Contents

Supporting Information	3
Experimental Details	3
General	3
X-Ray Crystallography	3
Synthesis of DippNacnac-Magnesium-Amide Compounds	6
Synthesis of Compound 3	6
Synthesis of Compound 4	7
Synthesis of Compound 5	9
Synthesis of Compound 6	12
Synthesis of Compound 9	13
Synthesis of Compound 10	15
Synthesis of Aminofluoroarenes (7a-7i, 11a-11i)	17
Synthesis of Compound 7a	17
Synthesis of Compound 7b	19
Synthesis of Compound 7c	22
Synthesis of Compound 7d	25
Synthesis of Compound 7f	32
Synthesis of Compound 7g	34
Synthesis of Compound 7h	36
Synthesis of Compound 7i	38
Synthesis of Compound 11a	40

	Synthesis of Compound 11b	1
	Synthesis of Compound 11c	4
	Synthesis of Compound 11d	6
	Synthesis of Compound 11e	7
	Synthesis of Compound 11f	9
	Synthesis of Compound 11g5	1
	Synthesis of Compound 11h5	i4
	Synthesis of Compound 11i5	6
R	eactivity Studies of 4, 9 and 10 with ppf and C ₆ F ₆ 5	9
	DOSY NMR of 9 with ppf at room temperature	9
	Reactivity between Compound 9 and ppf at Elevated Temperature	51
	Reactivity between Compound 10 and ppf at Elevated Temperature	i3
	Reactivity between Compound 4 and Fluorobenzene	5 4
	Reactivity between Compound 9 and C ₆ F ₆	6
	Reactivity between Compound 10 and C ₆ F ₆	6
Refe	erences6	59

Supporting Information

Experimental Details

General

All reactions were carried out using standard Schlenk and glove box techniques under an inert atmosphere of argon. Solvents (THF, hexane and toluene) were dried by heating to reflux over sodium benzophenone ketyl and distilled under nitrogen prior to use - THF was collected and stored over 4 Å molecular sieves for minimum 24 h prior to use, under argon atmosphere. NMR spectra were recorded on a Bruker DPX 400 MHz spectrometer, operating at 400.13 MHz for ¹H, 376.49 MHz for ¹⁹F and 100.62 MHz for ¹³C{1H}. Elemental analyses were obtained using a Carlo Erba 1108 Elemental Analyser at London Metropolitan University by Stephen Boyer, Di-n-butylamine, piperidine, diphenylamine, benzotriazole, 2-(2,4-difluorophenyl)pyridine, pyrrolidine, fluoropyridine, hexafluorobenzene, fluorobenzene and octafluorotoluene were purchased from Sigma Aldrich and Fluorochem. All amine reagents were dried over CaH₂ prior to use and stored over 4 Å molecular sieves. 2-(2,4-difluorophenyl)pyridine (ppf) was stored in a -30 °C fridge inside a glovebox under argon atmosphere. DippNacnacMgTMP (1) (DippNacnac = Ar*NC(Me)CHC(Me)NAr*; Ar* = 2,6- ${}^{i}Pr_{2}-C_{6}H_{3}$; TMP = 2,2,6,6-tetramethylpiperidide) and 6 [(${}^{Dipp}Nacnac$)Mg(NC₄H₈)]₂ were synthesised according to literature methods.^{1, 2} All DOSY NMR experiments were conducted using the External Calibration Curve (ECC) method as described by Stalke³ using 1, 2, 3, 4-tetraphenylnaphthalene (TPhN) as a reference standard. All GC spectra were obtained using an Agilent Technologies 7890A GC System, Agilent Technologies 5975C Inert XL EI/CI MSD with Triple-Axis Detector, Agilent Technologies 7693 Autosampler and Restek GC Column (30 m, 0.25 mm i.d., 0.25 µm). All HRMS data was obtained using a Bruker UltrafleXtreme MALDI TOF/TOF at the University of Edinburgh. All microwave reactions were carried out in 4 mL microwave vials in a CEM Activent, Discover v2.17.

X-Ray Crystallography

Crystallographic data were measured at 123 K for compounds 4 and 10, and at 193 K for compounds 3 and 9 with Oxford Diffraction Gemini S or Xcalibur E instruments and with graphite-monochromated Cu (λ =1.54180 Å) or Mo (λ =0.71073 Å) radiation, respectively. All structures were refined to convergence on F 2 using all unique reflections and programs from the SHELX family.⁴ The final structures of 3, 4 and 10 were subjected to displacement parameters that were required to model the disorder of one THF molecule for 3 and one toluene molecule each for compounds 4 and 10. Selected crystallographic data are displayed in **Table S** 1.

Table S 1 Selected crystallographic and refinement parameters for 3, 4, 9 and $10\,$

	3	4	9	10
Empirical formula	$C_{41}H_{63}MgN_3O$	C ₇₅ H ₁₁₀ Mg ₂ N ₆	$C_{41}H_{51}MgN_3$	$C_{77}H_{98}Mg_2N_{10}$
Mol. Mass	642.28	1144.30	610.15	1212.27
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic
a/Å	9.3179(4)	19.7360(11)	18.4812(9)	13.0738(4)
b/Å	12.5656(6)	20.5218(8)	18.3287(10)	14.2398(5)
c/Å	18.0807(8)	17.9367(1)	10.6762(5)	19.0456(6)
α/°	70.915(4)	90	90	90
β/°	81.783(4)	112.105(5)	90.832(4)	92.872(3)
γ/°	85.771(4)	90	90	90

V/ų	1979.25(16)	6730.7(3)	3616.0(3)	3541.2(2)
Z	2	4	4	2
λ/Å	0.71073	1.54180	0.71073	0.71073
Measured reflections	18074	14090	35713	18999
Unique reflections	8627	6671	8708	9058
Rint	0.0273	0.0212	0.0382	0.0249
Observed rflns [I > $2\sigma(I)$]	6187	5648	6222	6862
Goof	1.022	1.025	1.032	1.019
R [on F, obs rflns only]	0.0658	0.0503	0.0474	0.0497
ωR [on F^2 , all data]	0.1862	0.1421	0.1224	0.1297
Largest diff. peak/hole e/Å ⁻³	0.748/-0.313	0.578/-0.275	0.243/-0.244	0.617/-0.371

Synthesis of Dipp Nacnac-Magnesium-Amide Compounds

Synthesis of Compound 3

To a solution of 1 (0.291 g, 0.5 mmol) in 5 mL of THF, 85 μ L (0.5 mmol) of di-n-butylamine was added affording a yellow solution which was stirred at room temperature for 3 h. Then, the solution was concentrated *in vacuo*, resulting in a yellow suspension. Gentle heating of this mixture and slow cooling to room temperature produced a crop of colourless crystals, compound 3, in a 16% yield (0.116 g). In order to obtain a good yield the reaction was repeated on a 1 mmol scale and after 3 h of reaction time, all THF was removed under vacuum and the compound was suspended in 10 mL of hexane. The resulting solid was isolated via filtration and stored in the glove box (0.368 g, 57%). Due to the inherent air-sensitive nature of this compound, no satisfactory CHN analysis could be obtained despite several attempts.

¹H NMR (400.1 MHz, C₆D₆, 300 K): $\delta \sim 7.18$ (br. s, 6H, Ar(C)-H of ^{Dipp}Nacnac), 4.79 (s, 1H, CH of ^{Dipp}Nacnac), 3.75 (br. m, 4H, CH₂O of THF), 3.29 (br. m, 4H, C(H)(CH₃)₂ of ⁱPr), 2.75 (br. m, 4H, -N(CH₂CH₂CH₂CH₃)₂), 1.66 (s, 6H, CH₃ of ^{Dipp}Nacnac), 1.36 (br. m, 16H, C(H)(CH₃)₂ of ⁱPr and CH₂ of THF), 1.23 (br. d, 12H, C(H)(CH₃)₂ of ⁱPr), 1.10 (br. m, 8H, N(CH₂CH₂CH₂CH₃)₂), 0.86 (br. t, 6H, N(CH₂CH₂CH₂CH₃)₂) ppm

¹³C{¹H} NMR (100.62 MHz, C₆D₆, 300 K): $\delta \sim 168.38$ ($C(CH_3)$ of ^{Dipp}Nacnac), 146.72 (C_q of Ar), 142.44 (C_q (ⁱPr) of Ar), 125.26 (Ar- CH_{meta}), 123.96 (Ar- $C-H_{para}$), 94.6 (C-H of ^{Dipp}Nacnac), 69.9 (CH_2O of THF), 56.3 (N($CH_2CH_2CH_2CH_3$)₂), 36.14 (N($CH_2CH_2CH_2CH_3$)₂), 28.29 ($C(H)(CH_3)_2$ of ⁱPr), 25.40 (CH_2 of THF), 24.87 ($C(H)(CH_3)_2$ of ⁱPr), 24.71 ($C(H)(CH_3)_2$ of ⁱPr), 24.51 (CH_3 of ^{Dipp}Nacnac), 21.60 (N($CH_2CH_2CH_3$)₂), 14.98 (N($CH_2CH_2CH_3$)₂) ppm.

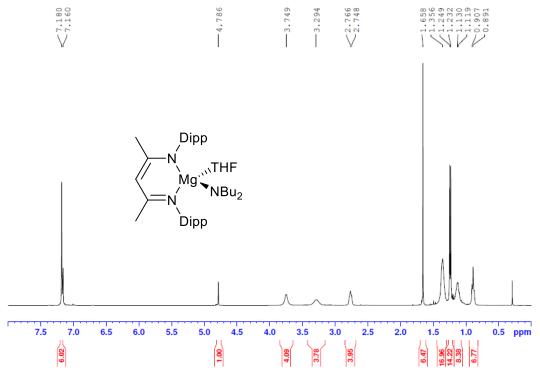


Figure S 1 ¹H NMR spectrum of compound 3

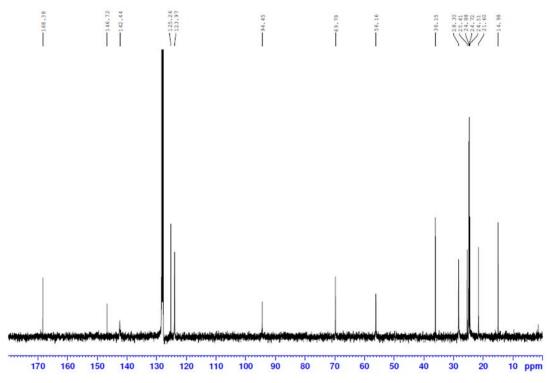


Figure S 2 ¹³C{¹H} NMR spectrum of compound 3

To a Schlenk flask, 1.25 g (3 mmol) of ^{Dipp}NacnacH was added and the flask was purged with argon to as to ensure an inert atmosphere. The compound was then dissolved in 30 mL of toluene and 3.1 mL (3.1 mmol) of a 1.0 M solution of di-*n*-butylmagnesium was added – this mixture was heated at 50°C for 1 hour, affording a colourless solution of ^{Dipp}NacnacMgBu. Once cooled to room temperature, 0.3 mL (3 mmol) of piperidine was added, resulting in a yellow suspension. This suspension was stirred at room temperature for 3 hours after which, gentle heating gave a yellow solution and slow cooling to room temperature afforded a crop of yellow crystals (1.12 g, 32.7%). Anal. Calcd. for C₇₅H₁₁₀Mg₂N₆: C, 77.62; H, 9.77; N, 7.99. Found: C, 74.50; H, 9.46; N, 7.23

¹H NMR (400.1 MHz, D₈-THF, 300 K): $\delta \sim 7.08$ (br. m, 12H, Ar(C)-H of ^{Dipp}Nacnac), 4.82 (s, 2H, CH of ^{Dipp}Nacnac), 3.19 (br. m, 8H, C(H)(CH₃)₂ of ⁱPr), 2.38 (t, 8H, -N(CH₂)₂(CH₂)₂CH₂ of piperidine), 1.64 (s, 12H, CH₃ of ^{Dipp}Nacnac), 1.24 (d, 24H, C(H)(CH₃)₂ of ⁱPr), 1.18 (d, 24H, C(H)(CH₃)₂ of ⁱPr), 0.87 (m, 12H, -N(CH₂)₂(CH₂)₂CH₂ of piperidine) ppm

¹³C{¹H} NMR (100.62 MHz, D₈-THF, 300 K): $\delta \sim 168.81$ (C(CH₃) of ^{Dipp}Nacnac), 146.28 (C_q of Ar), 142.78 (C_q(i Pr) of Ar), 125.23 (Ar-CH_{meta}), 123.54 (Ar-C-H_{para}), 94.47 (C-H of ^{Dipp}Nacnac), 54.44 (-N(CH₂)₂(CH₂)₂CH₂ of piperidine), 31.35 (-N(CH₂)₂(CH₂)₂CH₂ of piperidine), 28.49 (C(H)(CH₃)₂ of i Pr), 24.08 (C(H)(CH₃)₂ of i Pr), 25.12 (CH₃ of i DippNacnac), 24.37 (CH₃ of i DippNacnac) ppm

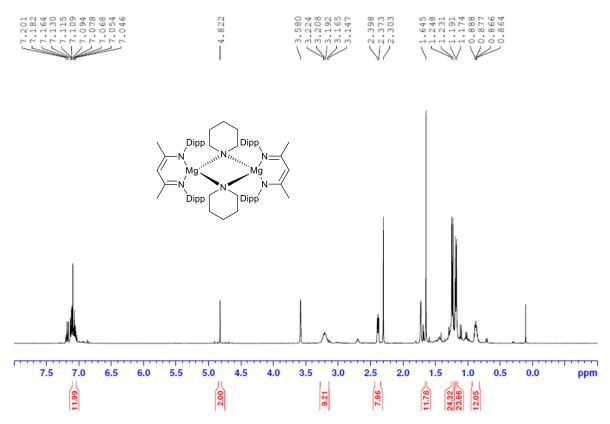


Figure S 3 1 H NMR spectrum of compound 4

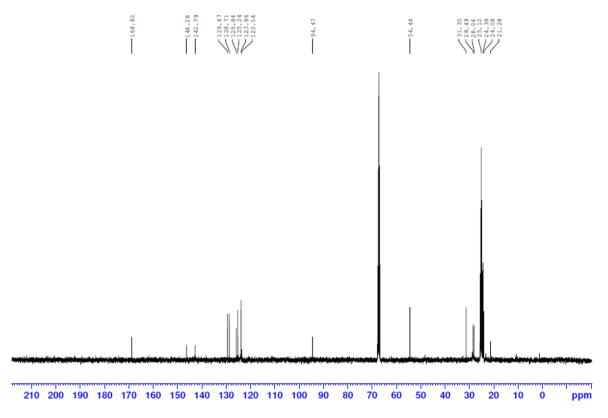


Figure S 4 13 C{ 1 H} NMR spectrum of compound 4

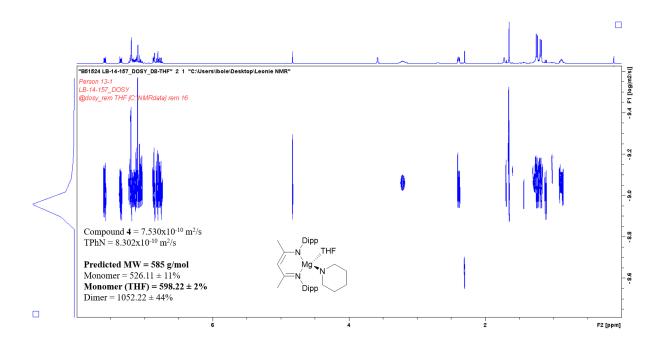


Figure S 5 ¹H DOSY NMR of compound 4 with TPhN as a reference standard

A solution if **2** (0.291 g, 0.5 mmol) in 5 mL of THF was prepared in a Schlenk flask, to which 43 μL (0.5 mmol) of morpholine was added and stirred at room temperature for 3 g. The resulting mixture gave a pale yellow solution which was concentrated *in vacuo* and cooled down to -30°C. After 24 h, a crop of colourless crystals was obtained, which upon X-ray crystallographic analysis proved to be compound **5** although the quality of data obtained does not allow for discussion of structural parameters. In order to obtain a good yield of this species, the reaction was repeated on a 1 mmol scale and, after stirring at room temperature, all THF was removed and the resulting white solid was suspended in 10 mL of hexane, isolated by filtration and stored inside the glovebox (0.439 g, 73%). ¹H DOSY NMR analysis has proven compound **5** to be a non-solvated monomer in D₈-THF solvent. Due to the inherent air-sensitive nature of this compound, no satisfactory CHN analysis could be obtained despite several attempts.

