Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

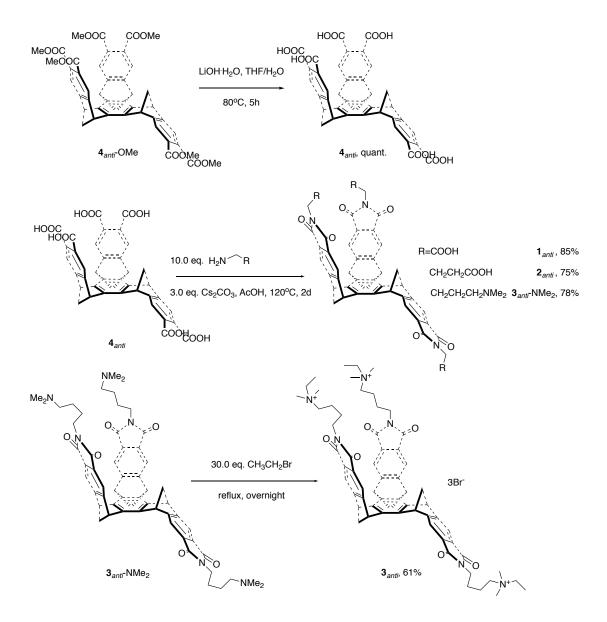
Stackable Molecular Chairs

Han Xie, Lei Zhiquan, Radoslav Z. Pavlović, Judith Gallucci and Jovica D. Badjić*

Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210

E-mail: badjic.1@osu.edu

SUPPORTING INFORMATION


Table of Contents

General Information	S3
Synthetic Procedures	S4-S10
NMR and ESI-MS Experiments	S11-S31
Computational Studies	S32-S36
X-Ray Diffraction Data	S37-S38

General Information

All chemicals were purchased from commercial sources and used as received unless stated otherwise. All solvents were dried prior to use according to standard literature procedures. Chromatographic purifications were performed with silica gel 60 (SiO₂, Sorbent Technologies 40-75 μ m, 200 x 400 mesh). Thin-layer chromatography (TLC) was performed on silica-gel plate w/UV254 (200 μ m). For NMR studies, we used class B glass NMR tubes (Wilmad Lab Glass). NMR experiments were performed with Bruker 400, 600, 700 and 850 MHz spectrometers. Chemical shifts are expressed in parts per million (δ , ppm) while coupling constant values (J) are given in Hertz (Hz). Residual solvent resonances were used as internal standards: for ¹H NMR spectra CDCl₃ = 7.26 ppm, (CD₃)₂SO = 2.50 ppm, CD₃OD = 3.31 ppm and D₂O = 4.79 ppm while for ¹³C NMR spectra CDCl₃ = 77.0 ppm, (CD₃)₂SO = 41.23 ppm and CD₃OD = 49.00 ppm. Deuterated solvents CD₃OD, CDCl₃, D₂O and (CD₃)₂SO were purchased from Cambridge Isotope Laboratories. HRMS data were obtained on a Bruker-ESI TOF instrument. The calibrations of pH were completed with HI 2210 pH meter.

Synthetic Procedures

Scheme S1. Synthetic scheme describing the preparation of $\mathbf{1}$ – $\mathbf{3}_{anti}$ from $\mathbf{4}_{anti}$. (Top) Compound $\mathbf{4}_{anti}$ was obtained by base-promoted hydrolysis from hexaester $\mathbf{4}_{anti}$ –OMe (for preparing this compound, see: Border, S. E.; Pavlovic, R. Z.; Lei, Z. Q.; Badjic, J. D., *J. Am. Chem. Soc.* **2017**, 139, 18496-18499). (Bottom) For obtaining $\mathbf{3}_{anti}$, we alkylated the condensation product $\mathbf{3}_{anti}$ –NMe₂ with ethyl bromide.

Compound 4 *anti*: Hexaester **4** *anti*-OMe (252 mg, 0.328 mmol) and LiOH · H₂O (421 mg, 9.8 mmol) were dissolved in 1:1 THF/H₂O (30 mL) and the solution was brought to 80 °C for 5h; for obtaining **4** *anti*-OMe, see: Border, S. E.; Pavlovic, R. Z.; Lei, Z. Q.; Badjic, J. D., *J. Am. Chem. Soc.* **2017**, *139*, 18496-18499. After cooling down the reaction mixture to room temperature, THF was removed under reduced pressure. To the remaining solvent, 10 mL of deionized water was added to dilute the mixture and 1 mL of 0.5 M HCl was added to cause the formation of white precipitate. After centrifugation, decantation and washing of the precipitate with diluted HCl (pH = 3), the remaining wet solid was lyophilized to give **4** *anti* as a white powder in practically quantitative yield (220 mg). ¹H NMR (850 MHz, CD₃SOCD₃): δ (ppm) = 12.85 (broad, COOH), 7.63 (s, 2H), 7.57 (s, 2H), 7.54 (s, 2H), 4.61 (s, 2H), 4.61 (s, 2H), 4.59 (s, 2H), 2.39-2.24 (AB quartet, 4H, *J* = 7.9 Hz), 2.35-2.06 (AB quartet, 2H, *J* = 7.1 Hz). ¹³C NMR (213 MHz, CD₃SOCD₃): δ (ppm) = 169.29, 169.15, 169.00, 153.56, 153.42, 153.38, 138.66, 138.49, 138.38, 130.92, 130.77, 130.44, 121.80, 121.71, 121.53, 65.25, 65.14, 48.36, 48.28, 48.25. HRMS (ESI): m/z calcd for C₃9H₂₃O₁₂ [M-H]: 683.1195; found: 683.1229

Compounds 1_{anti}/2_{anti}: A solution of 4_{anti} (10 mg, 0.015 mmol), Cs₂CO₃ (49 mg, 0.15 mmol) and amino acids 5 or 6 (12 or 17 mg, 0.16 mmol) in 1 mL of glacial acetic acid was stirred at 120 °C for 2d. After cooling the reaction mixture to room temperature, the solvent was removed under reduced pressure. The solid residue was rinsed with 3 x 5 mL of diluted HCl (pH = 3) to give $\mathbf{1}_{anti}$ or $\mathbf{2}_{anti}$ as an off-white powder after the lyophilization. $\mathbf{1}_{anti}$ was recrystallized from CH₃OH:CH₂Cl₂ = 1:5 after vapor diffusion of Et₂O (10.2 mg, 85% yield). 2_{anti} was recrystallized from CH₂Cl₂ after vapor diffusion of hexanes (10.3 mg, 75% yield). Compound 1_{anti}: ¹H NMR (700 MHz, CD₃SOCD₃): δ (ppm) = 13.15 (broad, COOH), 7.93 (s, 2H), 7.90 (s, 2H), 7.81 (s, 2H), 4.76 (s, 2H), 4.75 (s, 2H), 4.71 (s, 2H), 4.27 (s, 2H), 4.20 (s, 4H), 2.48-2.35 (AB quartet, 4H, J = 8.3 Hz), 2.46-2.15 (AB quartet, 2H, J = 8.4 Hz). ¹³C NMR (175 MHz, CD₃SOCD₃): δ (ppm) = 169.42, 169.34, 167.89, 167.80, 167.74, 158.68, 158.61, 158.50, 138.76, 138.64, 138.42,130.21, 130.15, 117.03, 116.95, 116.90, 65.56, 65.19, 48.80, 48.68, 48.66, 39.31, 39.20. HRMS (ESI): m/z calcd for $C_{45}H_{26}N_3O_{12}$ [M-H]⁻: 800.1516, found: 800.1538. Compound 2_{anti} : ¹H NMR (400 MHz, CD₃SOCD₃): δ (ppm) 12.00 (broad, COOH), 7.85 (s, 2H), 7.82 (s, 2H), 7.74 (s, 2H), 4.74 (s, 2H), 4.73 (s, 2H), 4.69 (s, 2H), 3.58-3.55 (t, 2H, J = 6.6 Hz), 3.51-3.47 (t, 4H, J =6.8 Hz), 2.48-2.29 (AB quartet, 4H, J = 8.3 Hz), 2.45-2.07 (AB quartet, 2H, J = 8.4 Hz), 2.242.19 (m, 6H), 1.78-1.71 (m, 6H). ¹³C NMR (175 MHz, CD₃SOCD₃): δ (ppm) = 174.31, 174.27, 168.58, 168.48, 158.04, 157.94, 138.72, 138.60, 138.42, 130.40, 130.36, 130.29, 116.69, 116.58, 65.57, 65.21, 48.77, 48.61, 48.58, 37.26, 37.18, 31.39, 31.33, 23.86, 23.84. HRMS (ESI): m/z calcd for C₅₁H₃₉N₃NaO₁₂ [M+Na]⁺: 908.2431; found: 908.2457

Compound 3_{anti}-NMe₂: A solution of **4**_{anti} (20 mg, 0.029 mmol), Cs₂CO₃ (98 mg, 0.29 mmol), N, N-dimethylbutane-1,4-diamine **7** (34 mg, 0.29 mmol) in 1 mL glacial acetic acid was stirred at 120 °C for 2d. After cooling the reaction mixture to room temperature, the solvent was removed under reduced pressure. The solid residue was dissolved in 5 mL of water after which 0.1M HCl was added to adjust pH to 3. The aqueous layer was washed with ethyl acetate (3 x 4 mL), followed by changing its pH to 8 with saturated NaHCO₃. After the product was extracted with CH₂Cl₂ (5 x 4 mL), the organic layer was dried over Na₂SO₄ and the solvent was removed under vacuum to give **3**_{anti}-NMe₂ as a yellow oil (21 mg, 78%). ¹H NMR (700 MHz, CDCl₃): δ (ppm) = 7.73 (s, 2H), 7.65 (s, 2H), 7.62 (s, 2H), 4.50 (s, 2H), 4.46 (s, 2H), 4.45 (s, 2H), 3.66-3.64 (t, 2H, J = 7.1 Hz), 3.59-3.57 (t, 4H, J = 7.2 Hz), 2.57-2.41 (AB quartet, 4H, J = 8.5 Hz) 2.54-2.28 (AB quartet, 2H, J = 8.6 Hz), 2.32-2.24 (m, 6H), 2.21 (s, 6H), 2.18 (s, 12H), 1.67-1.57 (m, 6H), 1.50-1.42 (m, 6H). ¹³C NMR (175 MHz, CDCl₃): δ (ppm) = 168.84, 168.78, 168.46, 157.23, 157.01, 156.86, 138.43, 138.20, 138.16, 130.80, 130.75, 130.73, 116.54, 116.39, 116.37, 65.76, 65.08, 59.21, 59.15, 49.31, 49.12, 45.44, 45.41, 37.82, 37.75, 26.67, 26.64, 24.95, 24.88. HRMS (ESI): m/z calcd for C₅₇H₆₂N₆O₆₂⁺ [M+2H]²⁺: 463.2360; found: 463.2355.

