A simple assay for probing transformations of superparamagnetic iron oxide

nanoparticles in human serum⁺

Electronic supporting material

Size characrerization of SPIONs

Fig. S1 An TEM image of SPIONs, revealing a 5.8±1.8 core size (transmission electron microscope Zeiss Libra 120).

Analytical measurements

Parameter	MS	AES ^a
Plasma gas flow	16.5 L min ⁻¹	12.0 L min ⁻¹
Auxiliary gas flow	0.6 L min ⁻¹	0.5 L min ⁻¹
Nebulizer Ar flow	0.9 L min ⁻¹	0.5 L min ⁻¹
Analyzed sample flow	0.9 mL min ⁻¹	1.8 mL min ⁻¹
RF power	1250 W	1250 W
Dwell time	1 ms	-
Isotopes monitored /	³² S, ⁵⁷ Fe	182.034 nm (S),
spectral lines		259.940 nm (Fe)
Spectral resolution mode	medium	-

 Table S1
 Parameters of ICP-based methods

^a An iCAP-6500 Duo spectrometer (Thermo Scientific, USA).

Fig. S2 Calibration lines for sulfur (A) and iron (B)

Binding to histidine

Fig. S3 Dependence of histidine concentration on the time spent on coating of SPIONs. Initial concentration of histidine, 3.7×10^{-6} M; for other conditions, see the main text.