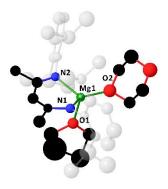


Figure S 6 Structure of compound 5 with displacement ellipsoids at 50% probability and all hydrogen atoms omitted for clarity. Structure appropriate only for general connectivity

¹H NMR (400.1 MHz, D₈-THF, 300 K): $\delta \sim 7.07$ (m, 6H, Ar(C)-H of ^{Dipp}Nacnac), 4.84 (s, 2H, CH of ^{Dipp}Nacnac), 3.21 (br. m, 4H, C(H)(CH₃)₂ of ⁱPr), 2.94 (m, 4H, -N(CH₂)₂(CH₂)₂O), 2.31 (m, 4H, -N(CH₂)₂(CH₂)₂O), 1.66 (s, 6H, CH₃ of ^{Dipp}Nacnac), 1.24 (d, 12H, C(H)(CH₃)₂ of ⁱPr), 1.18 (d, 12H, C(H)(CH₃)₂ of ⁱPr) ppm

¹³C{¹H} NMR (100.62 MHz, D₈-THF, 300 K): $\delta \sim 168.99$ (C(CH₃) of ^{Dipp}Nacnac), 146.09 (C_q of Ar), 142.76 (C_q(i Pr) of Ar), 125.34 (Ar-CH_{meta}), 123.93 (Ar-C-H_{para}), 94.51 (C-H of ^{Dipp}Nacnac), 71.05 (-N(CH₂)₂(CH₂)₂O), 53.43 (-N(CH₂)₂(CH₂)₂O), 28.50 (C(H)(CH₃)₂ of i Pr), 24.05 (C(H)(CH₃)₂ of i Pr), 25.11 (CH₃ of ^{Dipp}Nacnac), 24.36 (CH₃ of ^{Dipp}Nacnac) ppm

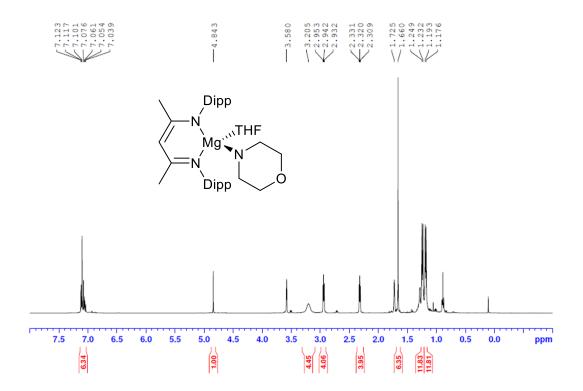


Figure S 7 1 H NMR spectrum of compound 5

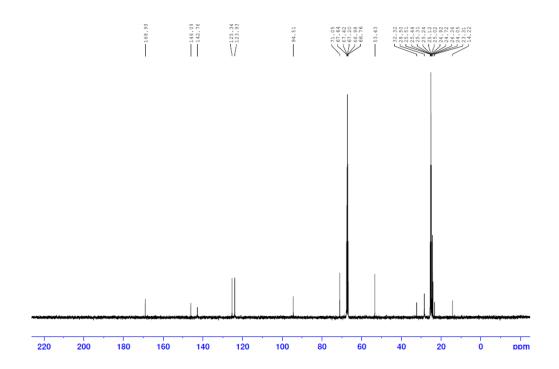


Figure S 8 ¹³C{¹H} NMR spectrum of compound 5

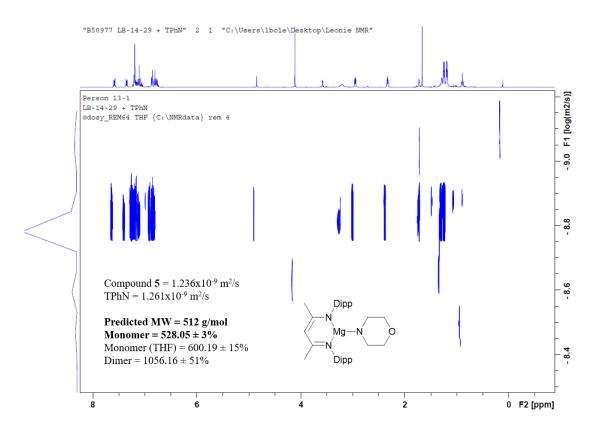


Figure S 9 ¹H DOSY of compound 5 in D₈-THF showing non-solvated monomer

The synthesis of compound **6** was carried out according to the reported method.² To a Schlenk flask, 1.25 g (3 mmol) of ^{Dipp}NacnacH was added and the flask was purged with argon to as to ensure an inert atmosphere. The compound was then dissolved in 30 mL of toluene and 3.1 mL (3.1 mmol) of a 1.0 M solution of di-*n*-butylmagnesium was added – this mixture was heated at 50°C for 1 hour, affording a colourless solution of ^{Dipp}NacnacMgBu. Once cooled to room temperature, 0.26 mL (3.1 mmol) of pyrrolidine was added, resulting in a yellow suspension. This suspension was stirred at room temperature for 3 hours after which, gentle heating gave a yellow solution and slow cooling to room temperature afforded a crop of yellow crystals (0.277 g, 9%).

NMR analysis was performed in D₈-THF with gentle heating required in order to solubilise the compound.

¹H NMR (400.1 MHz, D₈-THF, 300 K): $\delta \sim 7.10$ (m, 12H, Ar(C)-H of DippNacnac), 4.82 (s, 2H, CH of DippNacnac), 3.22 (br. m, 4H, C(H)(CH₃)₂ of Pr), 2.26 (m, 8H, N(CH₂)₂(CH₂)₂), 1.65 (s, 12H, CH₃ of DippNacnac), 1.18 (m, 48H, C(H)(CH₃)₂ of Pr), 1.02 (m, 8H, N(CH₂)₂(CH₂)₂) ppm

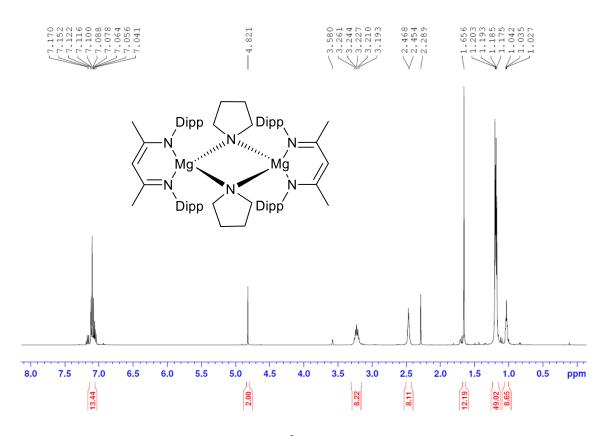


Figure S 10 ^{1}H NMR of compound 6

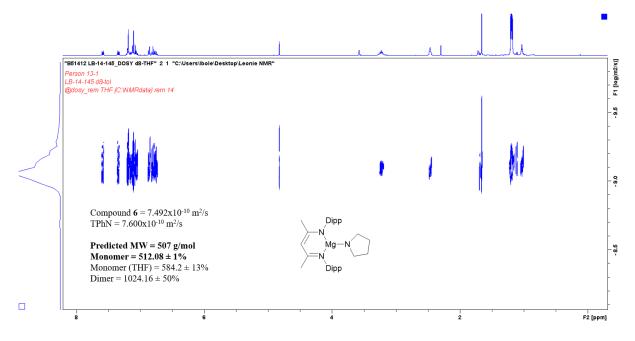


Figure S 11 ¹H DOSY NMR spectrum of compound 6 in D₈-THF with TPhN as reference standard

To an argon-flushed Schlenk flask, 1 mL of a 1.0 M solution of di-*n*-butylmagnesium was added to 10 mL of dried hexane. Then, 0.169 g (1 mmol) of diphenylamine was added giving a white suspension – this mixture was refluxed at 70°C for 1 hour. After this, 1 mmol (0.416 g) of ^{Dipp}NacnacH was added via a solid addition tube and the white suspension was heated to reflux for a further 2 hours. Once cooled to room temperature, all of the hexane was removed under vacuum and 7 mL of toluene was added. Gentle heating afforded a pale green solution and slow cooling to room temperature overnight gave a crop of green crystals (compound **6** in 0.348 g, 57% yield). Anal. Calcd. for C₄₁H₅₁MgN₃: C, 80.71; H, 8.42; N, 6.98. Found C, 80.61; H, 8.57; N, 6.79

¹H NMR (400.1 MHz, C₆D₆, 300 K): $\delta \sim 7.05$ (m, 6H, Ar(C)-H of ^{Dipp}Nacnac), 6.49 (t, 4H, Ar(C)-H_{meta} of diphenylamine), 6.62 (t, 2H, Ar(C)-H_{para} of diphenylamine), 6.45 (d, 4H, Ar(C)-H_{ortho} of diphenylamine), 4.93 (s, 2H, CH of ^{Dipp}Nacnac), 3.09 (sept., 4H, C(H)(CH₃)₂ of ⁱPr), 1.65 (s, 6H, CH₃ of ^{Dipp}Nacnac), 1.14 (d, 12H, C(H)(CH₃)₂ of ⁱPr), 1.04 (d, 12H, C(H)(CH₃)₂ of ⁱPr) ppm

¹³C{¹H} NMR (100.62 MHz, C₆D₆, 300 K): $\delta \sim 171.18$ (C(CH₃) of ^{Dipp}Nacnac), 154.63 (Ar(C_{ipso}) of diphenylamine), 143.44 (C_q of Ar), 142.21 (C_q(i Pr) of Ar), 130.03 (Ar-CH_{meta} of diphenylamine), 126.35 (Ar-CH_{meta}), 124.39 (Ar-C-H_{para}), 120.36 (Ar-CH_{ortho} of diphenylamine), 118.11 (Ar-CH_{para} of diphenylamine), 95.94 (C-H of ^{Dipp}Nacnac), 29.08 (C(H)(CH₃)₂ of i Pr), 24.25 (CH₃ of ^{Dipp}Nacnac), 24.18 (CH₃ of D 1 of D 2 of D 3 of D 4 (CH₃)₂ of D 4 (CH₃)₂ of D 4 (CH₃)₂ of D 5 ppm

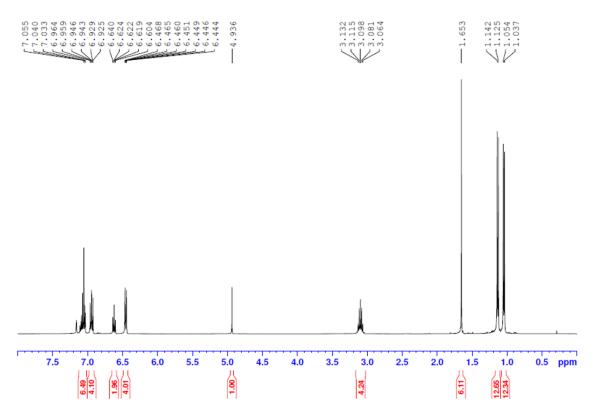


Figure S 12 $^1\!H$ NMR spectrum of compound 9

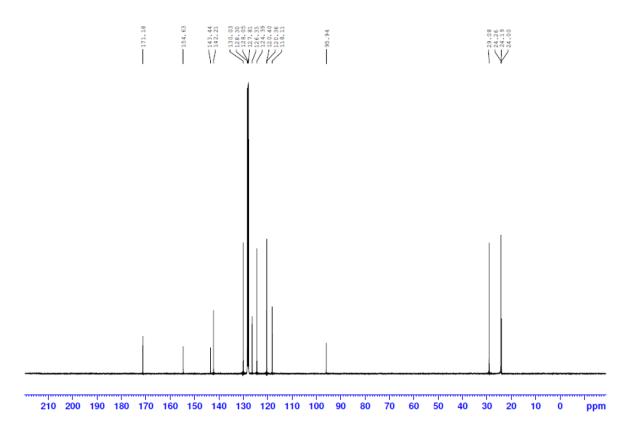


Figure S 13 $^{13}C\{^1H\}$ NMR spectrum of compound 9

To a solution of 1 (0.56 g, 1 mmol) in THF (5 mL), benzotriazole (0.120 g, 1 mmol) was added, giving rise to a yellow solution. This was stirred for 4 hours at room temperature and resulted in the formation of a yellow suspension. Removal of all THF and addition of 10 mL of toluene gave a yellow suspension which was filtered and, from the filtrate, colourless crystals obtained. In order to obtain a good yield of the compound, after 4 hours of reaction the solvent was removed and 10 mL of hexane was added obtaining a suspension. The resulting solid was isolated via filtration and placed in a glovebox (0.31 g, 55%). Due to the inherent air-sensitive nature of this compound, no satisfactory CHN analysis could be obtained despite several attempts.

¹H NMR (400.13 MHz, D₅-pyr, 300 K) δ 7.51-7.48 (br. m, 4H, C₆ H_4 N₃), 7.36-7.24 (br.m, 16H, C₆ H_4 N₃ + Ar(C)-H of ^{Dipp}Nacnac), 5.20 (s, 2H, CH of ^{Dipp}Nacnac), 3.26-3.17 (m, 8H, CH, C(H)(CH₃)₂ of ⁱPr), 1.89 (s, 12H, CH₃ of ^{Dipp}Nacnac), 1.17-1.15 (d, 24H, CH₃, C(H)(CH₃)₂ of ⁱPr), 0.66-0.64 (d, 24H, CH₃, C(H)(CH₃)₂ of ⁱPr) ppm

¹³C{¹H} NMR (100.61 MHz, D₅-pyr, 343 K) δ 170.3 (*C*(CH₃) of ^{Dipp}Nacnac),145.8 (*C*q, Ar), 145.7 (*C*q of Ar), 143.3 (*C*q of Ar), 125.9 (*C*H, *C*₆H₄N₃), 124.5 (Ar-*C*H_{meta}), 123.5 (Ar-*C*-H_{para}), 117.2 (*C*H, *C*₆H₄N₃), 95.3 (*C*H of ^{Dipp}Nacnac), 38.9 (*C*(H)(CH₃)₂ of ⁱPr), 32.4 (*C*H₃ of ^{Dipp}Nacnac), 32.2 (*C*H₃ of ^{Dipp}Nacnac), 29.0 (C(H)(*C*H₃)₂ of ⁱPr), 26.3 (C(H)(*C*H₃)₂ of ⁱPr) ppm

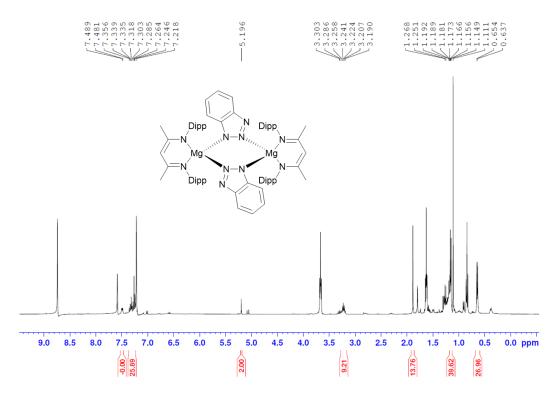


Figure S 14 ¹H NMR spectrum of compound 10

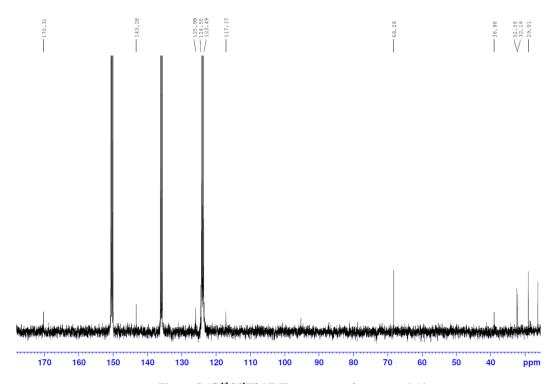


Figure S 15 $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of compound 10

Synthesis of Aminofluoroarenes (7a-7i, 11a-11i)

Synthesis of Compound 7a

To a J. Young's NMR tube, 0.146 g (0.25 mmol) of **1** was added and dissolved in 0.5 mL of D_8 -THF alongside 46 μ L (0.25 mmol) of di-n-butylamine. After 1 h, di-n-butylamine had been quantitatively deprotonated, forming compound **3** in solution – confirmed by NMR spectroscopy. Then, 0.25 mmol (48 mg) of 2-(2,4-difluorophenyl)pyridine was added and immediate precipitation of **8** ([(Dipp NacnacMg(μ -F)(THF)]₂) was observed. Analysis of the resulting mixture, after filtration, by 1 H NMR revealed quantitative C-F activation giving rise to compound **7a** (>99%) with the yield determined against 20 mol% ferrocene (9 mg) as an internal standard.

For purification, 0.640 (1.1 mmol) of $\bf 1$ was added to a Schlenk flask prepared inside a glovebox and then dissolved in 5 mL of THF giving a yellow solution. 7Then, 0.9 mL of a 1.0 M solution of 2-(2,4-difluorophenyl)pyridine in THF was added to the reaction mixture resulting in the immediate precipitation of a yellow solid. The reaction mixture was stirred at room temperature overnight. Following a filtration and washing with THF, the filtrate was evaporated to dryness resulting in a cloudy yellow oil. Reverse-phase HPLC purification of compound $\bf 7a$ was conducted using a Gilson preparative HPLC system of 322 pumps coupled to a 151 UV/Vis 163 spectrometer, 234 Autoinjector and a GX-271 liquid handler using an Agilent Zorbax SB-C18, 21.2 x 150 mm, 5 μ m column at room temperature. Purification was performed using a gradient method ranging from 5-90% MeCN (1% trifluoroacetic acid (TFA)) in H₂O (1% TFA) over 25 minutes at a flow rate of 5 mL/min, with UV monitoring at 254 nm. Analysis was conducted using Gilson Trilution software. Compound $\bf 7a$ was thus isolated as the TFA salt. Washing with 2 M NaOH solution and extracting with DCM resulted in the purified compound as a yellow oil, 93 mg, 34%.