Compound 3_{anti}: To 3 mL of dry acetonitrile, **3**_{anti}-NMe₂ (21 mg, 0.023 mmol) and bromoethane (75 mg, 0.68 mmol) were added and the reaction mixture was brought to reflux overnight. Following, the mixture was cooled to room temperature and the solvent removed under reduced pressure to give a solid product. Recrystallization from CH₃OH: ethyl acetate = 3:1 gave 14 mg of **3**_{anti} as yellow needles (61%). ¹H NMR (600 MHz, CD₃OD): δ (ppm) = 7.82 (s, 2H), 7.76 (s, 2H), 7.72 (s, 2H), 4.68 (s, 2H), 4.67 (s, 2H), 4.65 (s, 2H), 3.73-3.71 (t, 2H, J = 6.4 Hz), 3.67-3.65 (t, 4H, J = 6.5 Hz), 3.42-3.37 (m, 12H), 3.07 (s, 6H), 3.05 (s, 12H), 2.52-2.31 (AB quartet, 4H, J = 8.4 Hz) 2.45-2.09 (AB quartet, 2H, J = 8.5 Hz), 1.77-1.70 (m, 12H), 1.39-1.35 (m, 9H). ¹³C NMR (150 MHz, CD₃OD): δ (ppm) = 168.82, 168.76, 168.72, 158.00, 157.98, 157.74, 138.56, 138.32, 138.28, 130.33, 130.29, 130.24, 116.02, 115.96, 115.73, 65.16, 64.61, 62.85, 62.80,

59.66, 49.36, 49.34, 48.86, 48.76, 36.25, 36.22, 25.11, 19.34, 7.10, 7.08. HRMS (ESI): m/z calcd for $C_{63}H_{75}N_6O_6$: 337.1911; $[M]^{3+}$, found: 337.1926.

Compound 8_{anti} : To a solution of 1_{anti} (15 mg, 0.019 mmol) in 2 mL of dry DMF, p-TsOH Gly-(28.2)0.074 PYAOP (7-Azabenzotriazol-1-Gly-OBn mg, mmol), yloxy)tripyrrolidinophosphonium hexafluorophosphate; 38.7 mg, 0.074 mmol) and DIPEA (N,Ndiisopropylethylamine; 29.7 uL, 0.17 mmol) were added in one portion. The reaction mixture was stirred overnight. Following, the solvent was removed by a steady nitrogen flow. The crude product was purified by column chromatography (SiO₂; CH₂Cl₂ : CH₃OH = 20:1), to give **8**_{anti}-OBn as a white powder (24.3 mg, 92%). ¹H NMR (850 MHz, CD₃SOCD₃): δ (ppm) = 8.54-8.53 (t, 1H, J = 5.8 Hz), 8.49-8.48 (t, 2H, J = 5.8 Hz), 8.37-8.36 (t, 1H, J = 5.9 Hz), 8.34-8.32 (t, 2H, J = 5.9 Hz), 7.90 (s, 2H), 7.86 (s, 2H), 7.77 (s, 2H), 7.73-7.30 (m, 15H), 5.13 (s, 2H), 5.12 (s, 4H), 4.76 (s, 2H), 4.74 (s, 2H), 4.70 (s, 2H), 4.23 (s, 2H), 4.16 (s, 4H), 3.92-3.91 (d, 2H, J = 5.9Hz), 3.91-3.90 (d, 4H, J = 5.9 Hz), 3.77-3.76 (d, 2H, J = 5.7 Hz), 3.74-3.73 (d, 4H, J = 5.7 Hz), 2.48-2.33 (AB quartet, 4H, J = 7.5 Hz), 2.46-2.12 (AB quartet, 2H, J = 7.7 Hz). ¹³C NMR (213) MHz, CD₃SOCD₃): δ (ppm) = 170.09, 170.08, 169.60, 169.59, 168.16, 168.05, 168.03, 167.02, 166.98, 158.38, 158.30, 158.23, 138.72, 138.61, 138.41, 136.34, 136.33, 130.51, 130.46, 130.36, 128.89, 128.88, 128.51, 128.37, 116.85, 116.78, 116.73, 66.31, 65.61, 65.15, 48.81, 48.65, 48.63, 46.34, 46.32, 42.18, 41.13. Compound 8_{anti}-OBn (13.6 mg, 0.01 mmol) was dissolved in 1 mL of HBr (33 wt% in CH₃CO₂H) solution. The mixture was brought to 50 °C for 6 h. Following, the solvent was removed under reduced pressure and the solid residue washed by 0.1M HCl solution (2 x 5 mL). The solid was lyophilized to give **8**_{anti} as white powder (6 mg, 55%). ¹H NMR (700 MHz, CD₃SOCD₃): δ (ppm) = 12.57 (broad, COOH) 8.51-8.50 (t, 1H, J = 5.7 Hz), 8.47-8.45 (t, 2H, J = 5.7 Hz). 8.22-8.20 (t, 1H, J = 5.9 Hz), 8.18-8.17 (t, 2H, J = 5.8 Hz), 7.90 (s, 2H), 7.86 (s, 2H), 7.77 (s, 2H), 4.76 (s, 2H), 4.74 (s, 2H), 4.70 (s, 2H), 4.23 (s, 2H), 4.16 (s, 4H), 3.92-3.91 (d, 2H, J = 5.9 Hz), 3.91-3.90 (d, 4H, J = 5.9 Hz), 3.77-3.72 (m, 12H), 2.49-2.33 (AB quartet, 4H, J

= 7.7 Hz), 2.46-2.13 (AB quartet, 2H, J = 7.7 Hz). ¹³C NMR (150 MHz, CD₃SOCD₃): δ (ppm) = 171.55, 169.35, 168.18, 168.07, 168.04, 166.99, 166.97, 158.40, 158.33, 158.25, 138.73, 138.62, 138.42, 130.51, 130.46, 130.37, 116.86, 116.79, 116.75, 65.61, 65.16, 48.81, 48.63, 42.20, 41.02. HRMS (ESI): m/z Calcd for C₅₇H₄₃N₉O₁₈²⁻: 570.6369; [M]²⁻; found: 570.6363.

Figure S1. ¹H NMR spectrum (850 MHz, 298 K) of 4_{anti} in (CD₃)₂SO.

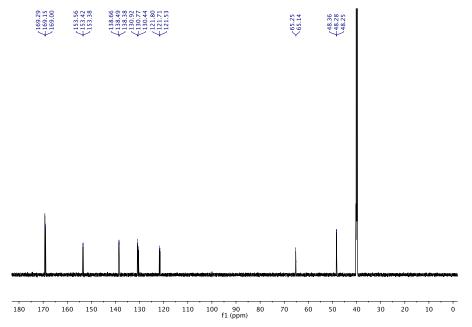


Figure S2. ¹³C NMR spectrum (213 MHz, 298 K) of 4_{anti} in (CD₃)₂SO.

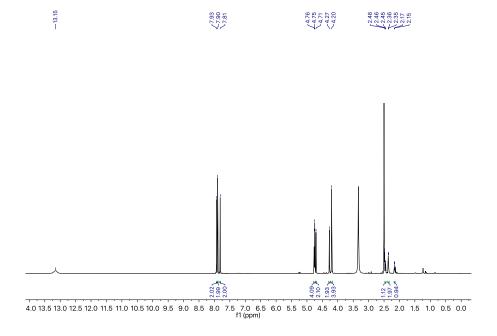


Figure S3. ¹H NMR spectrum (700 MHz, 298 K) of 5 mM 1_{anti} in (CD₃)₂SO.

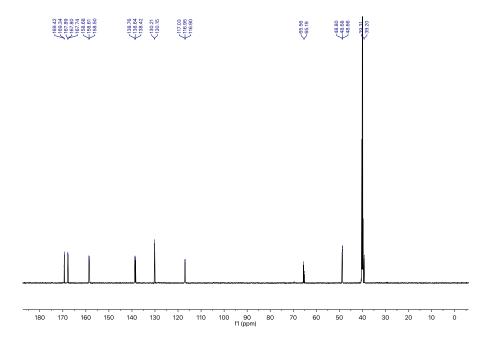


Figure S4. ¹³C NMR spectrum (175 MHz, 298 K) of 5 mM 1_{anti} in (CD₃)₂SO.

