained the Ag2S particles.

Graphene oxide (GO) powder was firstly prepared using a modified Hummers method. 200 mg of 

GO powder was dispersed in 200 mL of deionized water by vigorous ultrasonication for 1 h to 

obtain a homogeneous GO suspension. Subsequently, 0.1 g of AgNO3 and 0.1 g of CS(NH2)2 were 

added into the above suspension under stirring for 10 min. The mixture was refluxed at 80 ℃ for 

2 h. After that, 75 μL of hydrazine hydrate (85 wt.%) was dropped into the solution with vigorous 

stirring at 80 ℃ for another 5 h. The α-Ag2S/rGO composites were obtianed by drying at 60 ℃ 

for 12 h after washing with deionized water and ethanol for several times.

1.2 Materials characterization

X-ray diffraction (XRD) measurement was conducted on a Bruker D8 diffractometer using Cu Ka 

radiation. Field emission scanning electron microscope (SEM) images were collected with a 

Hitachi S-4800 equipment. Transmission electron microscope (TEM), high resolution TEM 

(HRTEM) images, and energy dispersive spectrometry (EDS) elemental mappings were recorded 

using a JEOLJEM-2010F microscope. X-ray photoelectron spectroscopy (XPS) measurements were 

performed by a Perkin-Elmer PHI 550 spectrometer. Raman spectra were conducted on a 

LabRam HR Evolution Raman spectrometer under the excitation length of 532 nm. 

Thermogravimetric (TG) curve was obtained in air atmosphere from 25 to 800 ℃ at a heating 
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rate of 10 ℃ min−1.

1.3 Electrochemical measurements

The electrochemical properties of as-prepared materials were performed by using CR2032 coin-

type cells which were assembled in an Ar-filled glove box. The cathodes were fabricated by 

mixing as-prepared materials (60 wt%), Super P (30 wt%) and PVDF (10 wt%) using NMP as 

solvent to form a homogeneous slurry, and then coated onto a stainless steel foil and dried at 80 

℃ for 12 h. The glass fiber and polished Mg foil were employed as the separator and the anode, 

respectively. The mass loading of active material is 0.3−0.5 mg cm−2. The electrolytes were 0.5 M 

(PhMgCl)2−AlCl3/THF (APC) electrolyte and 0.5 M MgCl2−AlCl3/DME (MACC) electrolyte as 

previously reported. Galvanostatic charge-discharge measurements were conducted on a LAND 

CT2001A battery testing system between 0.4 V and 2.0 V (vs. Mg). Cyclic voltammetry (CV) is 

tested on a Biologic VMP-300 electrochemical workstation at a scan rate of 0.1 mV s−1. 

Electrochemical impedance spectroscopy (EIS) were also performed on a Biologic VMP-300 

electrochemical workstation. For high temperature test at 50 ℃, the coin cells were placed in a 

electro-thermal incubator (303-0A, Shanghai Yetuo Instrumention co., LTD) and stood for 1 h 

before measurements began.

The in-situ XRD measurement was performed using an in-situ cell equipment which was 

assembled in an Ar-filled glove box. The cathode was prepared by mixing the α-Ag2S, Super P, 

and poly(tetrafluoroethylene) (PTFE) with a weight ratio of 6:3:1 using ethanol as solvent. Then, 

the mixture was rolled into slice and cut into dish with a diameter of 2.0 cm. The mass of active 

material is 1.75 mg cm−2. The APC electrolyte, glass fiber and polished Mg foil were employed as 

the electrolyte, separator and anode, respectively. Galvanostatic discharge measurement was 
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conducted on a LAND CT2001A battery testing system at 20 mA g−1. Each in-situ XRD pattern was 

recorded every 10 minutes.

The energy densities are calculated by using the following formula: E=CV, where E represents 

the energy density of the electrode, and C is the discharged specific capacity and V refers to the 

average voltage during the discharging process. The specific capacity is calculated based on the 

weight of the α-Ag2S nanostructures.

2. Figures (Fig. S1 to S13)

Fig. S1 The magnified SEM image of the α-Ag2S nanostructures.
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Fig. S2 The TEM image (a) and the HRTEM image (b) of the α-Ag2S nanostructures.

Fig. S3 The CV curve (a) of Mg||APC||SS cell at 100 mV s−1 in −1.0~2.0 V; The cyling performance 

(b) of Mg||APC||Mg symmetrical cell at 0.1 mA cm−2 in 0.2 mAh cm−2 (inset shows magnified 

curves after several cycles).

Fig. S4 The Nyquist plots of the α-Ag2S cathode.
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Fig. S5 Comparison of the α-Ag2S nanostructures with other cathode of Mg batteries in terms of 

average voltage versus specific capacity.

Fig. S6 The charge and discharge curves of the α-Ag2S nanostructures with a mass loading of 1.5 

mg cm−2 at 10 mA g−1.
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Fig. S7 The cycling performance of the α-Ag2S nanostructures in MACC electrolyte at 50 mA g−1 

for 50 cycles. Inset shows the corresponding discharge-charge profiles.

Fig. S8 The initial charge/discharge curves of the α-Ag2S nanostructures at 20 mA g−1 at different 

temperatures.
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Fig. S9 The TEM image of the α-Ag2S cathode after discharging to 0.4 V.

Fig. S10 The SEM image of the Ag2S/rGO composite. 

Fig. S11 The TG curve of the Ag2S/rGO composite.
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Fig. S12 Raman spectra of the α-Ag2S/rGO and α-Ag2S/GO samples.

Raman spectra of the α-Ag2S/GO and α-Ag2S/rGO samples show that the ratio of the D to G band 

intensity (ID/IG) increases from 1.02 to 1.15, indicating that GO is successfully converted to rGO 

by the low-temperature hydrothermal reduction.

  

Fig. S13 The SEM images of the pristine Ag2S electrode (a) and the Ag2S/rGO electrode (b) after 

long cycles at 1000 mA g−1.
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3. Tables (Tab. S1 and S2)

Tab. S1 Atomic parameters of the α-Ag2S nanostructures.

Atom # OX SITE x y z SOF H ITF(B)

Ag 1 +1 4e 0.758 0.015 0.305 1. 0 1.01

Ag 2 +1 4e 0.285 0.32 0.435 1. 0 1.16

S 1 -2 4e 0.359 0.239 0.134 1. 0 0.93

Tab.S2 Comparison of the electrochemical performance of other cathodes for various reported 

Mg batteries.

Cathode
Voltage

(V vs. Mg)

Capacity 

(mA h g−1)

Gravimetric energy 

density (Wh Kg−1)

Density

(Kg L−1)

Volumetric energy 

density (Wh Kg−1)

Loading

(mg cm−2)
Ref.

CuS 1.2 165 198 4.6 911 5.0-7.0 1

Cu2S 1.0 230 230 6.6 1518 - 2

Cu2Se 1.0 210 210 5.6 1176 - 3

CoS 0.8 125 100 5.9 590 - 4

NiSe2 0.5 90 45 6.8 306 1.77 5

Ni0.75Fe0.25Se2 0.8 190 152 6.8 1034 1.77 5

VS4 0.8 250 200 2.8 560 1.5-2.0 6

TiSe2 0.8 130 104 5.3 551 2.6-3.5 7

Mo6S8 1.1 90 99 5.2 515 - 8

MoS2 0.6 82 49 5.1 251 1.0 9

α-Ag2S 1.3 187 243 7.3 1762 0.3-0.5 This work

α-Ag2S 1.3 160 208 7.3 1518 1.5 This work
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