¹H NMR (400.1 MHz, CDCl₃, 300 K): $\delta \sim 8.67$ (m, 1H, Ar-H of py), 7.77 (dt, 1H, Ar-H of py), 7.64 (td, 1H, Ar-H of py), 7.48 (m, 1H, Ar-H), 7.17 (m, 1H, Ar-H of py), 6.75 (m, 2H, Ar-H), 2.81 (t, 4H, -N(CH₂(CH₂)₂CH₃)₂), 1.36 (m, 4H, -N(CH₂(CH₂)₂CH₃)₂), 1.13 (-N(CH₂(CH₂)₂CH₃)₂), 0.81 (t, 6H, -N(CH₂(CH₂)₂CH₃)₂), ppm

¹⁹**F**{¹**H**} **NMR** (376.5 **MHz**, **CDCl**₃, 300 **K**): $\delta \sim -112.92$ (s, Ar-*F*)

¹³C{¹H} NMR (100.62 MHz, CDCl₃, 300 K): $\delta \sim 164.7$ (Ar(C_q) of py), 162.2 (Ar(C_q)), 158.9 (Ar(C_q)-di-n-butylamine), 151.6 (d, Ar(C)-F), 149.8 (Ar(C)-H), 135.7 (Ar(C)-H), 133.0 (d, Ar(C)-H), 124.5 (Ar(C)-H), 121.5 (Ar(C)-H), 108.6 (d, Ar(C)-H), 107.4 (d, Ar(C)-H), 52.7 (-N(CH₂(CH₂)₂CH₃)₂), 29.0 (-N(CH₂CH₂CH₃)₂), 20.5 (-N(CH₂CH₂CH₃)₂), 14.0 (-N(CH₂(CH₂)₂CH₃)₂) ppm

LRMS (GC/ESI) m/z: 301.2 [M+H]+

HRMS (TOF) Calc. for, C₁₉H₂₅N₂F₁ 300.2002; Found, 300.1999 (error 1.29 ppm)

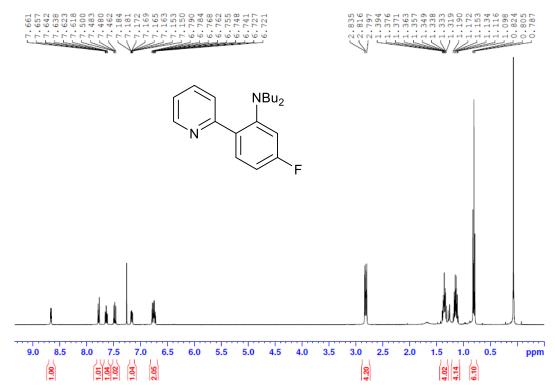


Figure S 16 ^{1}H NMR spectrum of compound 7a

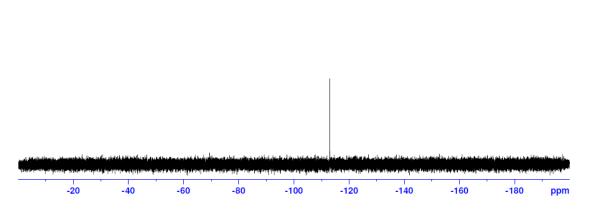


Figure S 17 19 F NMR spectrum of compound 7a

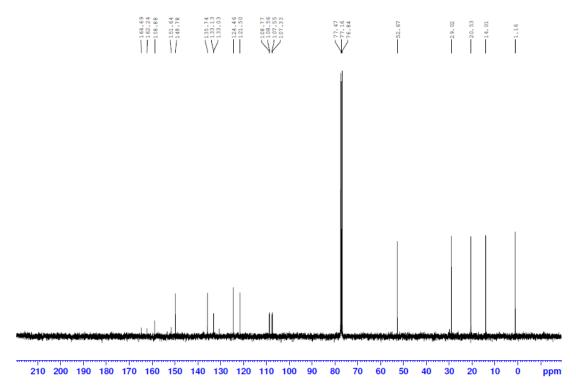


Figure S 18 ¹³C{¹H} NMR spectrum of compound 7a

To a J. Young's NMR tube, 0.146 g (0.25 mmol) of **1** was added and dissolved in 0.5 mL of D_8 -THF alongside 25 μ L (0.25 mmol) of piperidine. After 1 h, piperidine had been quantitatively deprotonated, forming compound **4** in solution – confirmed by NMR spectroscopy. Then, 0.25 mmol (48 mg) of 2-(2,4-difluorophenyl)pyridine was added and immediate precipitation of **8** ([(Dipp NacnacMg(μ -F)(THF)]₂) was observed. Analysis of the resulting mixture, after filtration, by 1 H NMR revealed quantitative C-F activation giving rise to compound **7b** (>99%) with the yield determined against 20 mol% ferrocene (9 mg) as an internal standard.

For purification, 0.640 (1.1 mmol) of **1** was added to a Schlenk flask prepared inside a glovebox and then dissolved in 5 mL of THF giving a yellow solution. To this, 0.11 mL (1.1 mmol) of piperidine was added with the yellow solution persisting – this was stirred at room temperature for 6 h. Then, 0.9 mL of a 1.0 M solution of 2-(2,4-difluorophenyl)pyridine in THF was added to the reaction mixture resulting in the immediate precipitation of a yellow solid. The reaction mixture was stirred at room temperature overnight. Following a filtration and washing with THF, the filtrate was evaporated to dryness resulting in a cloudy yellow oil. Reverse-phase HPLC purification of compound **7b** was conducted using a Gilson preparative HPLC system of 322 pumps coupled to a 151 UV/Vis 163 spectrometer, 234 Autoinjector and a GX-271 liquid handler using an Agilent Zorbax SB-C18, 21.2 x 150 mm, 5 µm column at room temperature. Purification was performed using a gradient method ranging from 5-90% MeCN (1% trifluoroacetic acid (TFA)) in H₂O (1% TFA) over 25 minutes at a flow rate of 5 mL/min, with UV monitoring at 254 nm. Analysis was conducted using Gilson Trilution software. Compound **7b** was thus isolated as the TFA salt. Washing with 2 M NaOH solution and extracting with DCM resulted in the purified compound as a yellow oil, 92 mg, 40%.

¹H NMR (400.1 MHz, CDCl₃, 300 K): $\delta \sim 8.68$ (m, 1H, Ar-H of py), 7.99 (dt, 1H, Ar-H of py), 7.66 (td, 1H, Ar-H of py), 7.54 (m, 1H, Ar-H), 7.16 (qd, 1H, Ar-H of py), 6.75 (m, 2H, Ar-H x 2), 2.78 (m, 4H, -N(CH₂)₂(CH₂)₂CH₂), 1.48 (m, 6H, -N(CH₂)₂(CH₂)₂CH₂) ppm

¹⁹F NMR (376.5 MHz, CDCl₃, 300 K): $\delta \sim -112.15$ (m, Ar-F)

¹³C{¹H} NMR (100.62 MHz, CDCl₃, 300 K): $\delta \sim 164.9$ (Ar(C_q) of py), 162.5 (Ar(C_q)), 158.5 (Ar(C_q)-Piperidine), 153.7 (d, Ar(C)-F), 149.9 (Ar(C)-H), 135.6 (Ar(C)-H), 133.0 (d, Ar(C)-H), 124.2 (Ar(C)-H), 121.6 (Ar(C)-H), 108.8 (d, Ar(C)-H), 105.7 (d, Ar(C)-H), 53.2 (-N(CH₂)₂(CH₂)₂CH₂), 26.0 (-N(CH₂)₂(CH₂)₂CH₂), 24.1 (-N(CH₂)₂(CH₂)₂CH₂) ppm

LRMS (GC/ESI) *m/z*: 257 [M+H]⁺

HRMS (TOF): Calc. for C₁₆H₇FN₂, 256.1376; Found, 256.1370 (error 0.49 ppm)

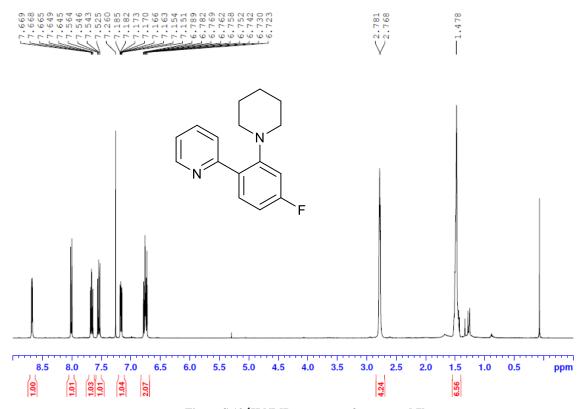


Figure S 19 ^{1}H NMR spectrum of compound 7b

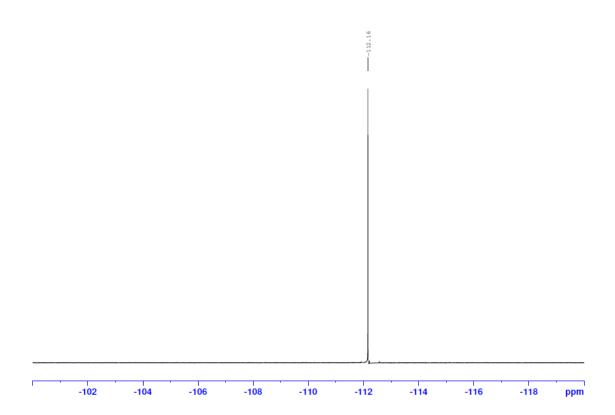


Figure S 20 19 F NMR spectrum of compound 7b

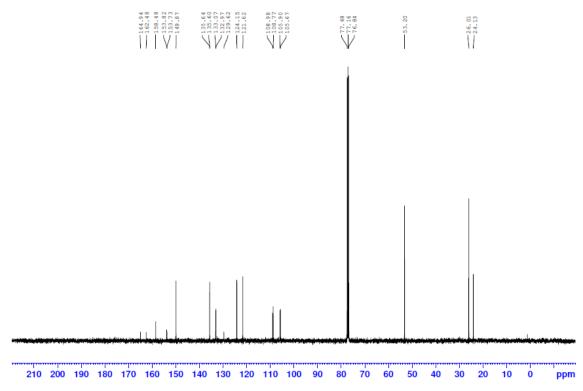


Figure S 21 $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of compound 7b

To a J. Young's NMR tube, 0.146 g (0.25 mmol) of **1** was added and dissolved in 0.5 mL of D₈-THF alongside 22 μ L (0.25 mmol) of morpohline. After 1 h, morpholine had been quantitatively deprotonated, forming compound **5** in solution – confirmed by NMR spectroscopy. Then, 0.25 mmol (48 mg) of 2-(2,4-difluorophenyl)pyridine was added and immediate precipitation of **8** ([(Dipp NacnacMg(μ -F)(THF)]₂) was observed. Analysis of the resulting mixture, after filtration, by 1 H NMR revealed quantitative C-F activation giving rise to compound **7c** (>99%) with the yield determined against 20 mol% ferrocene (9 mg) as an internal standard.

For isolation of the final organic product, this procedure was repeated on a 1 mmol scale inside a Schlenk flask under argon atmosphere. Once precipitation of **8** occurred, the solid was removed via cannula filtration and all THF solvent removed from the resulting filtrate. The oil obtained from the filtrate was then purified by alumina-flash column chromatography (100:5:10 pentane: trimethylamine:ethyl acetate) to give the target compound as a brown, crystalline solid in 81% (204 mg) yield.

¹H NMR (400.1 MHz, CDCl₃, 300 K): $δ \sim 8.67$ (m, 1H, Ar-H of py), 7.94 (dt, 1H, Ar-H of py), 7.67 (m, 1H, Ar-H of py), 7.53 (m, 1H, Ar-H), 7.18 (m, 1H, Ar-H of py), 6.80 (td, 1H, Ar-H), 6.73 (dd, 1H, Ar-H), 3.61 (t, 4H, -N(CH₂)₂(CH₂)₂O), 2.81 (t, 4H, -N(CH₂)₂(CH₂)₂O) ppm

¹⁹F NMR (376.5 MHz, CDCl₃, 300 K): $\delta \sim -111.50$ (m, Ar-F)

¹³C{¹H} NMR (100.62 MHz, CDCl₃, 300 K): $\delta \sim 164.87$ (Ar(C_q)-N(C H_2)₂(CH₂)₂O), 162.4 (Ar(C_q) of py), 152.06 (d, Ar(C)-F), 149.4 (Ar(C)-H of py), 135.8 (Ar(C)-H of py), 133.4 (Ar(C)-H), 129.6 (Ar(C_q) of Ph), 124.2 (Ar(C)-H of py), 122.0 (Ar(C)-H of py), 109.6 (Ar(C)-H), 105.5 (Ar(C)-H), 66.79 (N(CH₂)₂(CH₂)₂O), 51.9 (-N(CH₂)₂(CH₂)₂O) ppm

LRMS (GC/ESI) *m/z*: 259.1 [M+H]⁺

HRMS (TOF): Calc. for C₁₅H₁₅FN₂O, 258.1168; Found, 258.1163 (error 0.26 ppm)

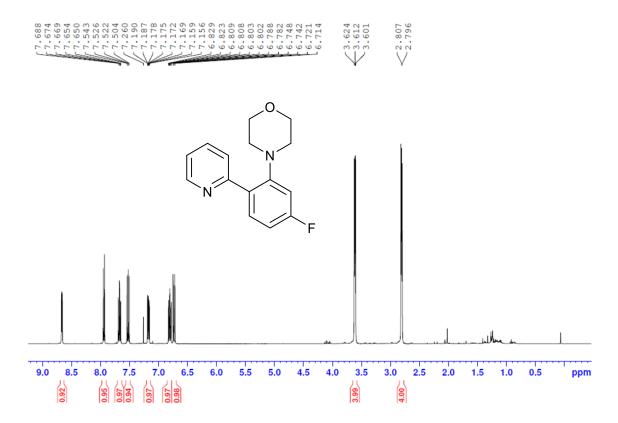
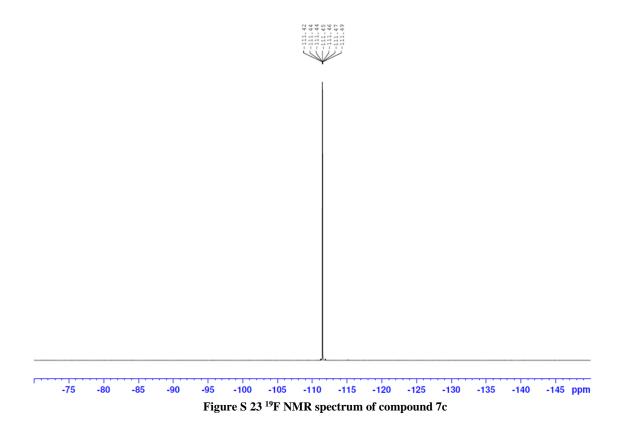



Figure S 22 $^1\!H$ NMR spectrum of compound 7c

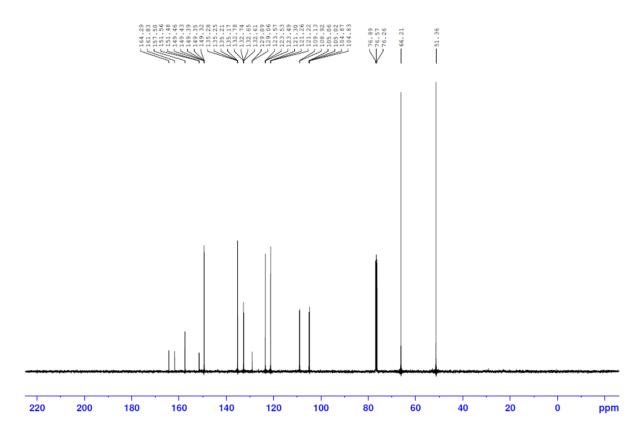


Figure S 24 $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of compound 7c

To a J. Young's NMR tube, 0.146 g (0.25 mmol) of **1** was added and dissolved in 0.5 mL of D_8 -THF alongside 21 μ L (0.25 mmol) of pyrrolidine. After 1 h, pyrrolidine had been quantitatively deprotonated, forming compound **6** as a THF-solvated monomer (supported by DOSY NMR studies - **Figure S 11**) in solution – confirmed by NMR spectroscopy (**Figure S 26**). Then, 0.25 mmol (48 mg) of 2-(2,4-difluorophenyl)pyridine was added and immediate precipitation of **8** ([(Dipp NacnacMg(μ -F)(THF)]₂) was observed. Analysis of the resulting mixture, after filtration, by 1 H NMR revealed quantitative C-F activation giving rise to compound **7d** (>99%) with the yield determined against 20 mol% ferrocene (9 mg) as an internal standard. The general procedure depicted in (**Figure S 25-Figure S 29**) was carried for compounds **7a-7i** in order to determine NMR yields of these compounds.