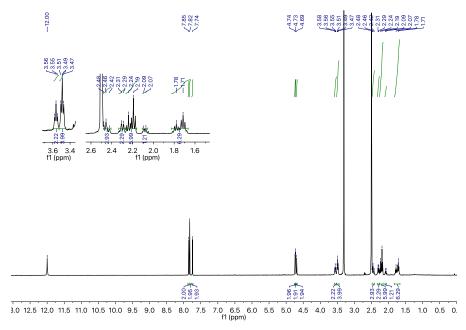
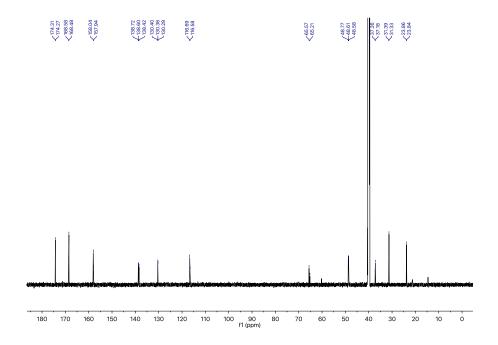



Figure S5. 1 H NMR spectrum (400 MHz, 298 K) of 2 mM $\mathbf{2}_{anti}$ in (CD₃)₂SO.

Figure S6. ¹³C NMR spectrum (213 MHz, 298 K) of 2 mM **2**_{anti} in (CD₃)₂SO.

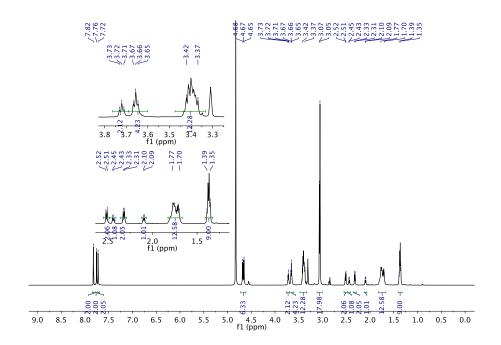


Figure S7. ¹H NMR spectrum (600 MHz, 298 K) of 2 mM 3_{anti} in CD₃OD.

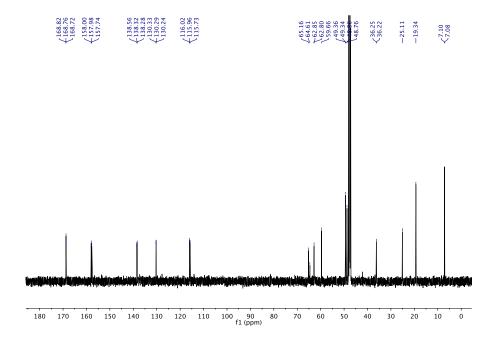


Figure S8. ¹³C NMR spectrum (150 MHz, 298 K) of 2 mM 3_{anti} in CD₃OD.

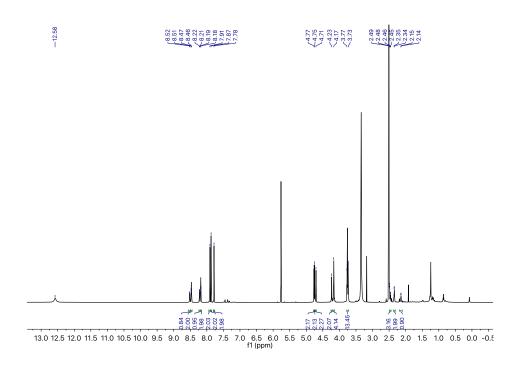


Figure S9. ¹H NMR spectrum (850 MHz, 298 K) of 8_{anti} in (CD₃)₂SO.

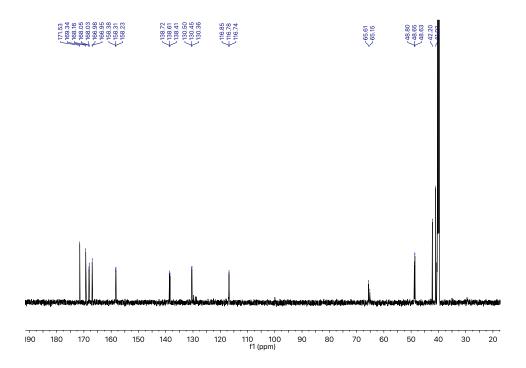
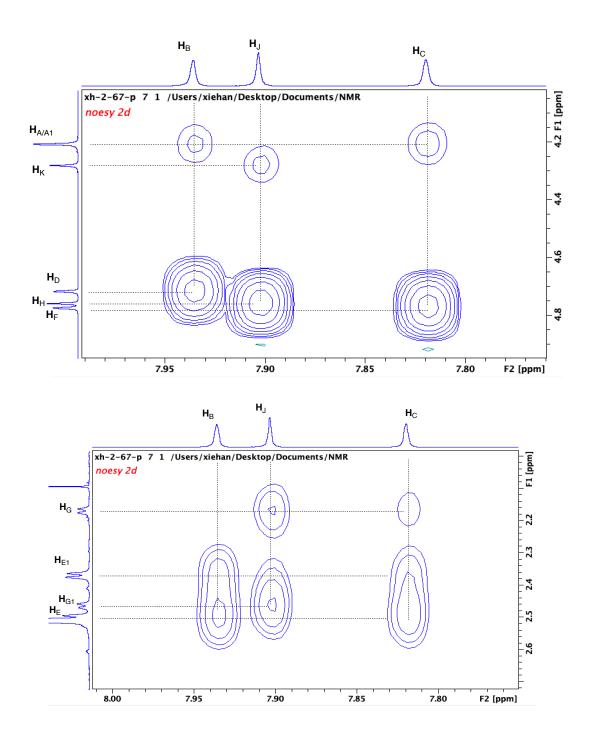
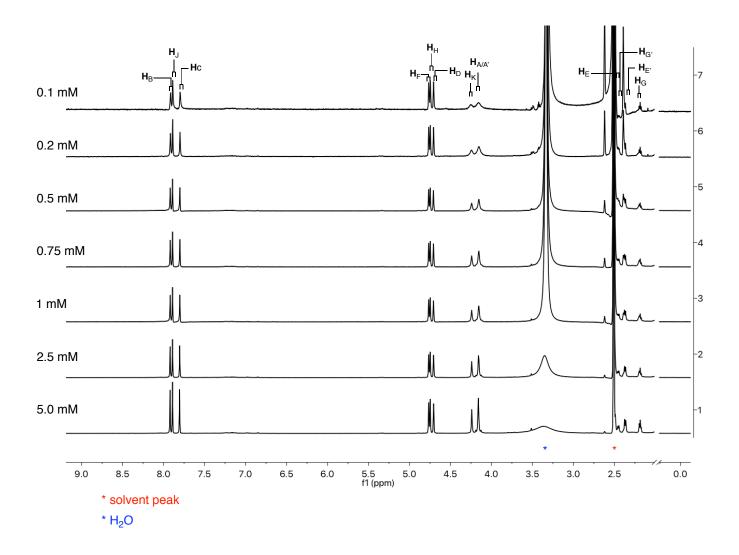
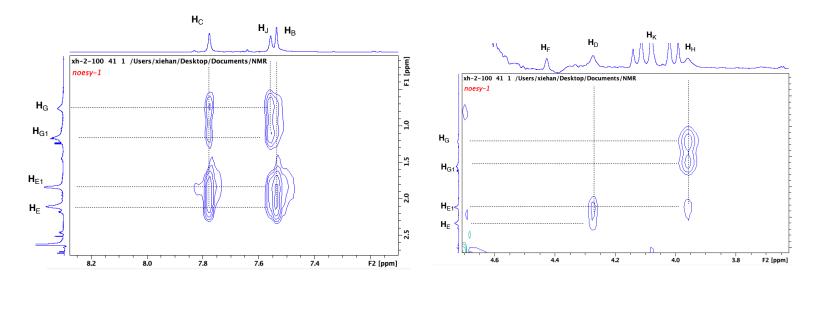




Figure S10. ¹³C NMR spectrum (175 MHz, 298 K) of 8_{anti} in (CD₃)₂SO.


¹H NMR Spectroscopic and ESI-MS Experiments

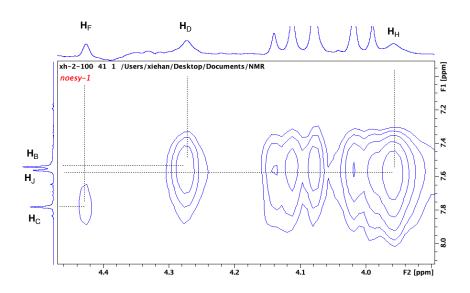


Figure S11. Two regions of 2D NOESY NMR spectrum (600 MHz, 298 K) of 5.0 mM solution of $\mathbf{1}_{anti}$ in (CD₃)₂SO showing important cross-correlations. We used the integration ratio of $\mathbf{H}_{A/A1}$ and \mathbf{H}_{K} resonances to distinguish these protons and then as a starting point to assign other nuclei.