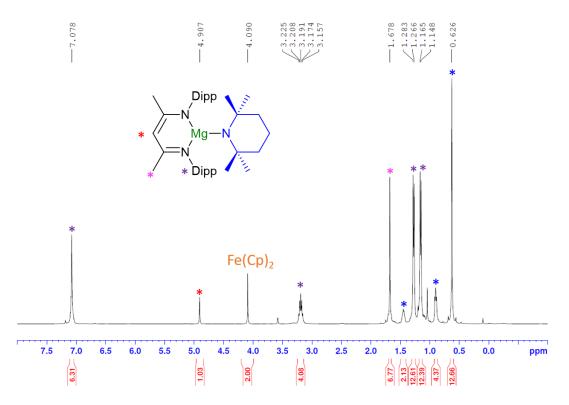


Figure S 25 ¹H NMR spectrum of compound 1 with 20 mol% Fe(Cp)₂ in D₈-THF

¹H NMR (400.1 MHz, D₈-THF, 300 K): $\delta \sim 7.08$ (br. s, 6H, Ar-*H* of Dipp), 4.91 (s, 1H, C-*H* of Dipp) denote backbone), 4.90 (s, 2H, 20 mol% Fe(Cp)₂), 3.19 (sept., 4H, C-*H* of Pr), 1.67 (s, 6H, C*H*₃ x2 of Dipp Nacnac backbone), 1.28 (br. m, 2H, γ-C*H*₂ of TMP), 1.26 (d, 12H, C*H*₃ of Pr), 1.15 (d, 12H, C*H*₃ of Pr), 0.9 (br. m, 4H, β-C*H*₂ of TMP), 0.63 (s, 12H, C*H*₃ of TMP) ppm

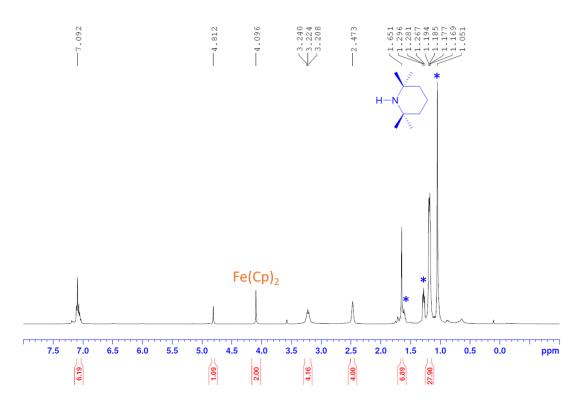


Figure S 26 1H NMR of in situ deprotonation of pyrrolidine, forming compound 6, against 20 mol% Fe(Cp)2 in D₈-THF

¹H NMR (400.1 MHz, D₈-THF, 300 K): $\delta \sim 7.09$ (m, 12H, Ar(C)-H of ^{Dipp}Nacnac), 4.81 (s, 2H, CH of ^{Dipp}Nacnac), 4.09 (s, 2H, Fe(Cp)₂), 3.22 (br. m, 4H, C(H)(CH₃)₂ of ⁱPr), 2.47 (m, 4H, N(CH₂)₂(CH₂)₂ of compound **6**), 1.18 (br. m, 28H, CH₃ of ^{Dipp}Nacnac x2 + N(CH₂)₂(CH₂)₂ of compound **6**) ppm

Addition of **ppf** results in the precipitation of **8** ([(Dipp NacnacMg(μ -F)(THF)]₂), leading to very broad and poorly resolved spectra due to the highly insoluble nature of this compound.

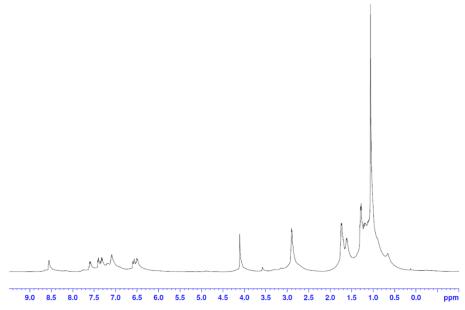


Figure S 27 1 H NMR spectrum after addition of ppf to compound 6 in D₈-THF. Precipitation of compound 8 leads to broad and poorly resolved spectra

Filtering the reaction mixture allowed for the removal of insoluble $\bf 8$ and obtainment of a well-defined spectrum displaying the formation of compound $\bf 7d$, the yield of which can be determined against $Fe(Cp)_2$.

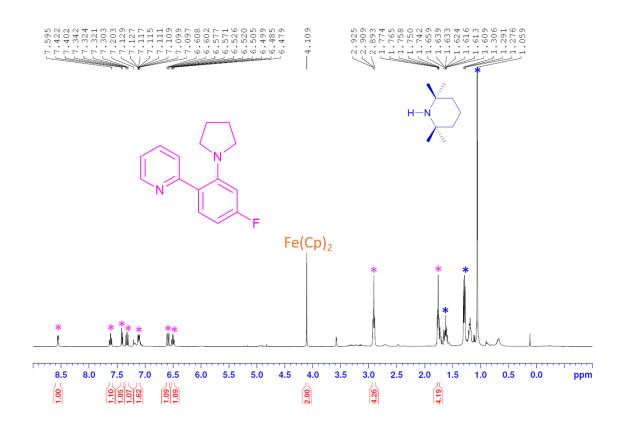


Figure S 28 1 H NMR of compound 7d in D₈-THF formed from C-F activation of ppf by in-situ formed compound 6

¹H NMR (400.1 MHz, D₈-THF, 300 K): $\delta \sim 7.59$ (m, 1H, Ar-*H* of py), 7.62 (dt, 1H, Ar-*H* of py), 7.40 (br. d, 1H, Ar-*H* of py), 7.30 (br. t, 1H, Ar-*H*), 7.09 (m, 1H, Ar-*H* of py + residual 8 ([(^{Dipp}NacnacMg(μ-F)(THF)]₂) which is sparingly soluble in D₈-THF), 6.57 (dd, 1H, Ar-*H*), 6.48 (td, 1H, Ar-*H*), 2.91 (br. t, 4H, -N(CH₂)₂(CH₂)₂), 1.75 (br. m, 4H, -N(CH₂)₂(CH₂)₂) ppm

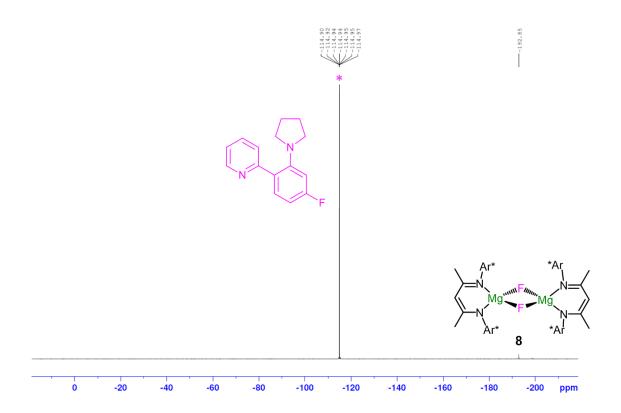


Figure S 29 19 F NMR spectrum of compound 7d in D₈-THF formed from the C-F activation of ppf by compound 6

¹⁹**F NMR (376.5 MHz, CDCl₃, 300 K):** $\delta \sim -114.9$ (m, Ar-*F*), -192.8 (8 ([(^{Dipp}NacnacMg(μ-F)(THF)]₂) ppm

For purification, 0.640 (1.1 mmol) of **1** was added to a Schlenk flask prepared inside a glovebox and then dissolved in 5 mL of THF giving a yellow solution. To this, 0.11 mL (1.1 mmol) of pyrrolidine was added with a bright yellow solution persisting – this was stirred at room temperature for 2 h. Then, 0.9 mL of a 1.0 M solution of 2-(2,4-difluorophenyl)pyridine in THF was added to the reaction mixture resulting in the immediate precipitation of a yellow solid. The reaction mixture was stirred at room temperature overnight. Following a filtration and washing with THF, the filtrate was evaporated to dryness resulting in a cloudy yellow oil. Reverse-phase HPLC purification of compound **7d** was conducted using a Gilson preparative HPLC system of 322 pumps coupled to a 151 UV/Vis 163 spectrometer, 234 Autoinjector and a GX-271 liquid handler using an Agilent Zorbax SB-C18, 21.2 x 150 mm, 5 µm column at room temperature. Purification was performed using a gradient method ranging from 5-90% MeCN (1% trifluoroacetic acid (TFA)) in H₂O (1% TFA) over 25 minutes at a flow rate of 5 mL/min, with UV monitoring at 254 nm. Analysis was conducted using Gilson Trilution software. Compound **7d** was thus isolated as the TFA salt. Washing with 2 M NaOH solution and extracting with DCM resulted in the purified compound as a yellow oil, 93 mg, 39%.

¹**H NMR** (**400.1 MHz, CDCl₃, 300 K**): $\delta \sim 8.63$ (m, 1H, Ar-*H* of py), 7.65 (dt, 1H, Ar-*H* of py), 7.42 (br. d, 1H, Ar-*H* of py), 7.27 (br. t, 1H, Ar-*H*), 7.16 (m, 1H, Ar-*H* of py), 6.54 (m, 2H, Ar-*H*), 2.92 (br. t, 4H, -N(CH_2)₂(CH_2)₂), 1.78 (br. m, 4H, -N(CH_2)₂(CH_2)₂) ppm

¹⁹F NMR (376.5 MHz, CDCl₃, 300 K): $\delta \sim -113.40$ (m, Ar-F)

¹³C{¹H} NMR (100.62 MHz, CDCl₃, 300 K): $\delta \sim 164.9$ (Ar(C_q)-N(CH₂)₂(CH₂)₂), 162.5 (Ar(C_q) of py), 160.7 (Ar(C_q) of Ph), 149.2 (d, Ar(C)-F), 149.0 (Ar(C)-H of py), 135.9 (Ar(C)-H of py), 133.8 (Ar(C)-H), 133.7 (Ar(C)-H) 124.2 (Ar(C)-H of py), 122.1 (Ar(C)-H of py), 104.1 (d, Ar(C)-H of Ph), 51.3 (-N(CH₂)₂(CH₂)₂), 25.7 (-N(CH₂)₂(CH₂)₂) ppm

LRMS (GC/ESI) m/z: 243.3 [M+H]+

HRMS (TOF): Calc. for C₁₅H₁₅FN₂, 242.1219; Found, 242.1214 (error 0.42 ppm)

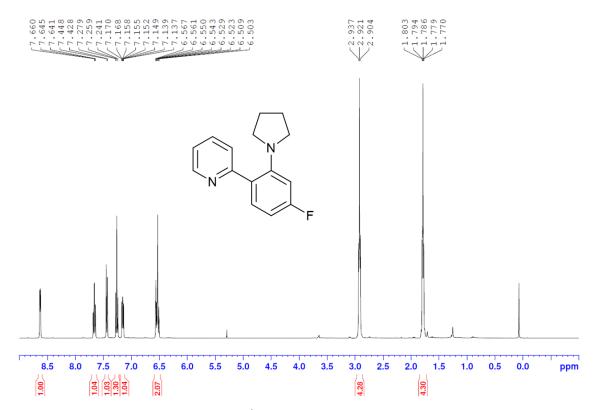


Figure S 30 ^{1}H NMR spectrum of compound 7d

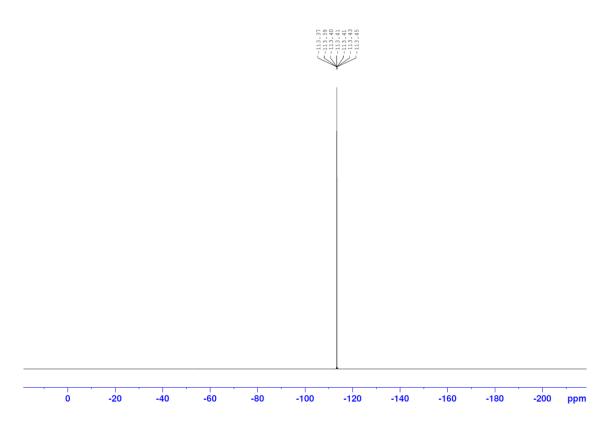


Figure S 31 $^{19}\mbox{F}$ NMR spectrum of compound 7d

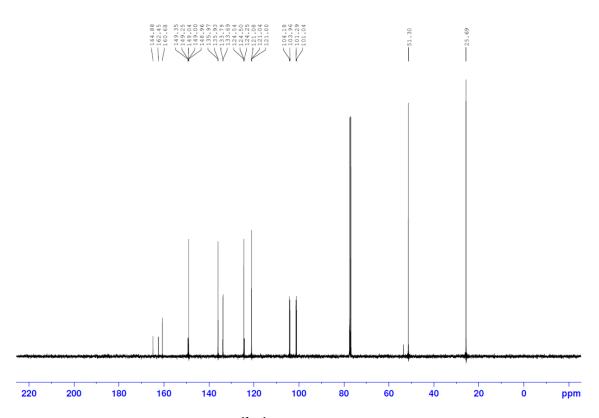


Figure S 32 $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of compound 7d

Inside the glovebox, 0.146 (0.25 mmol) of **1** was added to a J. Young's NMR tube and dissolved in 0.5 ml of D₈-THF and to this, 46 μ L (0.25 mmol) of di-*n*-butylamine was added and the deprotonation monitored by NMR spectroscopy. After quantitative transamination had occurred forming **3** in solution, 22 μ L of 2-fluoropyridine was introduced resulting in the immediate precipitation of ([(DippNacnacMg(μ -F)(THF)]₂) (**8**). NMR analysis, after filtration, confirmed C-F activation had occurred, generating compound **7f** in an 84% yield against 17 mol% ferrocene (8 mg) as an internal standard. The values obtained for this compound are consistent with that which are reported in the literature – compound verified in CDCl₃ solvent.⁵

¹H NMR (400.1 MHz, D₈-THF, 300 K): $\delta \sim 8.02$ (d, 1H, Ar-*H*), 7.31 (t, 1H, Ar-*H*), 6.42 (d, 1H, Ar-*H*), 6.32 (t, 1H, Ar-*H*), 4.10 (Fe(Cp)₂), 3.43 (t, 4H, -N(CH₂)₂(CH₂)₂CH₃), 1.56 (m, 6H, -N(CH₂)₂(CH₂)₂CH₃ + γ-CH₂ of TMP(H)), 1.30 (m, 8H, -N(CH₂)₂(CH₂)₂CH₃ + β-CH₂ of TMP(H)), 1.06 (s, 12H, CH₃ of TMP(H)) 0.94 (t, 6H, -N(CH₂)₂(CH₂)₂CH₃ of compound 3 and di-*n*-butylamine) ppm

 19 F{ 1 H} NMR (376.5 MHz, D₈-THF, 300 K): δ ~ -68.35 (s, 2-fluoropyridine), -184.64 (compound 8)

¹³C{¹H} NMR (100.62 MHz, D₈-THF, 300 K): $\delta \sim 168.73$ (Ar(*C*)_q), 148.6 (Ar(*C*)-H), 137.0 (Ar(*C*)-H), 111.5 (Ar(*C*)-H), 105.7 (Ar(*C*)-H), 48.83 (-N(CH₂(CH₂)₂CH₃)₂), 30. (-N(CH₂(CH₂)₂CH₃)₂), 20.9 (-N(CH₂(CH₂)₂CH₃)₂), 14.2 (-N(CH₂(CH₂)₂CH₃)₂)ppm

¹H NMR (400.1 MHz, CDCl₃, 300 K): $\delta \sim 8.17$ (m, 1H, Ar-H), 7.43 (m, 1H, Ar-H), 6.63 (m, 2H, Ar-H), 3.43 (t, 4H, -N(CH₂(CH₂)₂CH₃)₂), 1.57 (m, 4H, -N(CH₂(CH₂)₂CH₃)₂), 1.36 (m, 4H, -N(CH₂(CH₂)₂CH₃)₂), 0.95 (t, 6H, -N(CH₂(CH₂)₂CH₃)₂ ppm

¹³C{¹H} NMR (100.62 MHz, CDCl₃, 300 K): $\delta \sim 158.1 \text{ (Ar}(C)_q)$, 148.2 (Ar(*C*)-H), 1369 (Ar(*C*)-H), 110.8 (Ar(*C*)-H), 105.6 (Ar(*C*)-H), 48.5 (-N(CH₂(CH₂)₂CH₃)₂), 29.9 (-N(CH₂(CH₂)₂CH₃)₂), 20.5 (-N(CH₂(CH₂)₂CH₃)₂), 14.2 (-N(CH₂(CH₂)₂CH₃)₂) ppm

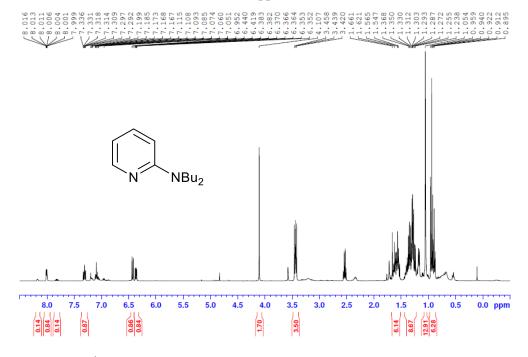


Figure S 33 ¹H NMR spectrum of compound 7f with ferrocene as an internal standard in D₈-THF

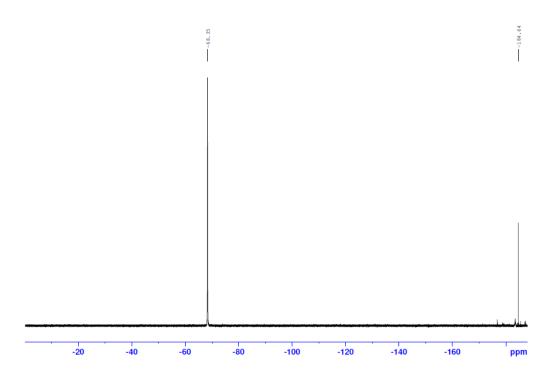


Figure S 34 ^{19}F NMR spectrum of compound 7f in D₈-THF

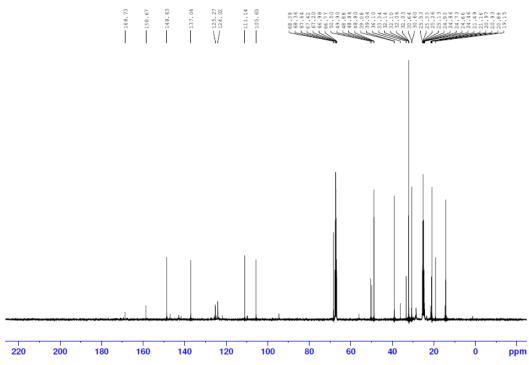


Figure S 35 $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of compound 7f in D₈-THF

Inside the glovebox, 0.146 (0.25 mmol) of **1** was added to a J. Young's NMR tube and dissolved in 0.5 ml of D_8 -THF and to this, $25 \,\mu\text{L}$ ($0.25 \,\text{mmol}$) of piperidine was added and the deprotonation monitored by NMR spectroscopy. After quantitative transamination had occurred forming **4** in solution, $22 \,\mu\text{L}$ of 2-fluoropyridine was introduced resulting in the immediate precipitation of ([(Dipp NacnacMg(μ -F)(THF)]₂) (**8**). NMR analysis, after filtration, confirmed C-F activation had occurred, generating compound **7g** in an 80% yield against 20 mol% ferrocene (9 mg) as an internal standard. The values obtained for this compound are consistent with that which are reported in the literature – compound verified in CDCl₃ solvent.

¹**H NMR** (**400.1 MHz, D**₈**-THF, 300 K**): $\delta \sim 8.04$ (d, 1H, Ar-*H*), 7.35 (t, 1H, Ar-*H*), 6.63 (d, 1H, Ar-*H*), 6.45 (t, 1H, Ar-*H*), 3.52 (t, 4H, -N(CH₂)₂(CH₂)₂CH₂), 1.60 (m, 6H, -N(CH₂)₂(CH₂)₂CH₃) ppm

¹³C{¹H} NMR (100.62 MHz, D₈-THF, 300 K): $\delta \sim 160.3$ (Ar(*C*)_q), 148.4 (Ar(*C*)-H), 137.4 (Ar(*C*)-H), 112.5 (Ar(*C*)-H), 107.0 (Ar(*C*)-H), 46.6 (-N(C H_2)₂(C H_2)₂C H_3), 39.0 (-N(C H_2)₂(C H_2)₂C H_2) ppm

 19 F{ 1 H} NMR (376.5 MHz, D₈-THF, 300 K): δ ~ -68.35 (s, 2-fluoropyridine), -184.64 (compound 8)

¹H NMR (400.1 MHz, CDCl₃, 300 K): $\delta \sim 8.17$ (m, 1H, Ar-H), 7.43 (m, 1H, Ar-H), 6.64 (d, 1H, Ar-H), 6.55 (ddd, 1H, Ar-H), 3.51 (m, 4H, -N(CH₂)₂(CH₂)₂CH₂), 1.64 (m, 6H, -N(CH₂)₂(CH₂)₂CH₃) ppm

¹³C{¹H} NMR (100.62 MHz, CDCl₃, 300 K): $\delta \sim 159.8 \text{ (Ar}(C)_{q})$, 147.9 (Ar(C)-H), 137.3 (Ar(C)-H), 112.4 (Ar(C)-H), 107.1 (Ar(C)-H), 46.3 (-N(CH₂)₂(CH₂)₂CH₂), 25.5 (-N(CH₂)₂(CH₂)₂CH₂), 24.7 (-N(CH₂)₂(CH₂)₂CH₂) ppm

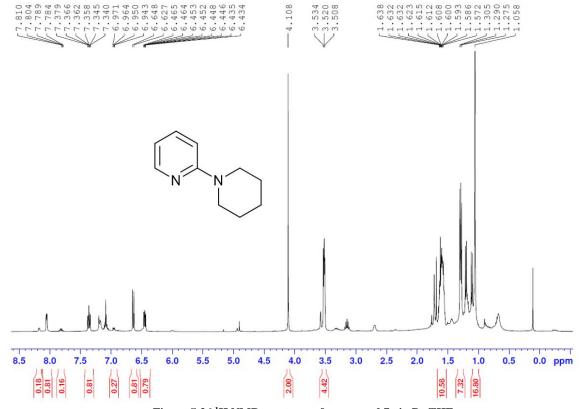


Figure S 36 $^1\!H$ NMR spectrum of compound 7g in D8-THF

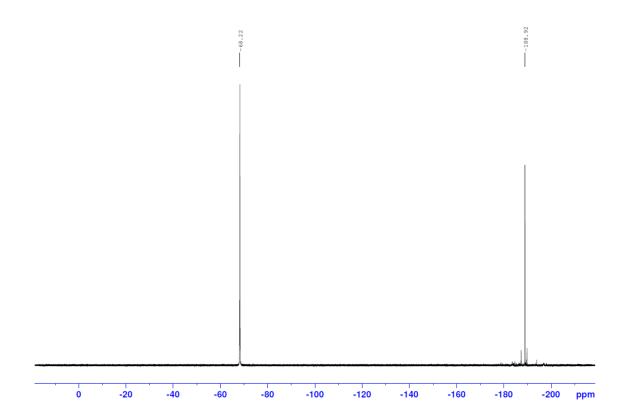


Figure S 37 ^{19}F NMR spectrum of compound 7g in D₈-THF

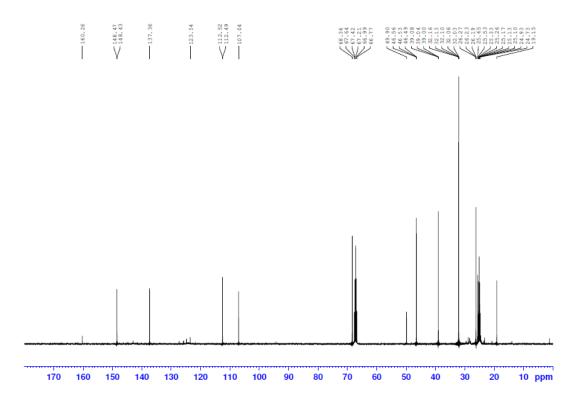


Figure S 38 $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of compound 7g in D₈-THF

Inside the glovebox, 0.146 (0.25 mmol) of **1** was added to a J. Young's NMR tube and dissolved in 0.5 ml of D₈-THF and to this, 22 μL (0.25 mmol) of morpohline was added and the deprotonation monitored by NMR spectroscopy. After quantitative transamination had occurred forming **5** in solution, 22 μL of 2-fluoropyridine was introduced resulting in the immediate precipitation of ([(^{Dipp}NacnacMg(μ-F)(THF)]₂) (**8**). NMR analysis, after filtration, confirmed C-F activation had occurred, generating compound **7h** in an 80% yield against 20 mol% ferrocene (9 mg) as an internal standard. The values obtained for this compound are consistent with that which are reported in the literature – compound verified in CDCl₃ solvent.⁵

¹H NMR (400.1 MHz, D₈-THF, 300 K): $\delta \sim 8.01$ (d, 1H, Ar-H), 7.43 (t, 1H, Ar-H), 6.86 (d, 1H, Ar-H), 6.56 (t, 1H, Ar-H), 3.69 (t, 4H, -N(CH₂)₂(CH₂)₂O), 3.44 (t, 4H, -N(CH₂)₂(CH₂)₂O) ppm

¹³C{¹H} NMR (100.62 MHz, D₈-THF, 300 K): $\delta \sim 160.4$ (Ar(*C*)_q), 148.5 (Ar(*C*)-H), 137.6 (Ar(*C*)-H), 138.8 (Ar(*C*)-H), 107.1 (Ar(*C*)-H), 67.3 (-N(*C*H₂)₂(CH₂)₂O), 46.2 (-N(*C*H₂)₂(*C*H₂)₂O) ppm

 19 F{ 1 H} NMR (376.5 MHz, D₈-THF, 300 K): δ ~ -68.35 (s, 2-fluoropyridine), -184.86 (compound 8)

¹H NMR (400.1 MHz, CDCl₃, 300 K): $\delta \sim 8.20$ (m, 1H, Ar-*H*), 7.45 (t, 1H, Ar-*H*), 6.65 (m, 2H, Ar-*H* x2), 3.82 (t, 4H, -N(CH₂)₂(CH₂)₂O), 3.49 (t, 4H, -N(CH₂)₂(CH₂)₂O) ppm

¹³C{¹H} NMR (100.62 MHz, CDCl₃, 300 K): $\delta \sim 159.8$ (Ar(*C*)_q), 148.1 (Ar(*C*)-H), 137.6 (Ar(*C*)-H), 13.9 (Ar(*C*)-H), 107.0 (Ar(*C*)-H), 66.8 (-N(*C*H₂)₂(CH₂)₂O), 45.7(-N(CH₂)₂(CH₂)₂O) ppm

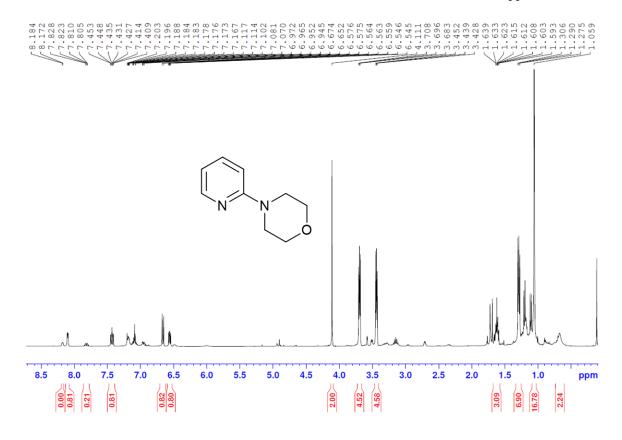


Figure S 39 ¹H NMR spectrum of compound 7h in D₈-THF

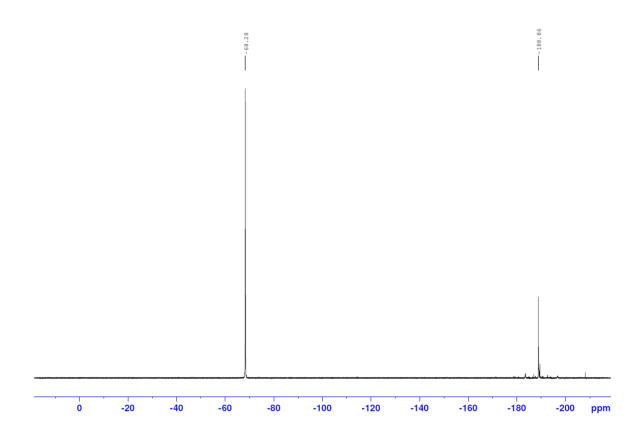


Figure S 40 $^{19}\mbox{F}$ NMR spectrum of compound 7h in D8-THF

Synthesis of Compound 7i

Inside the glovebox, 0.146 (0.25 mmol) of **1** was added to a J. Young's NMR tube and dissolved in 0.5 ml of D_8 -THF and to this, $21~\mu L$ (0.25 mmol) of pyrrolidine was added and the deprotonation monitored by NMR spectroscopy. After quantitative transamination had occurred forming **6** in solution, $22~\mu L$ of 2-fluoropyridine was introduced resulting in the immediate precipitation of ([(Dipp NacnacMg(L F)(THF)]₂) (**8**). NMR analysis, after filtration, confirmed C-F activation had occurred, generating compound **7i** in an 87% yield against 15 mol% ferrocene (7 mg) as an internal standard. The values obtained for this compound are consistent with that which are reported in the literature – compound verified in CDCl₃ solvent.⁷

¹H NMR (400.1 MHz, D₈-THF, 300 K): $\delta \sim 8.02$ (d, 1H, Ar-H), 7.33 (td, 1H, Ar-H), 6.40 (m, 1H, Ar-H), 6.20 (br. m, 1H, Ar-H), 3.39 (br. t, 4H, -N(CH₂)₂(CH₂)₂), 1.93 (m, 4H, -N(CH₂)₂(CH₂)₂) ppm

¹³C{¹H} NMR (100.62 MHz, D₈-THF, 300 K): $\delta \sim 158.3$ (Ar(*C*)_q), 148.8 (Ar(*C*)-H), 136.8 (Ar(*C*)-H), 111.4 (Ar(*C*)-H), 106.4 (Ar(*C*)-H), 46.6 (-N(CH₂)₂(CH₂)₂), 39.0 (-N(CH₂)₂(CH₂)₂)) ppm

¹⁹**F**{¹**H**} **NMR** (376.5 **MHz**, **D**₈-**THF**, 300 **K**): $\delta \sim -68.35$ (s, 2-fluoropyridine), -184.64 (compound 8)

¹H NMR (400.1 MHz, CDCl₃, 300 K): $\delta \sim 8.11$ (br. d, 1H, Ar-H), 7.39 (m, 1H, Ar-H), 6.47 (br. t, 1H, Ar-H), 6.33 (br. d, 1H, Ar-H), 3.42 (m, 4H, -N(CH₂)₂(CH₂)₂), 1.97 (m, 6H, -N(CH₂)₂(CH₂)₂) ppm

¹³C{¹H} NMR (100.62 MHz, CDCl₃, 300 K): $\delta \sim 157.5$ (Ar(*C*)_q), 148.3 (Ar(*C*)-H), 137.1 (Ar(*C*)-H), 111.2 (Ar(*C*)-H), 106.7 (Ar(*C*)-H), 46.8 (-N(CH₂)₂(CH₂)₂), 25.7 (-N(CH₂)₂(CH₂)₂), 24.7 (-N(CH₂)₂(CH₂)₂) ppm

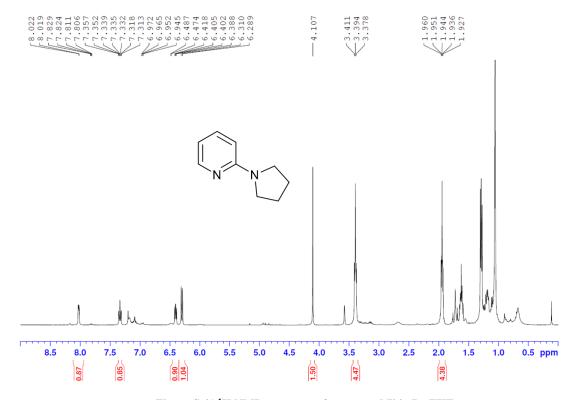


Figure S 41 ^{1}H NMR spectrum of compound 7i in D₈-THF

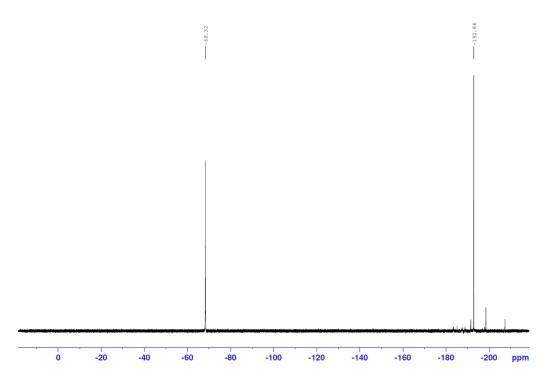


Figure S 42 19 F NMR spectrum of compound 7i in D₈-THF

Synthesis of Compound 11a

Inside the glovebox, 1 mmol (0.582 g) of **1** was weighed into a microwave vial and then dissolved in 2 mL of THF whilst exposed to argon gas on a Schlenk line. To this, 0.1 mL (1 mmol) of piperidine was added followed by 0.12 mL (1 mmol) of hexafluorobenzene, accompanied by a yellow to dark pink colour change. The vial was then placed in a microwave reactor for 20 minutes at 125°C, resulting in a yellow suspension – precipitate indicated the formation of ([(DippNacnacMg(μ-F)(THF)]₂) (**8**). This suspension was then hydrolysed in air, filtered through a plug of cellite and glass wool and washed thoroughly with THF. All THF solvent was then removed under reduced pressure and the formation of compound **11a** was determined to be 80% against 10 mol% ferrocene (18 mg) as an internal standard. The compound was then purified by SiO₂ column chromatography with 100:1 hexane:EtOAc resulting in a colourless oil, 162 mg (65%).

¹H NMR (400.1 MHz, CDCl₃, 300 K): $\delta \sim 3.12$ (m, 4H, N(CH₂)₂(CH₂)₂CH₂), 1.66 (m, 4H, N(CH₂)₂(CH₂)₂CH₂), 1.56 (m, 2H, N(CH₂)₂(CH₂)₂CH₂) ppm

¹⁹**F NMR** (**376.5 MHz, CDCl₃, 300 K**): $\delta \sim -150.66$ (dt, 2F, o-F), -164.38 (tt, 2F, m-F), -164.91 (tt, 1F, p-F) ppm

¹³C{¹H} NMR (100.62 MHz, CDCl₃, 300 K): $\delta \sim 144.7$ (m, Ar(*C*)_{ortho}-F), 142.7 (m, Ar(*C*)_{ortho}-F), 139.4 (m, Ar(*C*)_{meta}-F), 137.1 (m, Ar(*C*)_{meta}-F), 135.7 (m, Ar(*C*)_{para}-F), 127.5 (Ar(*C*) -N), 52.6 (N(*C*H₂)₂(CH₂)₂CH₂), 26.7 (N(*C*H₂)₂(*C*H₂)₂CH₂), 24.1 (N(*C*H₂)₂(CH₂)₂CH₂) ppm

LRMS (GC/ESI) m/z: 252.0 [M+H]+

HRMS (TOF): Calc. for C₁₁H₁₀F₅N, 251.0733; Found, 251.0728 (error 2.05 ppm)

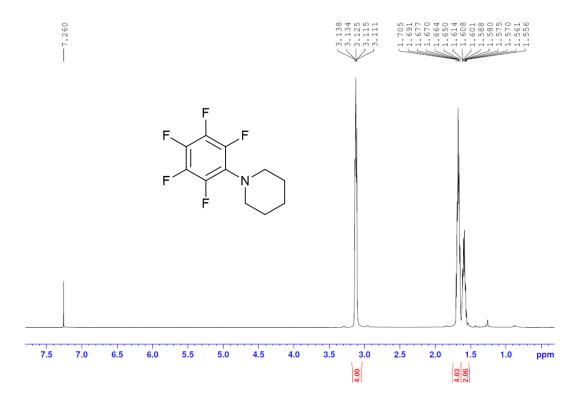


Figure S 43 ^1H NMR spectrum of compound 11b

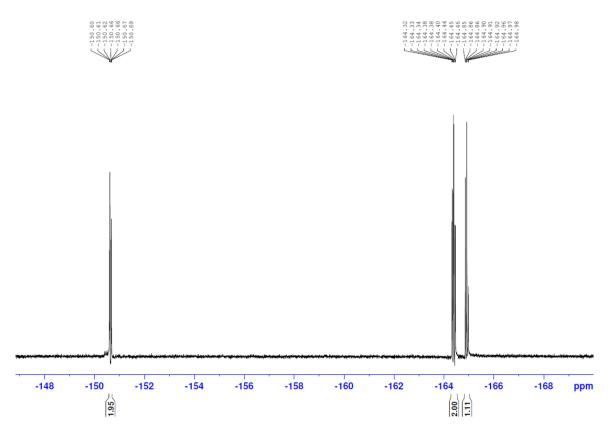


Figure S 44 19 F NMR spectrum of compound 11b

Figure S 45 ¹³C NMR spectrum of compound 11a

Synthesis of Compound 11b

Inside the glovebox, 1 mmol (0.582 g) of **1** was weighed into a microwave vial and then dissolved in 2 mL of THF whilst exposed to argon gas on a Schlenk line. To this, 90 μ L (1 mmol) of morpholine was added followed by 0.12 mL (1 mmol) of hexafluorobenzene, accompanied by a yellow to dark pink colour change. The vial was then placed in a microwave reactor for 30 minutes at 125°C, resulting in a brown suspension – precipitate indicated the formation of ([(DippNacnacMg(μ -F)(THF)]₂) (**8**). This suspension was then hydrolysed in air, filtered through a plug of cellite and glass wool and washed thoroughly with THF. All THF solvent was then removed under reduced pressure and the formation of compound **11b** was determined to be 78% against 10 mol% ferrocene (18 mg) as an internal standard. The compound was then purified by SiO₂ column chromatography with 100:5 hexane:Et₃N resulting in **11b** being isolated as a yellow oil (169 mg, 67%).