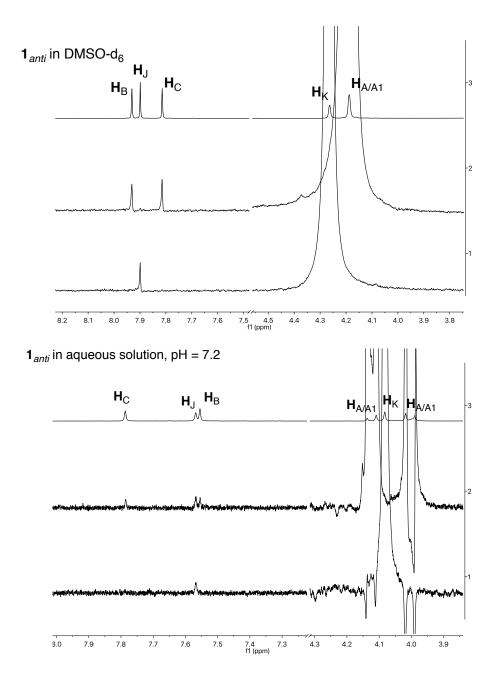
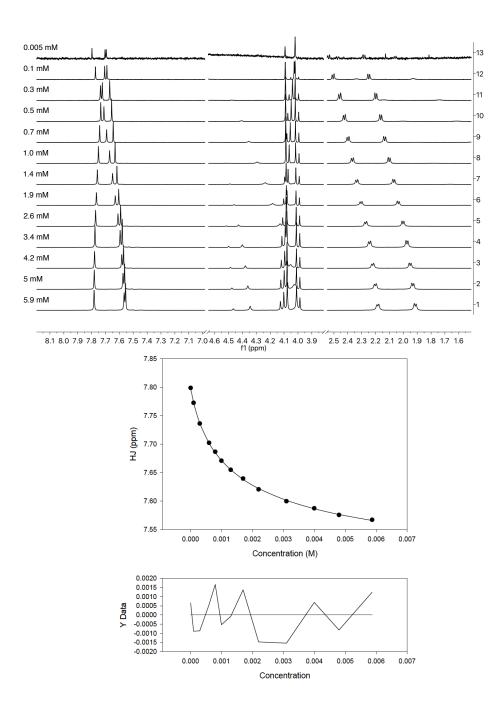
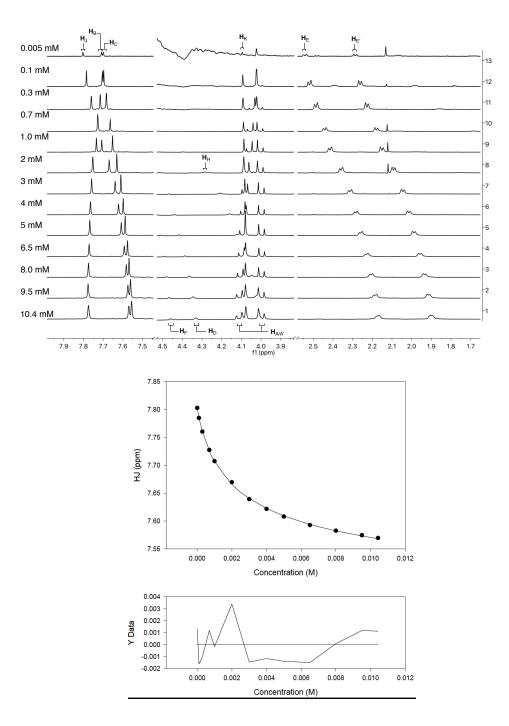
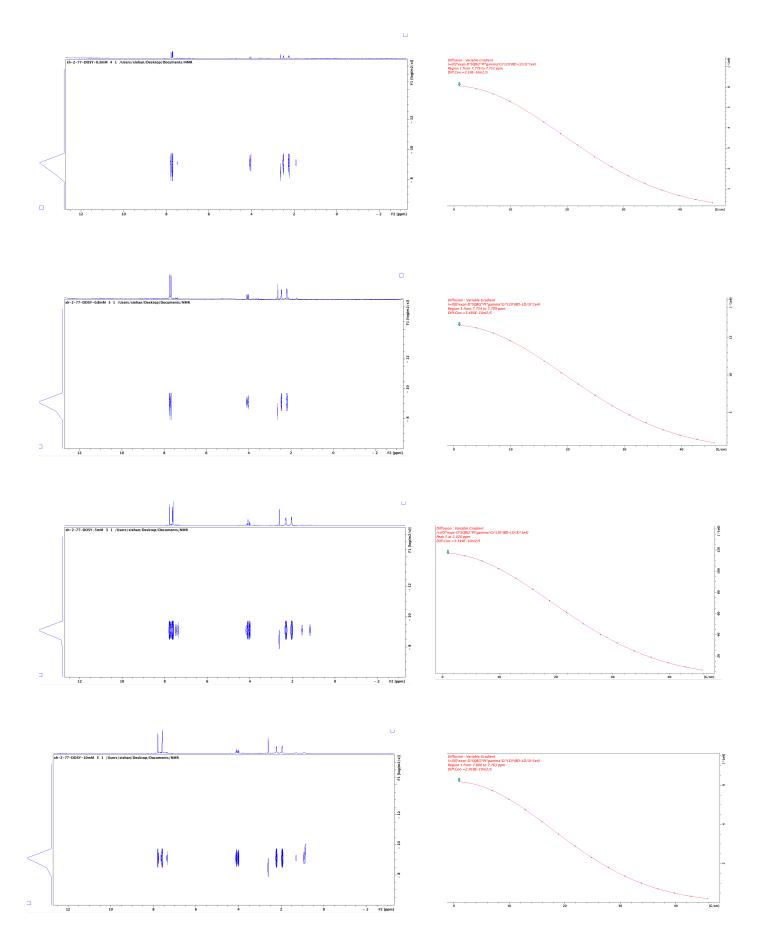


Figure S12. ¹H NMR spectra (600 MHz, 298 K) of 5.0 mM **1**_{anti} in (CD₃)₂SO (bottom) and its more diluted solutions (concentrations are shown on the left).




Figure S13. Selected regions of 2D NOESY NMR spectrum (600 MHz, 298 K) of 5.0 mM solution (H₂O: D₂O = 9:1, 0.1 M phosphate salts and 0.1 M NaCl) of $[\mathbf{1}_{anti}]^{3-}$ at pH = 7.2. We used the integration ratio of $\mathbf{H}_{E/E1}$ and $\mathbf{H}_{G/G1}$ resonances to distinguish them and then assign the remaining nuclei.


Figure S14. 1D NOE spectra (600 MHz, 298 K) of 5.0 mM solution of $\mathbf{1}_{anti}$ in DMSO-d₆ (top) and $[\mathbf{1}_{anti}]_2^{3-}$ in water (H₂O: D₂O = 9:1, 0.1 M phosphate salts and 0.1 M NaCl, bottom) obtained after the selective irradiation of $\mathbf{H}_{A/A1}$ (middle spectrum in each set) and \mathbf{H}_K (bottom spectrum in each set) resonances.

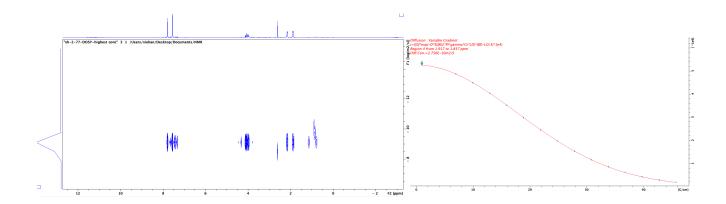


Figure S15. (Top) ¹H NMR spectra (600 MHz, 298 K) of $[\mathbf{1}_{anti}]^{3-}$ at different concentrations (shown on the left) in 0.1 M phosphate buffer at pH = 7.2. (Bottom) Nonlinear least-square analysis of ¹H NMR binding data corresponding to the formation of homodimer $[\mathbf{1}_{anti}]_2^{6-}$. Using the change in chemical shift of \mathbf{H}_J as a function of the overall concentration of $[\mathbf{1}_{anti}]^{3-}$ we obtained stability constant $K_a = 410 \pm 10$ M⁻¹ (SigmaPlot) as arithmetic mean of two separate measurements with the standard deviation as error. A random distribution of residuals is shown at the bottom.

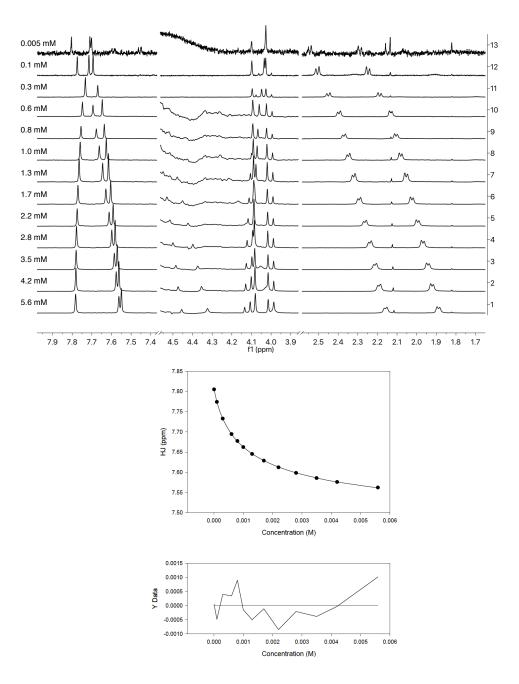
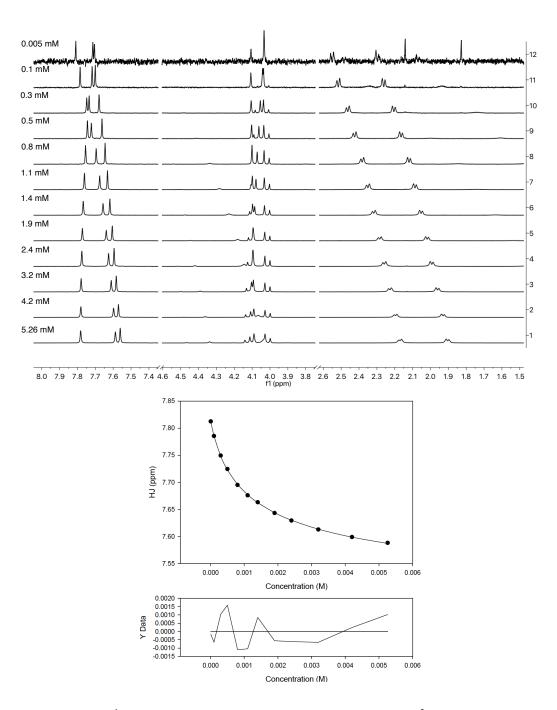
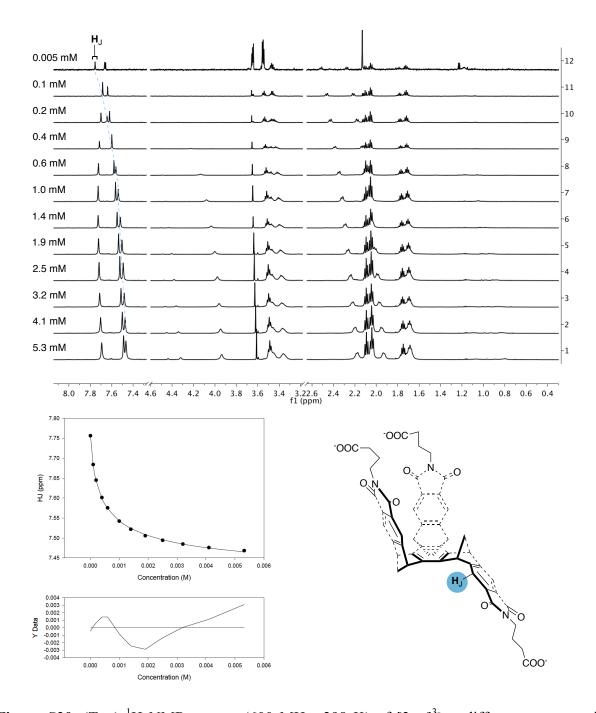