¹**H NMR (400.1 MHz, CDCl₃, 300 K):** $\delta \sim 3.80$ (br. t, 4H, (N(C H_2)₂(CH₂)₂O)), 3.19 (br. m, 4H, (N(CH₂)₂(C H_2)₂O)) ppm

¹⁹**F NMR (376.5 MHz, CDCl₃, 300 K):** $\delta \sim -150.39$ (dt, 2F, *o*-F), -163.03 (m, 2F, *m*-F), -163.58 (m, 1F, *p*-F) ppm

¹³C{¹H} NMR (100.62 MHz, CDCl₃, 300 K): $\delta \sim 144.6$ (m, Ar(*C*)_{ortho}-F), 142.2 (m, Ar(*C*)_{ortho}-F), 139.3 (m, Ar(*C*)_{meta}-F), 136.9 (m, Ar(*C*)_{meta}-F), 136.2 (m, Ar(*C*)_{para}-F), 125.8 (m, Ar(*C*) -N), 67.2 (N(*C*H₂)₂(CH₂)₂O), 51.2 (N(*C*H₂)₂(*C*H₂)₂O) ppm

LRMS (GC/ESI) m/z: 254.0 [M+H]⁺HRMS (TOF): Calc. for C₁₀H₈F₅NO, 253.0526; Found, 253.0521 (error 2.00 ppm)

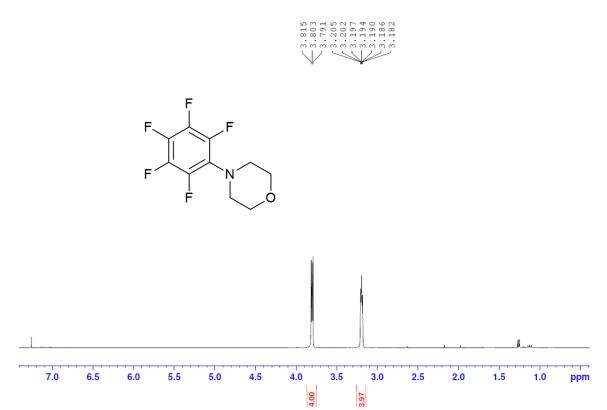


Figure S 46 ^1H NMR spectrum of compound 11b

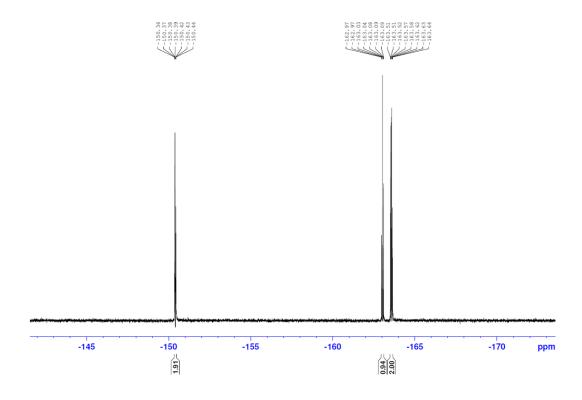


Figure S 47 $^{19}\mbox{F}$ NMR spectrum of compound 11b

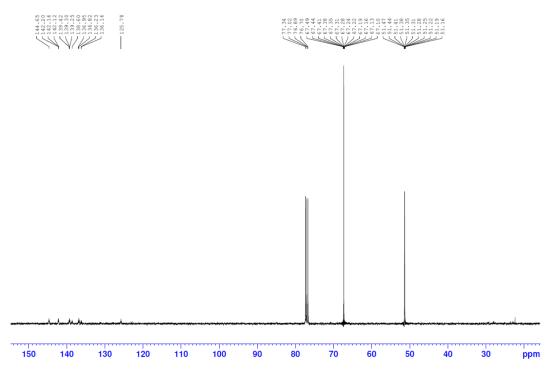


Figure S 48 ¹³C{¹H} NMR spectrum of compound 11b

Synthesis of Compound 11c

Inside the glovebox, 1 mmol (0.582 g) of **1** was weighed into a microwave vial and then dissolved in 2 mL of THF whilst exposed to argon gas on a Schlenk line. To this, 80 μ L (1 mmol) of pyrrolidine was added followed by 0.12 mL (1 mmol) of hexafluorobenzene, accompanied by a yellow to peach colour change. The vial was then placed in a microwave reactor for 20 minutes at 125°C, resulting in an orange suspension – precipitate indicated the formation of ([(^DippNacnacMg(μ -F)(THF)]₂) (**8**). This suspension was then hydrolysed in air, filtered through a plug of cellite and glass wool and washed thoroughly with THF. All THF solvent was then removed under reduced pressure and the formation of compound **11c** was determined to be 87% against 10 mol% ferrocene (18 mg) as an internal standard. The compound was then purified by SiO₂ column chromatography with 100:1 hexane:EtOAc resulting in a colourless oil. Yield 173 mg, 73%.

¹H NMR (400.1 MHz, CDCl₃, 300 K): $\delta \sim 3.50$ (br. m, 4H, (N(CH₂)₂(CH₂)₂)), 1.92 (br. m, 4H, (N(CH₂)₂(CH₂)₂)) ppm

¹⁹**F NMR (376.5 MHz, CDCl₃, 300 K):** $\delta \sim -155.86$ (br. d, 2F, *o*-F), -164.97 (br. t, 2F, *m*-F), -171.55 (m, 1F, *p*-F) ppm

¹³C{¹H} NMR (100.62 MHz, CDCl₃, 300 K): $\delta \sim 140.5$ (m, Ar(*C*)_{ortho}-F), 139.1 (m, Ar(*C*)_{ortho}-F), 138.1 (m, Ar(*C*)_{meta}-F), 136.5 (m, Ar(*C*)_{meta}-F), 134.1 (m, Ar(*C*)_{para}-F), 124.0 (t, Ar(*C*) -N), 50.5 (t, N(*C*H₂)₂(CH₂)₂), 25.1 (N(CH₂)₂(*C*H₂)₂) ppm

LRMS (GC/ESI) m/z: 238.1 [M+H]+

HRMS (TOF): Calc. for C₁₀H₈F₅N, 237.0577; Found, 237.0571 (error 0.58 ppm)

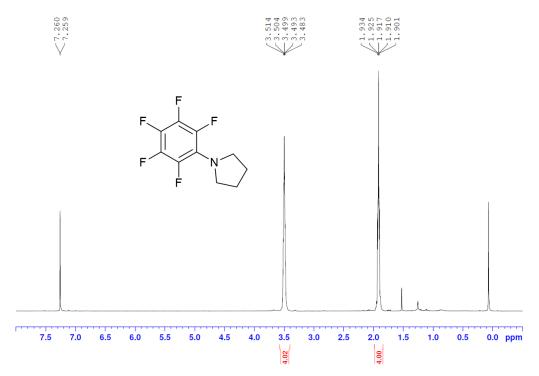


Figure S 49 ^{1}H NMR spectrum of compound 11c

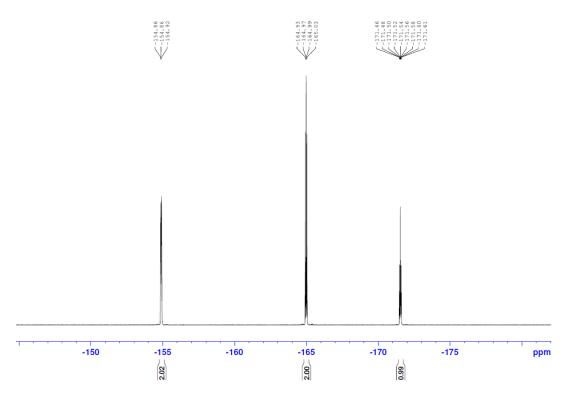


Figure S 50 19 F NMR spectrum of compound 11c

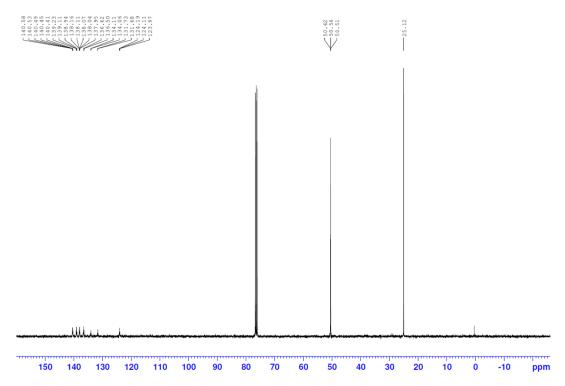


Figure S 51 ¹³C{¹H} NMR spectrum of 11c

Synthesis of Compound 11d

Inside the glovebox, 1 mmol (0.582 g) of **1** was weighed into a microwave vial and then dissolved in 2 mL of THF whilst exposed to argon gas on a Schlenk line. To this, 90 μ L (1 mmol) of aniline was added followed by 0.12 mL (1 mmol) of hexafluorobenzene, giving a yellow solution. The vial was then placed in a microwave reactor for 1 h at 125°C, resulting in a dark red solution. This reaction mixture was then hydrolysed in air, filtered through a plug of cellite and glass wool and washed thoroughly with THF. All THF solvent was then removed under reduced pressure and the formation of compound **11d** was determined to be 34% against 10 mol% ferrocene (18 mg) as an internal standard and signals are consistent with those previously reported in the literature. Presence of compound confirmed by LRMS.

¹H NMR (400.1 MHz, CDCl₃, 300 K): $\delta \sim 7.26$ (br. m, 2H, Ar- H_{ortho} of compound 11d + aniline), 7.12 (Ar-H of DippNacnacH), 6.99 (br. t, 1H, Ar- H_{para} of compound 11d), 6.83 (br. t, 2H, Ar- H_{meta} of compound 11d), 6.75 (br. t, aniline), 6.67 (br. t, aniline), 5.58 (s, 1H, N-H of compound 11d), 4.88 (s, C-H backbone of DippNacnacH), 4.16 (Fe(Cp)₂), 3.73 (THF), 3.11 (C-H of Pr of DippNacnacH), 1.84 (THF), 1.72 (s, C H_3 x2 of DippNacnacH), 1.65 (br. m, γ-C H_2 of TMP(H)), 1.33 (br. t, β-C H_2 of TMP(H)), 1.29 (d, C H_3 x4 Pr), 1.13 (m, C H_3 x4 Pr + α-C H_3 of TMP(H)) ppm

¹⁹**F NMR (376.5 MHz, CDCl₃, 300 K):** $\delta \sim -149.36$ (dt, 2F, *o*-F), -161.76 (residual C₆F₆), -162.87 (dt, 2F, *m*-F), -163.70 (br. t, 1F, *p*-F) ppm

LRMS (GC/ESI) *m/z*: 260.2 [M+H]⁺

Figure S 52 ¹H NMR spectrum of compound 11e

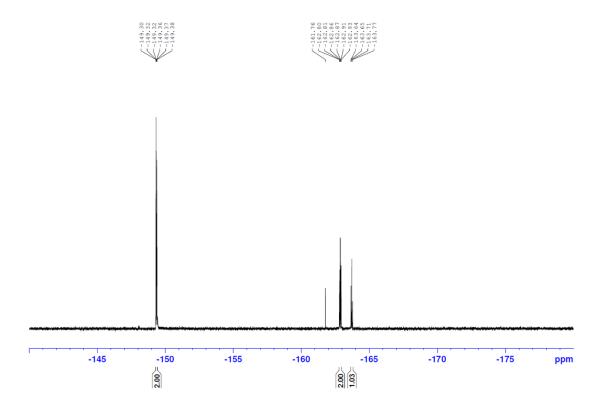


Figure S 53 $^{19}\mathrm{F}$ NMR spectrum of compound 11e

Synthesis of Compound 11e

Inside the glovebox, 1 mmol (0.582 g) of **1** was weighed into a microwave vial and then dissolved in 2 mL of THF whilst exposed to argon gas on a Schlenk line. To this, 0.17 mL (1 mmol) of di-*n*-butylamine was added followed by 0.12 mL (1 mmol) of hexafluorobenzene, giving a yellow solution. The vial was then placed in a microwave reactor for 1 h at 125°C, resulting in a light brown suspension. This reaction mixture was then hydrolysed in air, filtered through a plug of cellite and glass wool and washed thoroughly with THF. All THF solvent was then removed under reduced pressure and the formation of compound **11e** was determined to be 18% against ferrocene (13 mg) as an internal standard. Presence of compound confirmed by LRMS.

¹H NMR (400.1 MHz, CDCl₃, 300 K): $\delta \sim 7.10$ (m, Ar-*H* of ^{Dipp}NacnacH), 4.87 (s, C-*H* backbone of ^{Dipp}NacnacH), 4.14 (Fe(Cp)₂), 3.72 (THF), 3.06 (m, C-*H* x4 of ⁱPr of ^{Dipp}NacnacH + 4H (N((CH₂)(CH₂)(CH₂)CH₃)₂ compound 11e), 2.58 (CH₂ x2 di-*n*-butylamine), 1.84 (THF), 1.64 (br. m, γ-CH₂ of TMP(H)), 1.30 (br. m, 8H (N((CH₂)(CH₂)(CH₂)CH₃)₂) compound 11e + 4H β-CH₂ of TMP(H) + CH₂ x2 di-*n*-butylamine), 1.20 (d, CH₃ x4 ⁱPr), 1.11 (m, CH₃ x4 ⁱPr + α-CH₃ of TMP(H)), 0.87 (6H (N((CH₂)(CH₂)(CH₂)CH₃)₂) compound 11e + CH₃ x2 of di-*n*-butylamine) ppm

¹⁹**F NMR** (**376.5 MHz, CDCl₃, 300 K**): $\delta \sim -148.16$ (dt, 2F, *o*-F), -161.76 (residual C₆F₆), -162.84 (br. t, 1F, *p*-F), -164.17 (br. dt, 2F, *m*-F) ppm

LRMS (GC/ESI) *m/z*: 296.1 [M+H]⁺

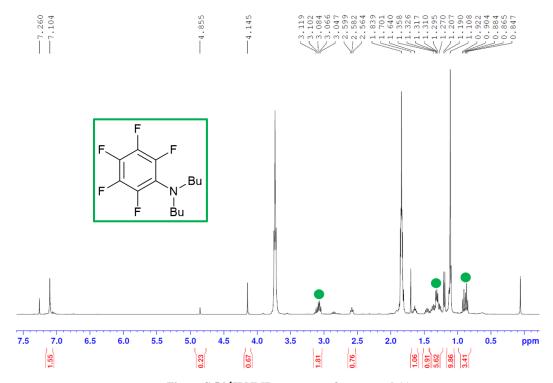


Figure S 54 1 H NMR spectrum of compound 11e

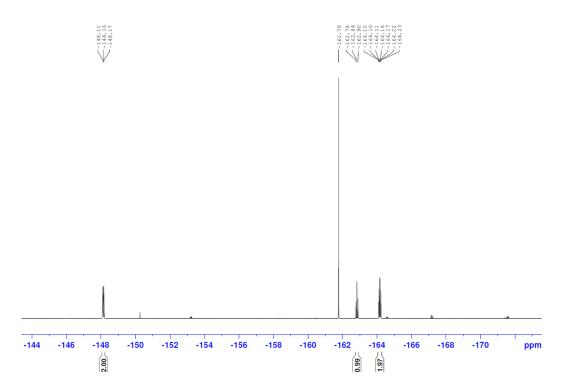


Figure S 55 ¹⁹F NMR spectrum of compound 11e

Synthesis of Compound 11f

In an argon-flushed Schlenk flask, 1 mmol (0.582 g) of **1** was dissolved in 5 mL of THF giving a yellow solution. To this, 0.1 mL (1 mmol) of piperidine and an equimolar amount of octafluorotoluene (0.14 mL, 1 mmol) was added, immediately affording a bright red suspension –solid presumed to be **8** ($[(^{Dipp}NacnacMg(\mu-F)(THF)]_2)$). The reaction was allowed to stir at room temperature for 1 h before a cannula filtration was performed and **8** was washed with 3x5 mL of fresh THF in order to isolate the organic product. The filtrate was then hydrolysed in air and transferred into a round bottomed flask before all solvent was removed under reduced pressure to give a yellow, waxy solid. Analysis of this solid by NMR showed the formation of **11f** in a 91% yield against 10 mol% ferrocene (18 mg) as an internal standard. The crude product was then subjected to SiO₂ column chromatography using 100:1 pentane:EtOAc leading to purified **11f**. White solid, 233 mg (77%).

¹H NMR (**400.1** MHz, CDCl₃, **300** K): $\delta \sim 3.29$ (m, 4H, N(C H_2)₂(CH₂)₂CH₂), 1.67 (m, 6H, N(CH₂)₂(C H_2)₂CH₂ + N(CH₂)₂(CH₂)₂CH₂) ppm

¹⁹**F NMR** (**376.5 MHz, CDCl₃, 300 K**): $\delta \sim -55.41$ (t, 3F, C F_3), -143.21 (m, 2F, m-F), -150.94 (m, 2F, o-F) ppm

¹³C{¹H} NMR (100.62 MHz, CDCl₃, 300 K): $\delta \sim 146.5$ (m, Ar(*C*)_{meta}-F), 143.9 (m, Ar(*C*)_{meta}-F), 142.7 (m, Ar(*C*)_{ortho}-F), 140.4 (m, Ar(*C*)_{ortho}-F), 134.9 (m, Ar(*C*)-N), 125.7-118.0 (q, -*C*F₃, J = 271.7 MHz), 100.4 (Ar(*C*)_q), 52.2 (N(*C*H₂)₂(CH₂)₂CH₂), 26.5 (N(CH₂)₂(CH₂)₂CH₂), 21.1 (N(CH₂)₂(CH₂)₂CH₂) ppm

LRMS (GC/ESI) *m/z*: 302.0 [M+H]⁺

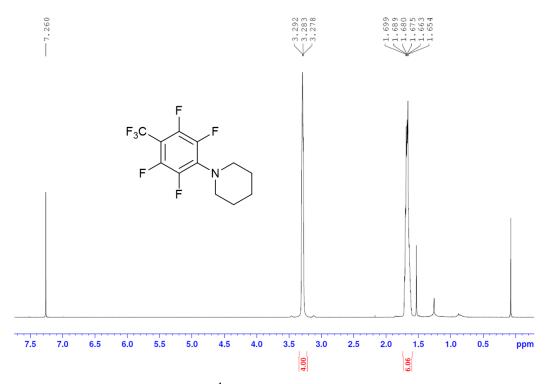


Figure S 56 1 H NMR spectrum of compound 11f

Figure S 57 19 F NMR spectrum of compound 11f

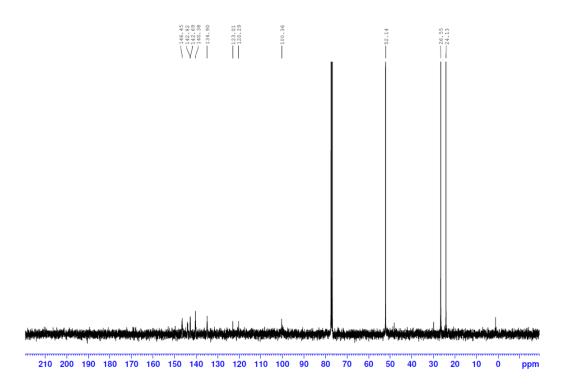


Figure S 58 ¹³C{¹H} NMR spectrum of compound 11f

Synthesis of Compound 11g

In an argon-flushed Schlenk flask, 1 mmol (0.582 g) of **1** was dissolved in 5 mL of THF giving a yellow solution. To this, 90 μ L (1 mmol) of morpholine and an equimolar amount of octafluorotoluene (0.14 mL, 1 mmol) was added, forming a red/brown suspension after approximately 15 minutes – solid presumed to be **8** ([(DippNacnacMg(μ -F)(THF)]₂). The reaction was allowed to stir at room temperature for 1 h before a cannula filtration was performed and **8** was washed with 3x5 mL of fresh THF in order to isolate the organic product. The filtrate was then hydrolysed in air and transferred into a round bottomed flask before all solvent was removed under reduced pressure to give a red, waxy solid. Analysis of this solid by NMR showed the formation of **11g** in an 88% yield against ferrocene (19 mg) as an internal standard. The crude product was then subjected to SiO₂ column chromatography using 100:1 pentane:EtOAc leading to purified **11g**. Off-white solid, 184 mg (60%).

¹H NMR (400.1 MHz, CDCl₃, 300 K): $\delta \sim 3.82$ (br. t, 4H, N(CH₂)₂(CH₂)₂O), 3.36 (m, 4H, N(CH₂)₂(CH₂)₂O) ppm

¹⁹**F NMR** (**376.5 MHz, CDCl₃, 300 K**): $\delta \sim -55.61$ (t, 3F, C F_3), -142.48 (m, 2F, m-F), -150.64 (m, 2F, o-F) ppm

 $^{13}C\{^{1}H\} \ NMR \ (100.62 \ MHz, CDCl_{3}, 300 \ K): \delta \sim 146.4 \ (m, Ar({\it C})_{meta}\text{-}F), \ 143.8 \ (m, Ar({\it C})_{meta}\text{-}F), \ 142.8 \ (m, Ar({\it C})_{ortho}\text{-}F), \ 140.4 \ (m, Ar({\it C})_{ortho}\text{-}F), \ 133.6 \ (m, Ar({\it C})\text{-}N), \ 125.4\text{-}119.0 \ (q, -{\it CF}_{3}, \ J = 273.8 \ MHz), \ 101.7 \ (Ar({\it C})_{q}), \ 67.3 \ (N({\it CH}_{2})_{2}(CH_{2})_{2}O), \ 51.0 \ (N(CH_{2})_{2}(CH_{2})_{2}O) \ ppm$

LRMS (GC/ESI) *m/z*: 304.0 [M+H]⁺

HRMS (TOF): Calc. for C₁₁H₈F₇NO, 303.0494; Found, 303.0489 (error 0.20 ppm)

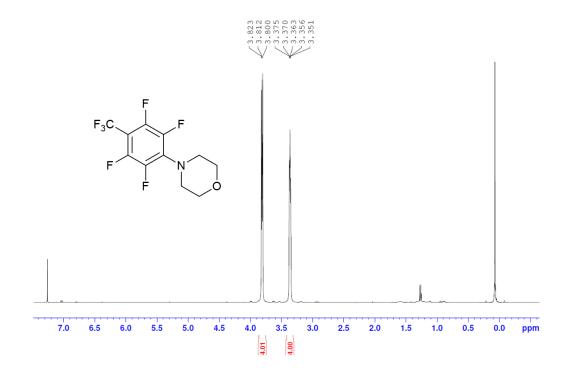


Figure S 59 ¹H NMR spectrum of compound 11g

Figure S 60 $^{19}\mbox{F}$ NMR spectrum of compound 11g

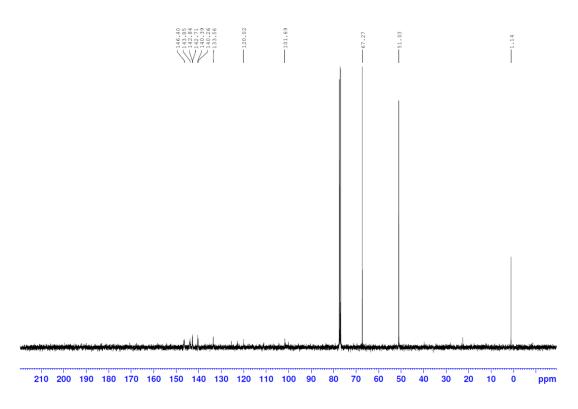


Figure S 61 $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of compound 11g

Synthesis of Compound 11h

In an argon-flushed Schlenk flask, 1 mmol (0.582 g) of **1** was dissolved in 5 mL of THF giving a yellow solution. To this, 0.17 mL (1 mmol) of di-*n*-butylamine and an equimolar amount of octafluorotoluene (0.14 mL, 1 mmol) was added, immediately forming a red suspension – solid presumed to be **8** ([(DippNacnacMg(μ-F)(THF)]₂). The reaction was allowed to stir at room temperature for 1 h before a cannula filtration was performed and **8** was washed with 3x5 mL of fresh THF in order to isolate the organic product. The filtrate was then hydrolysed in air and transferred into a round bottomed flask before all solvent was removed under reduced pressure to give a yellow, waxy solid. Analysis of this solid by NMR showed the formation of **11h** in an 85% yield against ferrocene (22 mg) as an internal standard. The crude product was then subjected to SiO₂ column chromatography using 100:1 hexane:EtOAc leading to purified **11h**. Colourless oil, 237 mg (69%).

¹H NMR (400.1 MHz, CDCl₃, 300 K): $\delta \sim 3.26$ (t, 4H, N((CH₂)₂(CH₂)(CH₂)CH₃)₂), 1.49 (quin., 4H, N((CH₂)₂(CH₂)(CH₂)CH₃)₂), 1.27 (sext., 4H, N((CH₂)₂(CH₂)(CH₂)CH₃)₂), 0.90 (t, 6H, N((CH₂)₂(CH₂)(CH₂)CH₃)₂) ppm

¹⁹**F NMR** (**376.5 MHz, CDCl₃, 300 K**): $\delta \sim -55.42$ (t, 3F, C F_3), -143.25 (m, 2F, m-F), -149.59 (m, 2F, o-F) ppm

¹³C{¹H} NMR (100.62 MHz, CDCl₃, 300 K): $\delta \sim 145.9$ (m, Ar(*C*)_{meta}-F), 144.3 (m, Ar(*C*)_{meta}-F), 143.1 (m, Ar(*C*)_{ortho}-F), 141.5, 133.6 (m, Ar(*C*) -N), 124.3-128.9 (q, -*C*F₃, J = 277.13 MHz), 100.3 (Ar(*C*)_q), 52.6 (N((*C*H₂)₂(CH₂)(CH₂)CH₃)₂), 30.5 (N((CH₂)₂(CH₂)(CH₂)CH₃)₂), 20.1 (N((CH₂)₂(CH₂)(CH₂)(CH₃)₂), 13.9 (N((CH₂)₂(CH₂)(CH₂)(CH₃)₂)ppm

LRMS (GC/ESI) m/z: 346 [M+H]⁺

HRMS (TOF): Calc. for C₁₅H₁₈F₇N, 345.1327; Found, 345.1322 (error 0.26 ppm)

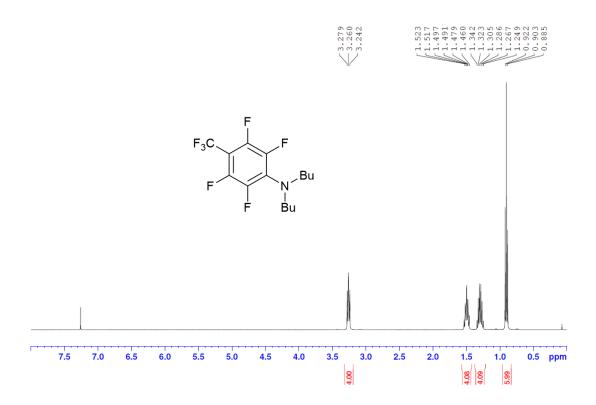


Figure S 62 ^1H NMR spectrum of compound 11h

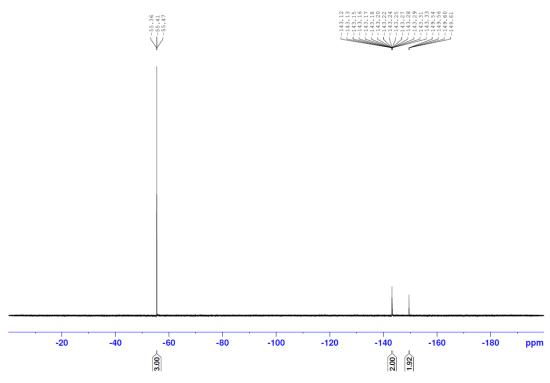


Figure S 63 ¹⁹F NMR spectrum of compound 11h

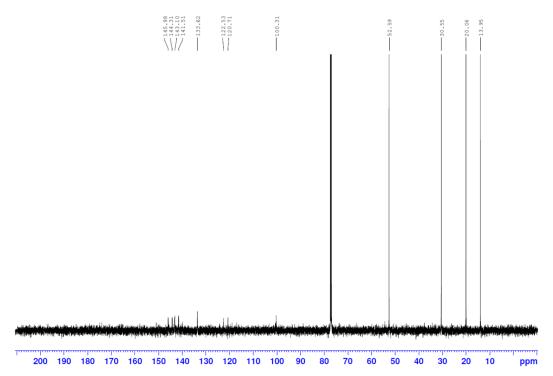


Figure S 64 ¹³C{¹H} NMR spectrum of compound 11h

Synthesis of Compound 11i

In an argon-flushed Schlenk flask, 1 mmol (0.582 g) of **1** was dissolved in 5 mL of THF giving a yellow solution. To this, 80 μ L (1 mmol) of pyrrolidine and an equimolar amount of octafluorotoluene (0.14 mL, 1 mmol) was added, immediately forming a bright red suspension – solid presumed to be **8** ([(DippNacnacMg(μ -F)(THF)]₂). The reaction was allowed to stir at room temperature for 1 h before a cannula filtration was performed and **8** was washed with 3x5 mL of fresh THF in order to isolate the organic product. The filtrate was then hydrolysed in air and transferred into a round bottomed flask before all solvent was removed under reduced pressure to give a yellow, waxy solid. Analysis of this solid by NMR showed the formation of **11i** in a 99% yield against 10 mol% ferrocene (19 mg) as an internal standard. The crude product was then subjected to SiO₂ column chromatography using 100:1 hexane:EtOAc leading to purified **11g** as large, colourless crystals (261 mg, 91%).

¹H NMR (400.1 MHz, CDCl₃, 300 K): $\delta \sim 3.68$ (br. m, 4H, N(C H_2)₂(CH₂)₂), 1.93 (br. m, 4H, N(CH₂)₂(C H_2)₂) ppm

¹⁹**F NMR** (**376.5 MHz, CDCl₃, 300 K**): $\delta \sim -54.90$ (t, 3F, C F_3), -144.32 (m, 2F, m-F), -156.62 (m, 2F, o-F) ppm

¹³C{¹H} NMR (100.62 MHz, CDCl₃, 300 K): $\delta \sim 146.9$ (m, Ar(C)_{meta}-F), 144.5 (m, Ar(C)_{meta}-F), 139.1 (m, Ar(C)_{ortho}-F), 136.5 (m, Ar(C)_{ortho}-F), 131.9 (m, Ar(C) -N), 124.5-119.0 (q, -CF₃, J = 273.9 MHz), 95.3 (m, Ar(C)_q), 51.5 (N(CH₂)₂(CH₂)₂), 25.8 (N(CH₂)₂(CH₂)₂) ppm

LRMS (GC/ESI) m/z: 288.05 [M+H]⁺

HRMS (TOF): Calc. for C₁₁H₈F₇N 287.0545; Found, 287.0539 (error 1.16 ppm)

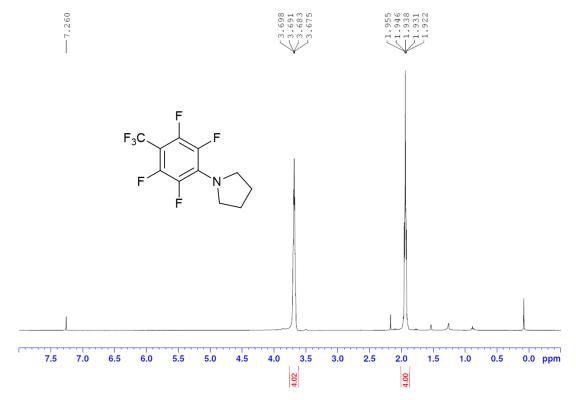


Figure S 65 $^1\mathrm{H}$ NMR spectrum of compound 11i

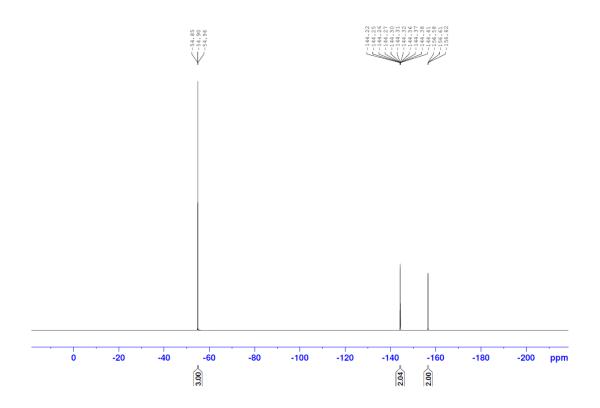


Figure S 66 19 F NMR spectrum of compound 11i

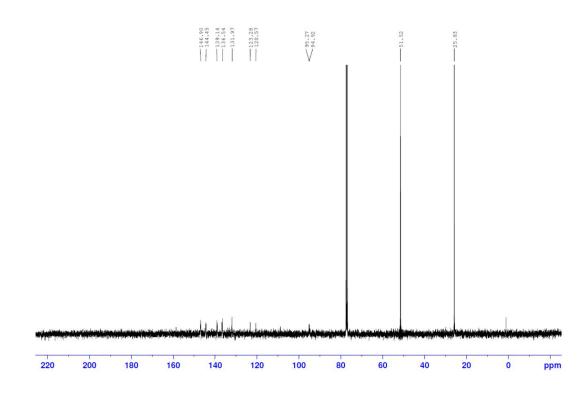


Figure S 67 $^{13}C\{^1H\}$ NMR spectrum of compound 11i

Reactivity Studies of 4, 9 and 10 with ppf and C₆F₆

DOSY NMR of 9 with ppf at room temperature

In a J. Young's NMR tube, 76 mg (0.125 mmol) of **9** was dissolved, with heating, in 0.5 mL of D_8 -Tol. To this, 24 mg (0.125 mmol) of **ppf** was added and the reaction monitored at room temperature by NMR. ¹H NMR spectrum reveals a prominent broadening of the signals corresponding to compound **9** and to **ppf** – this indicated that a coordination adduct was forming between these 2 species (peak at $\delta \sim 3.90$ ppm is Fe(Cp)₂. This proposal is highlighted by the broad peaks observed in the ¹⁹F NMR and it should also be noted that these peaks are shifted compared to free, uncoordinated ppf. Additionally, performing a DOSY NMR of the sample at room temperature revealed that the 2 species diffuse together, providing more evidence that they have engaged in a coordination adduct at room temperature.