Figure S16. (Top) ¹H NMR spectra (600 MHz, 298 K) of $[\mathbf{1}_{anti}]^{3-}$ at different concentrations (shown on the left) in 25 mM phosphate buffer at pH = 7.2. (Bottom). Nonlinear least-square analysis of ¹H NMR binding data corresponding to the formation of homodimer $[\mathbf{1}_{anti}]_2^{6-}$. Using the change in chemical shift of \mathbf{H}_J as a function of the overall concentration (one shown in Figure 4B, and another one here) of $[\mathbf{1}_{anti}]^{3-}$ we obtained stability constant $K_a = 152 \pm 60 \text{ M}^{-1}$ (SigmaPlot) as an arithmetic mean of three separate measurements with the standard deviation as error. A random distribution of residuals is shown at the bottom.




Figure S17. (Left) DOSY NMR spectra (600 MHz, 298 K) of $[\mathbf{1}_{anti}]^{3-}$ in 25 mM phosphate buffer (H₂O: D₂O = 9:1) at pH = 7.2. (Right) The change in intensity of resonance corresponding to \mathbf{H}_J proton as a function of the field gradient g (G/cm) was obtained using the pulse field gradient stimulated echo sequence with bipolar gradient pulse pair, 1 spoil gradient, 3-9-19 WATERGATE solvent suppression (stebpgp1s19) pulse sequence and the data was fit to the Stejskal-Tanner equation to give the value of diffusion coefficient D_{app} (m²/s); The hydrodynamic radii was computed using the Stokes-Einstein equation whereby the viscosity of 25 mM phosphate buffer at pH = 7.2 ± 0.1 is assumed to be similar to that of H₂O:D₂O = 9:1 (η = 0.91 mPa s at 298.1). From top to bottom, the overall concentration of [$\mathbf{1}_{anti}$]³⁻ and D_{app} are as follows: (A) 0.3 mM, $D_{app} = 3.59 \times 10^{-10}$ m²s⁻¹ (B) 0.8 mM, $D_{app} = 3.49 \times 10^{-10}$ m²s⁻¹ (C) 5.0 mM, $D_{app} = 3.15 \times 10^{-10}$ m²s⁻¹ (D) 10.0 mM, $D_{app} = 2.92 \times 10^{-10}$ m²s⁻¹ (E) 15.7 mM, $D_{app} = 2.76 \times 10^{-10}$ m²s⁻¹.

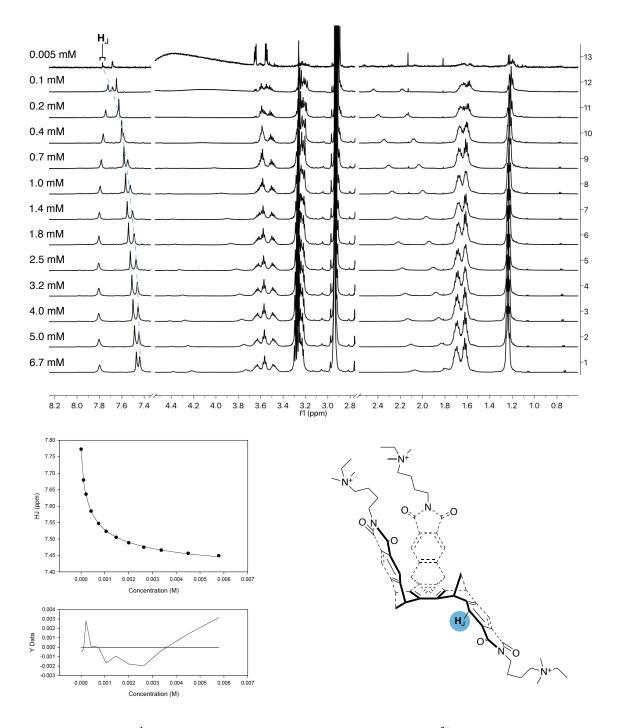
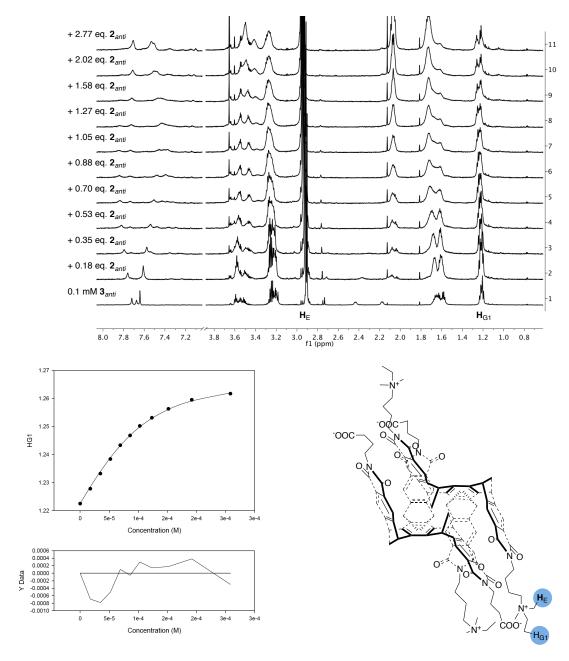
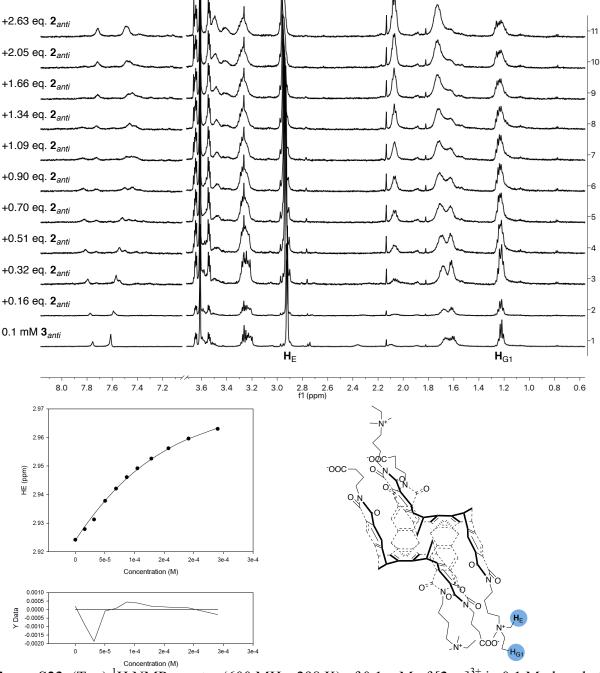
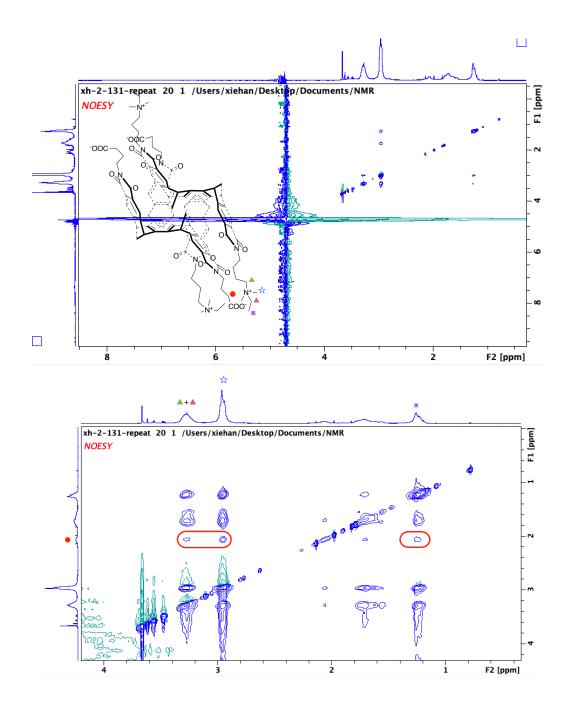
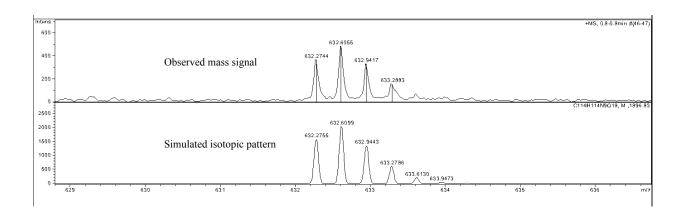

Figure S18. (Top) ¹H NMR spectra (600 MHz, 298 K) of $[\mathbf{1}_{anti}]^{3-}$ at different concentrations (shown on the left) in 0.1 M phosphate buffer containing 0.1 M NaCl at pH = 7.2. (Bottom). Nonlinear least-square analysis of ¹H NMR binding data corresponding to the formation of homodimer $[\mathbf{1}_{anti}]_2^{6-}$. Using the change in chemical shift of \mathbf{H}_J as a function of the overall concentration of $[\mathbf{1}_{anti}]^{3-}$ we obtained stability constant $K_a = 570 \pm 62$ M⁻¹ (SigmaPlot) as an arithmetic mean of two separate measurements with the standard deviation as error. A random distribution of residuals is shown at the bottom.

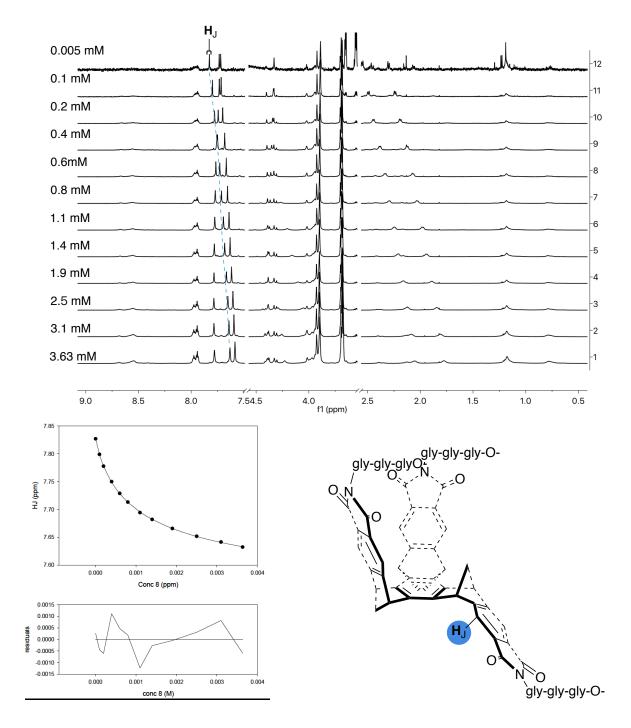
Figure S19. (Top) ¹H NMR spectra (600 MHz, 298 K) of $[\mathbf{1}_{anti}]^{3-}$ at different concentrations (shown on the left) in 0.1 M phosphate buffer containing 0.1 M NaClO₄ at pH = 7.2. (Bottom). Nonlinear least-square analysis of ¹H NMR binding data corresponding to the formation of homodimer $[\mathbf{1}_{anti}]_2^{6-}$. Using the change in chemical shift of \mathbf{H}_J as a function of the overall concentration of $[\mathbf{1}_{anti}]^{3-}$ we obtained stability constant $K_a = 458 \pm 11 \text{ M}^{-1}$ (SigmaPlot) as an arithmetic mean of two separate measurements with the standard deviation as error. A random distribution of residuals is shown at the bottom.

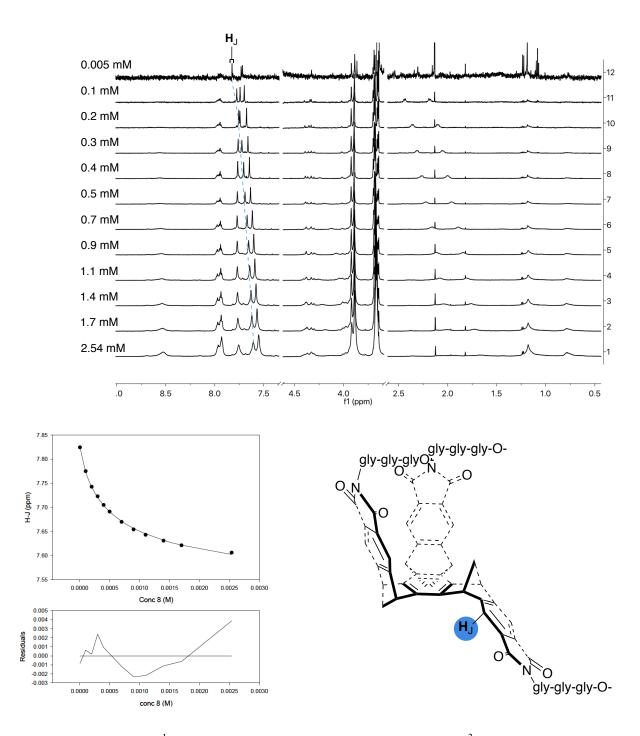
Figure S20. (Top) ¹H NMR spectra (600 MHz, 298 K) of $[\mathbf{2}_{anti}]^{3-}$ at different concentrations (shown on the left) in 25 mM phosphate buffer at pH = 7.2. (Bottom). Nonlinear least-square analysis of ¹H NMR binding data corresponding to the formation of homodimer $[\mathbf{2}_{anti}]_2^{6-}$. Using the change in chemical shift of \mathbf{H}_J as a function of the overall concentration of $[\mathbf{2}_{anti}]^{3-}$ we obtained stability constant $K_a = 1704 \pm 42 \text{ M}^{-1}$ (SigmaPlot) as an arithmetic mean of two separate measurements with the standard deviation as error. A distribution of residuals is shown at the bottom.

Figure S21. (Top) ¹H NMR spectra (600 MHz, 298 K) of $[\mathbf{3}_{anti}]^{3+}$ at different concentrations (shown on the left) in 25 mM phosphate buffer at pH = 7.2. (Bottom). Nonlinear least-square analysis of ¹H NMR binding data corresponding to the formation of homodimer $[\mathbf{3}_{anti}]_2^{6+}$. Using the change in chemical shift of \mathbf{H}_J as a function of the overall concentration of $[\mathbf{3}_{anti}]^{3+}$ we obtained stability constant $K_a = 1704 \pm 42 \,\mathrm{M}^{-1}$ (SigmaPlot) as an arithmetic mean of two separate measurements with the standard deviation as error. A distribution of residuals is shown at the bottom.


Figure S22. (Top) ¹H NMR spectra (600 MHz, 298 K) of 0.1 mM of $[\mathbf{3}_{anti}]^{3+}$ in 25 mM phosphate buffer at pH = 7.2, obtained upon an incremental addition of 4.0 mM solution of $[\mathbf{2}_{anti}]^{3-}$ (Bottom). Nonlinear least-square analysis of ¹H NMR binding data corresponding to the formation of $[\mathbf{2}_{anti}]$ (1:1) complex. Using the change in chemical shift of \mathbf{H}_{G1} as a function of the overall concentration of $[\mathbf{2}_{anti}]^{3-}$ we obtained stability constant $K_a = 3.3 \pm 0.2 \cdot 10^4 \,\mathrm{M}^{-1}$ (SigmaPlot) as an arithmetic mean of two separate measurements with the standard deviation as error; note that homodimerization of $[\mathbf{3}_{anti}]^{3+}$ (in addition to $[\mathbf{2}_{anti}]^{3-}$) was negligible under the experimental conditions, and therefore not included in the theoretical model. A distribution of residuals is shown at the bottom.


Figure S23. (Top) ¹H NMR spectra (600 MHz, 298 K) of 0.1 mM of $[\mathbf{3}_{anti}]^{3+}$ in 0.1 M phosphate buffer with 0.1 M NaCl at pH = 7.2, obtained upon an incremental addition of 4.0 mM solution of $[\mathbf{2}_{anti}]^{3-}$ (Bottom). Nonlinear least-square analysis of ¹H NMR binding data corresponding to the formation of $[\mathbf{2}_{anti}]^{3-}$ (1:1) complex. Using the change in chemical shift of \mathbf{H}_E as a function of the overall concentration of $[\mathbf{2}_{anti}]^{3-}$ we obtained stability constant $K_a = 1.3 \pm 0.2 \cdot 10^4$ M⁻¹ (SigmaPlot) as an arithmetic mean of two separate measurements with the standard deviation as error; note that homodimerization of $[\mathbf{3}_{anti}]^{3+}$ (in addition to $[\mathbf{2}_{anti}]^{3-}$) was negligible under the experimental conditions, and therefore not included in the theoretical model. A distribution of residuals is shown at the bottom.


Figure S24. Two views of 2D NOESY NMR spectrum (600 MHz, 298 K) of 1.0 mM heterodimer [$\mathbf{2}_{anti} \subset \mathbf{3}_{anti}$] (H₂O: D₂O = 9:1) in 25 mM phosphate buffer at pH = 7.2. Intermolecular cross-correlations suggesting the proposed geometry of [$\mathbf{2}_{anti} \subset \mathbf{3}_{anti}$] complex are depicted with colored symbols (triangles, circle, star and square).

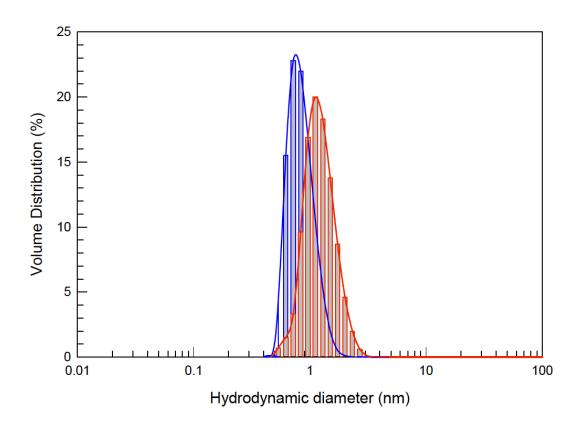

Figure S25. Segments of experimental (top) and simulated (bottom) high-resolution ESI-Mass spectra of $[\mathbf{2}_{anti} \subset \mathbf{3}_{anti}]$, suggesting the formation of $[\mathbf{2}_{anti} \subset \mathbf{3}_{anti} - 3\mathrm{Br}]^{3+}$ cation with m/z calcd for $C_{114}H_{114}N_9O_{18}^{3+}$ 632.2755 (bottom) and found 632.2744 (top).