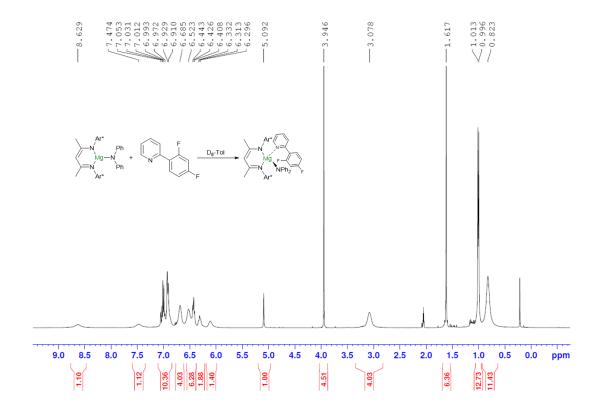


Figure S 68 1 H NMR spectrum displaying coordination between compound 9 and ppf at 300 K in D₈-Tol

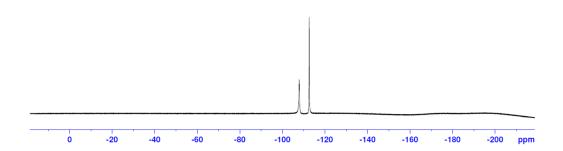


Figure S 69 ^{19}F NMR spectrum displaying coordination between compound 9 and ppf at 300 K in $$D_8$\text{-}Tol$$

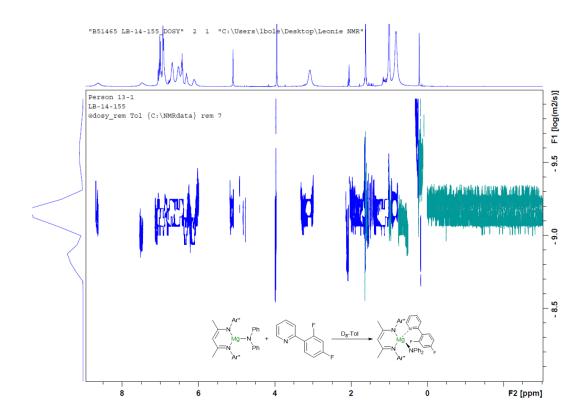


Figure S 70 ^1H DOSY NMR spectrum displaying co-diffusion of compound 9 and ppf in Ds-Tol at 300 K

Reactivity between Compound 9 and ppf at Elevated Temperature

In a J. Young's NMR tube, 76 mg (0.125 mmol) of **9** was dissolved, with heating, in 0.5 mL of D_8 -Tol. To this, 24 mg (0.125 mmol) of **ppf** was added and the reaction examined at room temperature by NMR, depicting a coordination adduct forming between the two species, giving insight into the mechanism that we have proposed (**Scheme 3**). The tube was then heated at 70°C for 2 h, at which point, a minor amount of C-F activation of ppf (product **7e**) could be observed – 11% against Fe(Cp)₂ (11 mg) as an internal standard. Heating for a further (9 h in total) results in a 75% yield of **7e** against ferrocene. Unfortunately, all signals for this product cannot be definitively assigned as they are present underneath the more prominent peaks for the coordination adduct. The nature of this C-F activation occurs in the same manner as with compounds **7a-7d**. We propose that harsher conditions are required due to the reduced nucleophilicity of **9** compared to **3-6**. By ¹⁹F NMR, we can observe the formation of the new aminofluoroarene, alongside coordinated **ppf** and the incident formation of Mg-F species at δ -188 (**8**) -199 ppm.

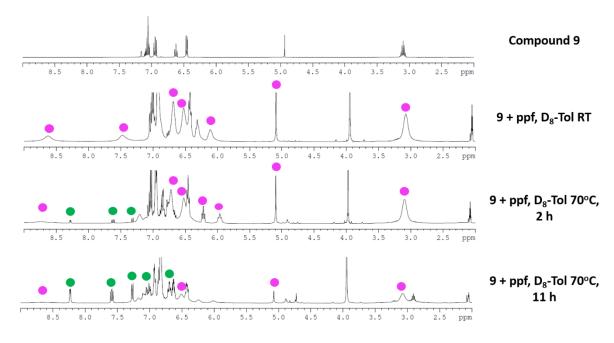


Figure S 71 ¹H NMR spectrum depiction of compound 9 reacting with ppf over various conditions in D₈-Tol

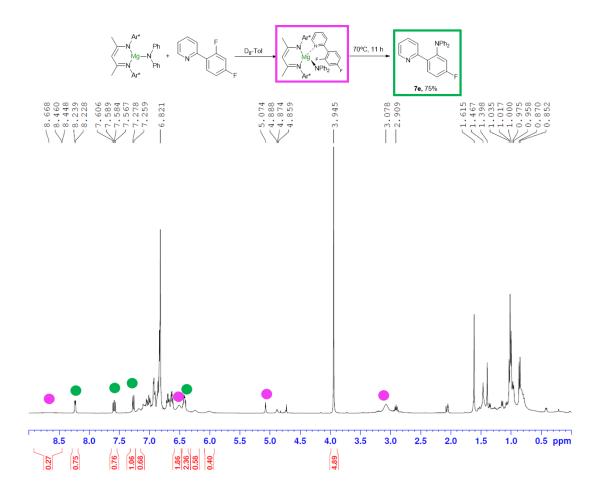


Figure S 72 1 H NMR spectrum of compound 9 and ppf after 11 h at 70 o C in D₈-Tol shwoing the formation of 7e via C-F activation of ppf

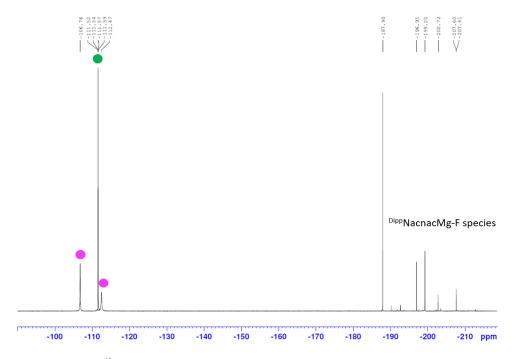


Figure S 73 19 F NMR spectrum of compound 9 and ppf after 11 h at 70 $^{\circ}$ C in D₈-Tol showing the formation of 7e via C-F activation of ppf and the formation of Dipp NacnacMg-F species

Reactivity between Compound 10 and ppf at Elevated Temperature

In a Schlenk flask, 0.125 mmol (0.14 g) of compound **10** was weighed alongside 4 mL of toluene and 0.125 mmol (0.024 g) of **ppf**. Once it was evident that no reaction was occurring at room temperature, the mixture was exposed to higher temperature of 110°C for a total of 14 h, at which point it NMR analysis revealed that both **ppf** and compound **9** remained completely intact and no C-F activation was occurring. We propose that this could be due to two factors: the decreased nucleophilicity of the benzotriazolyl anion and also the dimeric framework of compound **9** which exhibits notably poor solubility in all NMR solvents that we tested.

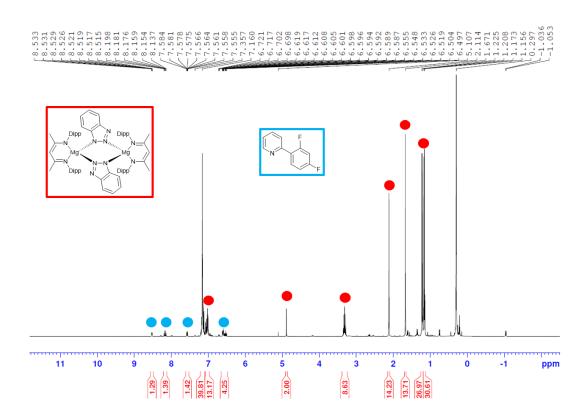


Figure S 74 1H NMR spectrum of reaction between compound 10 and ppf in C_6D_6

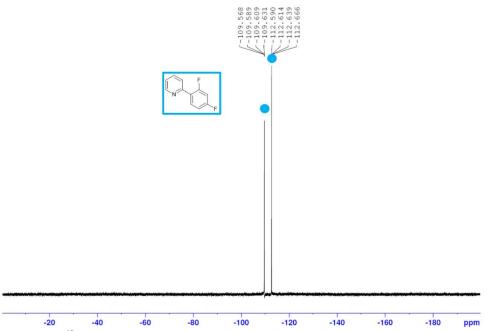


Figure S 75 ^{19}F NMR spectrum of reaction between compound 10 and ppf, showing unreacted ppf (C_6D_6)

Reactivity between Compound 4 and Fluorobenzene

Inside the glovebox, 1 mmol (0.582 g) of **1** was weighed into a microwave vial and then dissolved in 2 mL of THF whilst exposed to argon gas on a Schlenk line. To this, 0.1 mL (1 mmol) of piperidine was added (forming compound **4** in situ) followed by 94 μ L (1 mmol) of fluorobenzene, giving a yellow solution. The vial was then placed in a microwave reactor for 1 h at 125°C, resulting in a green suspension. This reaction mixture was then hydrolysed in air, filtered through a plug of cellite and glass wool and washed thoroughly with THF. All THF solvent was then removed under reduced pressure and the formation of compound **11j** was determined to be 20% against 10 mol% ferrocene (19 mg) as an internal standard and signals are consistent with those previously reported in the literature.

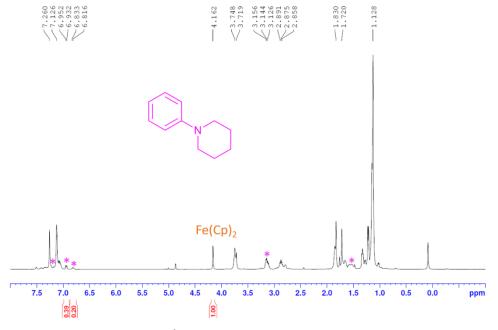


Figure S 76 ¹H NMR spectrum of compound 11j in CDCl₃

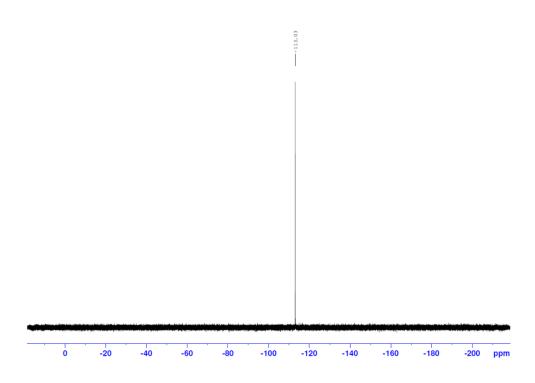


Figure S 77 $^{19}{\rm F}$ NMR spectrum of reaction between compound 4 and fluorobeznene displaying unreacted fluorobenzene

Reactivity between Compound 9 and C₆F₆

Inside the glovebox, 1 mmol (0.582 g) of **1** was weighed into a microwave vial alongside 0.169 g (1 mmol) of diphenylamine and then dissolved in 2 mL of THF on the bench. 0.12 mL (1 mmol) of C_6F_6 and exposed to microwave radiation for 1 h at 125°C, giving a dark brown solution. ¹⁹F NMR analysis revealed that <1% C-F activation of C_6F_6 had occurred, even after exposed to these harsh conditions.

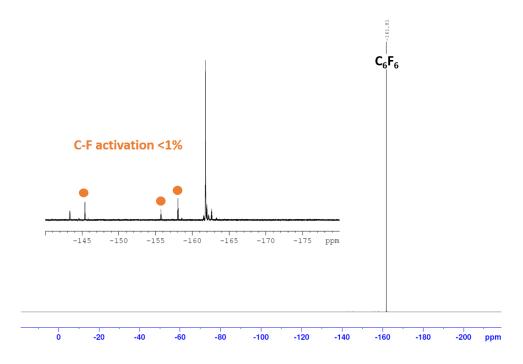


Figure S 78 19 F NMR spectrum of reaction between compound 9 and C_6F_6 showing negligilbe reactivity (CDCl₃)

Reactivity between Compound 10 and C₆F₆

Inside the glovebox, 0.560 g (0.5 mmol) of **10** was weighed into a microwave vial and then suspended in 2 mL of THF on the bench. To this 0.12 mL (1 mmol) was then added forming a cream suspension. This mixture was heated at 125°C in a microwave reactor for 1 h, giving no obvious change in the appearance of the reaction mixture. The suspension was then hydrolysed in air and filtered through a plug of cellite and glasswool to give a yellow solution. ¹H NMR analysis reveals the presence of only ^{Dipp}NacnacH resulting from hydrolysis of the amide. Note, that although ¹⁹F NMR appears to show peaks which could correspond to C₆F₅-benzotriazolyl, this particular reaction had all solvent removed before ¹⁹F NMR analysis of the crude product. The volatility of C₆F₆ insinuates C-F activation to a minor degree, however, in conjunction with the ¹H NMR only showing the presence of ^{Dipp}NacnacH, we can deduce that the degree of C-F activation occurring is negligible.

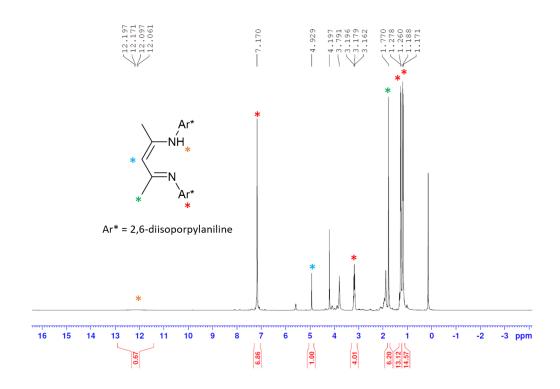


Figure S 79 1H NMR spectrum in CDCl3 of reaction between compound 10 and C_6F_6 under microwave conditions

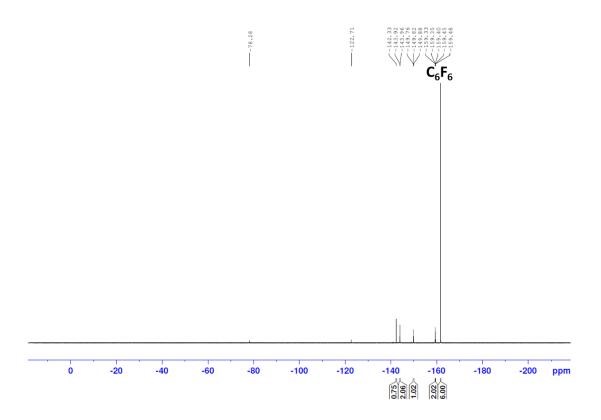


Figure S 80 ^{19}F NMR spectrum in CDCl3 of reaction between compound 10 and C_6F_6 under microwave conditions

References

- 1. S. E. Baillie, V. L. Blair, T. D. Bradley, W. Clegg, J. Cowan, R. W. Harrington, A. Hernán-Gómez, A. R. Kennedy, Z. Livingstone, E. Hevia, *Chem. Sci.*, 2013, **4**, 1895
- 2. A. G. M. Barrett, I. J. Casely, M. R. Crimmin, M. S. Hill, J. R. Lachs, M. F. Mahon, P. A. Procopiou, *Inorg. Chem.*, 2009, **48**, 4445
- 3. R. Neufeld, D. Stalke, Chem. Sci., 2015, 6, 3354
- 4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339
- 5. F. Zhu, Z. X. Wang, Adv, Synth. Catal., 2013, 335, 3694
- 6. M. Balkenhohl, C. François, D. S. Roman, P. Quinio, P. Knochel, Org. Lett., 2017, 19, 536
- 7. Y. Du, R. W. Pearson, C. H. Lim, S. M Sartor, M. D. Ryan, H. Yang, N. H. Damrauer, G. M. Miyake, *Chem. Eur. J.*, 2017, **23**, 10962
- 8. X. Kong, H. Zhang, Y. Xao, C. Cao, Y. Shi, G. Pang, RSC Adv., 2015, 5, 7035
- 9. Y. Lin, M. Li, X. Ji, J. Wu and S. Cao, Tetrahedron, 2017, 73, 1466