Figure S26. (Top) ¹H NMR spectra (600 MHz, 298 K) of $[\mathbf{8}_{anti}]^{3-}$ at different concentrations (shown on the left) in 25 mM phosphate buffer at pH = 7.2. (Bottom). Nonlinear least-square analysis of ¹H NMR binding data corresponding to the formation of homodimer $[\mathbf{8}_{anti}]_2^{6-}$. (Bottom) Using the change in chemical shift of \mathbf{H}_J (ppm) as a function of the overall concentration of $[\mathbf{8}_{anti}]^{3-}$ we obtained stability constant $K_a = 510 \pm 55 \text{ M}^{-1}$ (SigmaPlot) as an arithmetic mean of two separate measurements with the standard deviation as error. A random distribution of residuals is shown at the bottom.

Figure S27. (Top) ¹H NMR spectra (600 MHz, 298 K) of $[\mathbf{8}_{anti}]^{3-}$ at different concentrations (shown on the left) in 0.1 M phosphate buffer and containing 0.1 M NaCl at pH = 7.2. (Bottom). Nonlinear least-square analysis of ¹H NMR binding data corresponding to the formation of homodimer $[\mathbf{8}_{anti}]_2^{6-}$. (Bottom) Using the change in chemical shift of \mathbf{H}_J (ppm) as a function of the overall concentration of $[\mathbf{8}_{anti}]^{3-}$ we obtained stability constant $K_a = 1314 \pm 270 \text{ M}^{-1}$ (SigmaPlot) as an arithmetic mean of two separate measurements with the standard deviation as error. A random distribution of residuals is shown at the bottom.

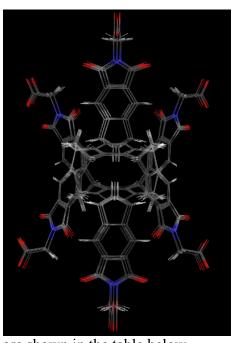
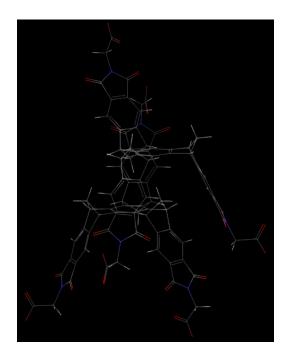
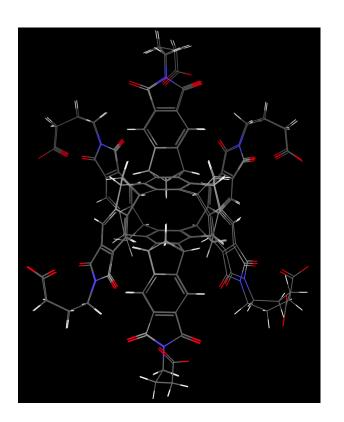


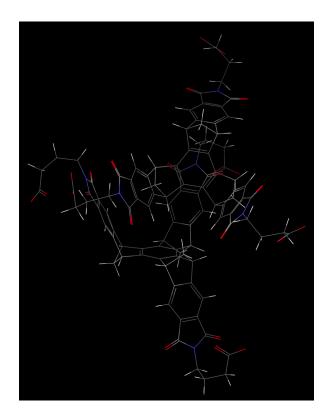
Figure S28. The intensity distributions of scattered light as a function of hydrodynamic diameters ($D_{\rm H}$) were obtained from Dynamic Light Scattering (DLS, 298 K) measurements of 0.5 mM (blue, mean count rate = 23-31 kcps, PDI = 0.335-0.621) and 15.0 mM (red, mean count rate = 140-152 kcps, PDI = 0.409-0.503) solutions of [$\mathbf{1}_{anti}$]³⁻ in 25 mM phosphate buffer at pH = 7.2 ± 0.1; all DLS measurements were completed (in triplicate) on a Malvern Zetasizer Nano Z6 instrument in 25 mM phosphate buffer (pH = 7.2 ± 0.1) that was filtered three times (0.22μm) prior to immediate use. Note that, in the first case (0.5 mM solution), the observed distribution of sizes centers at $D_{\rm H}$ = 0.8 nm while in the case of more concentrated [$\mathbf{1}_{anti}$]³⁻ $D_{\rm H}$ = 1.12 nm therefore indicating the absence of higher oligomers. The observed mean count rates (ideally from 200-500 kbps) are low while the polydispersity indices (PDI) high making the data less reliable yet informative and in line with other measurements.


Computational Studies

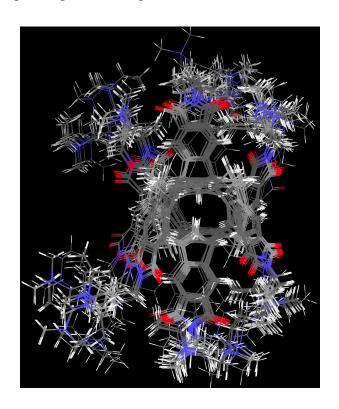
Monte-Carlo (MC) conformational searches of $[\mathbf{1}_{anti}]_2^{6-}$, $[\mathbf{2}_{anti}]_2^{6-}$, $[\mathbf{3}_{anti}]_2^{6+}$ and $[\mathbf{2}_{anti}]_2^{6-}$ were each completed with the Maestro suite (Schrodinger) using OPLS3 molecular mechanics (MM) force field in implicit water solvent. For each search, we used systematic torsional sampling method with 100 steps per rotatable bond and 50,000 steps overall. The energy window for saving structures was set to 12 kJ/mol.

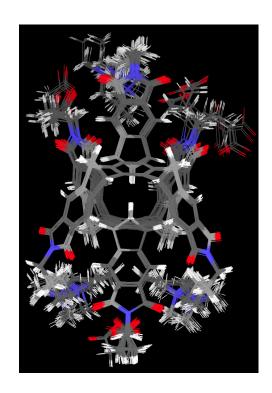
For $[\mathbf{1}_{anti}]_2^{6-}$, MC/MM search gave 6 "antiparallel" conformers (0-4.0 kJ/mol, shown on the left) and one parallel homodimer (10.7 kJ/mol, shown on the right). The corresponding steric energies



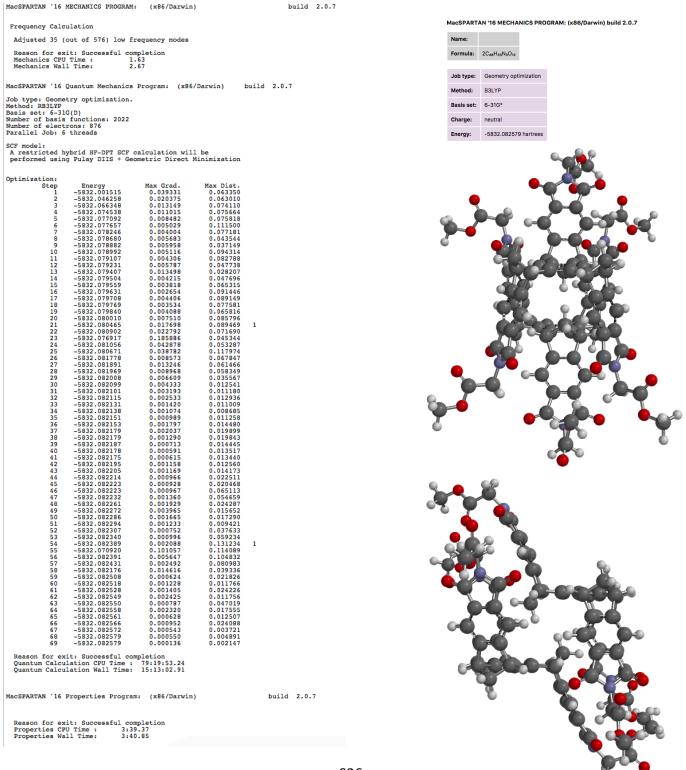

are shown in the table below.

2	— Structure1	***	2	18 Dec 2	18 Dec 2018	-1788.743	0.030	0.00
3	- Structure1	***	3	18 Dec 2	18 Dec 2018	-1788.743	0.036	0.00
4	- Structure1	***	4	18 Dec 2	18 Dec 2018	-1788.336	0.046	0.40
5	- Structure1	***	5	18 Dec 2	18 Dec 2018	-1786.572	0.037	2.17
6	- Structure1	***	6	18 Dec 2	18 Dec 2018	-1786.569	0.044	2.17
7	- Structure1	***	7	18 Dec 2	18 Dec 2018	-1784.681	0.047	4.06
8	Structure1			18 Dec 2	18 Dec 2018	-1778.029	0.045	10.71
8	└─ Structure1	***	8	18 Dec 2	18 Dec 2018	-1778.029	0.045	10.


For $[\mathbf{2}_{anti}]_2^{6-}$, MC/MM search gave 3 conformers (0-5.97 kJ/mol, below left) and one (6.36 kJ/mol, below right) populating the equilibrium. The corresponding steric energies are shown in the table below.


2		— Structure1	***	2	18 Dec 2	24 Dec 2018	-1888.810	0.044	0.0
3	0	- Structure1	***	3	18 Dec 2	18 Dec 2018	-1885.553	0.049	3.2
4	\circ	- Structure1	***	5	18 Dec 2	18 Dec 2018	-1882.448	0.035	6.3
5	0	- Structure1	***	4	18 Dec 2	18 Dec 2018	-1882.842	0.048	5.9
6	\circ	- Structure1	***	6	18 Dec 2	18 Dec 2018	-1877.208	0.050	11.6

For $[\mathbf{3}_{anti}]_2^{6+}$, MC/MM search gave 31 conformers (0-6.3 kJ/mol, shown below) populating the equilibrium. The corresponding steric energies are shown in the table below.


2	- Structure1	***	2	28 Dec 2	28 Dec 2018	211.299	0.049	0.000
3	- Structure1	***	3	28 Dec 2	28 Dec 2018	211.459	0.049	0.159
4	- Structure1	***	4	28 Dec 2	28 Dec 2018	212.626	0.044	1.326
5	- Structure1	***	5	28 Dec 2	28 Dec 2018	212.775	0.049	1.476
6	- Structure1	***	6	28 Dec 2	28 Dec 2018	213.070	0.037	1.771
7	- Structure1	***	7	28 Dec 2	28 Dec 2018	214.065	0.041	2.766
8	- Structure1	***	8	28 Dec 2	28 Dec 2018	214.223	0.046	2.924
9	- Structure1	***	9	28 Dec 2	28 Dec 2018	214.250	0.048	2.951
10	- Structure1	***	10	28 Dec 2	28 Dec 2018	215.090	0.045	3.790
11	- Structure1	***	11	28 Dec 2	28 Dec 2018	215.254	0.049	3.955
12	— Structure1	***	12	28 Dec 2	28 Dec 2018	215.500	0.049	4.201
13	- Structure1	***	13	28 Dec 2	28 Dec 2018	215.513	0.048	4.213
14	- Structure1	***	14	28 Dec 2	28 Dec 2018	215.515	0.048	4.216
15	— Structure1	***	15	28 Dec 2	28 Dec 2018	215.613	0.043	4.314
16	— Structure1	***	16	28 Dec 2	28 Dec 2018	215.673	0.039	4.373
17	- Structure1	***	17	28 Dec 2	28 Dec 2018	215.681	0.048	4.382
18	- Structure1	***	18	28 Dec 2	28 Dec 2018	216.030	0.044	4.731
19	— Structure1	***	19	28 Dec 2	28 Dec 2018	216.110	0.048	4.810
20	— Structure1	***	20	28 Dec 2	28 Dec 2018	216.113	0.049	4.814
21	- Structure1	***	21	28 Dec 2	28 Dec 2018	216.652	0.048	5.352
22	- Structure1	\$\$\$	22	28 Dec 2	28 Dec 2018	216.770	0.046	5.471
23	- Structure1	***	23	28 Dec 2	28 Dec 2018	216.989	0.045	5.690
24	— Structure1	***	24	28 Dec 2	28 Dec 2018	217.077	0.049	5.777
25	- Structure1	***	25	28 Dec 2	28 Dec 2018	217.081	0.043	5.782
26	- Structure1	***	26	28 Dec 2	28 Dec 2018	217.136	0.048	5.836
27	- Structure1	\$\$\$	27	28 Dec 2	28 Dec 2018	217.153	0.049	5.853
28	- Structure1	***	28	28 Dec 2	28 Dec 2018	217.216	0.041	5.917
29	- Structure1	***	29	28 Dec 2	28 Dec 2018	217.217	0.049	5.918
30	- Structure1	***	30	28 Dec 2	28 Dec 2018	217.298	0.045	5.999
31	- Structure1	***	31	28 Dec 2	28 Dec 2018	217.426	0.047	6.126
32	- Structure1	***	32	28 Dec 2	28 Dec 2018	217.510	0.044	6.210
33	- Structure1	***	33	28 Dec 2	28 Dec 2018	217.556	0.045	6.257

For $[\mathbf{2}_{anti} \subset \mathbf{3}_{anti}]$, the MC/MM search gave 61 conformers (0-6.3 kJ/mol, shown below) populating the equilibrium. Steric energies of most stable 30 conformers are shown in the table below.

1	0	Structure1	***	1	28 Dec 2	28 Dec 2018			
	1	<pre>mmod_csearch_90-out1 (503)</pre>							
2	•				29 Dec 2	29 Dec 2018	-911.089	0.048	0.000
3	0	- Structure1	***	3	29 Dec 2	29 Dec 2018	-910.220	0.047	0.869
4	0	- Structure1	***	4	29 Dec 2	29 Dec 2018	-909.826	0.045	1.263
5		- Structure1	***	5	29 Dec 2	29 Dec 2018	-909.104	0.047	1.985
6	0	- Structure1	***	6	29 Dec 2	29 Dec 2018	-908.366	0.045	2.723
7		- Structure1	***	7	29 Dec 2	29 Dec 2018	-908.309	0.050	2.780
8	0	<pre>— Structure1</pre>	***	8	29 Dec 2	29 Dec 2018	-908.172	0.040	2.917
9		- Structure1	***	9	29 Dec 2	29 Dec 2018	-908.030	0.046	3.059
10	\circ	- Structure1	***	10	29 Dec 2	29 Dec 2018	-907.751	0.043	3.338
11		- Structure1	***	11	29 Dec 2	29 Dec 2018	-907.556	0.042	3.533
12	\circ	- Structure1	***	12	29 Dec 2	29 Dec 2018	-907.508	0.028	3.581
13		- Structure1	***	13	29 Dec 2	29 Dec 2018	-907.489	0.049	3.600
14	0	- Structure1	***	14	29 Dec 2	29 Dec 2018	-907.484	0.046	3.605
15		- Structure1	***	15	29 Dec 2	29 Dec 2018	-907.330	0.046	3.759
16	0	- Structure1	***	16	29 Dec 2	29 Dec 2018	-907.264	0.045	3.825
17		- Structure1	***	17	29 Dec 2	29 Dec 2018	-907.244	0.028	3.845
18	\circ	<pre>— Structure1</pre>	***	18	29 Dec 2	29 Dec 2018	-907.113	0.045	3.976
19		- Structure1	***	19	29 Dec 2	29 Dec 2018	-907.070	0.042	4.019
20	\circ	<pre>— Structure1</pre>	***	20	29 Dec 2	29 Dec 2018	-906.831	0.035	4.258
21		- Structure1	***	21	29 Dec 2	29 Dec 2018	-906.754	0.045	4.335
22	0	- Structure1	***	22	29 Dec 2	29 Dec 2018	-906.696	0.050	4.393
23		- Structure1	***	23	29 Dec 2	29 Dec 2018	-906.678	0.024	4.411
24	0	- Structure1	***	24	29 Dec 2	29 Dec 2018	-906.595	0.046	4.494
25		- Structure1	***	25	29 Dec 2	29 Dec 2018	-906.569	0.048	4.520
26	0	- Structure1	***	26	29 Dec 2	29 Dec 2018	-906.560	0.046	4.529
27		- Structure1	***	27	29 Dec 2	29 Dec 2018	-906.436	0.049	4.653
28	\circ	- Structure1	***	28	29 Dec 2	29 Dec 2018	-906.306	0.042	4.783
29		- Structure1	***	29	29 Dec 2	29 Dec 2018	-906.226	0.047	4.863
30	0	- Structure1	***	30	29 Dec 2	29 Dec 2018	-906.133	0.038	4.956
31	0	Structure1	***	31	29 Dec 2	29 Dec 2018	-906.102	0.046	4.987

Structural optimization of methyl ester of $[\mathbf{1}_{anti}]_2$ was (in vacuum) completed at B3LYP/6-31G* level of theory (DFT) with the Spartan software; the starting structure was obtained from MMFF optimization. Two views of the computed structure of the homodimer are shown below.

X-Ray Diffraction Data

Note that we used the SQUEEZE program to remove the contribution of a disordered acetonitrile molecule from the structure factor list (see Spek, A. L. (2015). Acta Cryst. C71, 9–18).

Table S1. Crystallographic details for 1_{anti}.

Formula C45 H27 N3 O12 + 6.2 (CH3CN)

Formula weight 1056.25

Temperature 150(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P -1

Unit cell dimensions a = 8.3179(6) Å $\langle = 93.773(3)^{\circ}$

Volume 2692.3(3) Å³

Z 2

Density (calculated) 1.303 Mg/m^3 Absorption coefficient 0.094 mm^{-1} F(000) 1100.8

Crystal size $0.35 \times 0.38 \times 0.46 \text{ mm}^3$

Theta range for data collection 2.729 to 25.027°

Index ranges -9 <= h <= 9, -20 <= k <= 20, -22 <= l <= 22

Reflections collected 86712

Independent reflections 9258 [R(int) = 0.0422]

Completeness to theta = 25.027° 97.4 %

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 9258 / 0 / 710

Goodness-of-fit on F² 1.161

Final R indices [I>2sigma(I)] R1 = 0.1153, wR2 = 0.3032 R indices (all data) R1 = 0.1185, wR2 = 0.3048

Largest diff. peak and hole 0.685 and -0.533 e/Å 3

Table S2. Hydrogen bonds for $\mathbf{1}_{\it anti}$ [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(18)-H(18B)O(9)#1	0.99	2.33	3.228(8)	151
C(31)-H(31B)O(2)#2	0.99	2.44	3.414(7)	167
O(4)-H(1O4)N(1B)	0.94	1.85	2.718(9)	152
O(8)-H(1O8)N(1D)	1.02	1.81	2.793(9)	161
C(1A)-H(1A3)O(3)#3	0.98	2.45	3.291(9)	144
C(1D)-H(1D1)O(2)#4	0.98	2.61	3.235(9)	122
C(1D)-H(1D1)O(6)#5	0.98	2.42	3.255(9)	142
C(1E)-H(1E2)N(1F)	0.98	2.35	3.277(15)	158
C(1F)-H(1F1)O(9)#6	0.98	2.62	3.325(13)	129

Symmetry transformations used to generate equivalent atoms:

 $\#1\ x,y-1,z\quad \#2\ x,y+1,z\quad \#3\ -x,-y-1,-z+1\quad \#4\ -x+2,-y+1,-z+1$

#5 -x+2,-y+2,-z+1 #6 -x+1,-y+2,-z