Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2019

Table of Contents

- 1. General Experimental Procedure
- 2. Experimental Procedure of 4π Ring Opening of Benzocyclobutenes
- 3. Experimental Detail of Mechanistic Study -NMR Monitoring Experiments-
- 4. Experimental Detail of Mechanistic Study -Trapping Experiments-
- 5. Preparation of Substrates
- 6. References
- 7. X-ray Crystal Graphic Data

1. General Experimental Procedure

All reactions were carried out under argon atmosphere with dehydrated solvents under anhydrous conditions, unless otherwise noted. Dehydrated solvent was purchased from Kanto Chemical Co., Inc. Reagents were obtained from commercial suppliers and used without further purification, unless otherwise noted. Reactions were monitored by thinlayer chromatography (TLC) carried out on silica gel plates (Merck Kieselgel $60F_{254}$). Column chromatography was performed on Silica gel 60N (Kanto Chemical Co., Inc., spherical, neutral, $63-210 \mu m$) and flash column chromatography was performed on Silica gel 60N (Kanto Chemical Co., Inc., spherical, neutral, $40-50 \mu m$). Infrared spectra were obtained on a JASCO FT/IR-460Plus spectrometer. Only the strongest and/or structurally important absorption are reported as the IR data afforded in cm⁻¹.

¹H NMR spectra, ¹³C NMR, and ³¹P NMR were recorded by using a JEOL ECX 400 or a JEOL ECX 500 spectrometer. The chemical shifts (δ) of ¹H NMR are given from TMS (0.00 ppm) in CDCl₃ or THF-*d*₈ (3.58 ppm and 1.57 ppm for ¹H), as an internal reference. Coupling constant (*J*) is reported in hertz. Multiplicities are reported by using the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; br, broad. The chemical shifts (δ) of ¹³C NMR are given from CDCl₃ (77.0 ppm) as an internal reference. ³¹P NMR spectra were recorded with 85% H₃PO₄ (0 ppm) as an external standard.

Mass spectra were recorded on a JEOL JMS-GCmate II or a JEOL JMS-AX 505 HAD. Reaction temperature (20-25 °C) was kept with PSL-1810 (EYELA).

Trimethylphosphine (1.0 M THF solution) was purchased from Sigma-Aldrich.

2. Experimental Procedure of 4π Ring Opening of Benzocyclobutenes (Table 1)

General Procedure A: To a solution of azide BCB **1** (**1a**: 0.125 mmol, **1b**: 0.254 mmol) in THF/H₂O (10/1, 0.25-0.33 M), phosphine^{*1} (1.0 eq) was added at room temperature (20-25 °C). After 24 h, the mixture was concentrated. Yields (**2a**, **3a**) were determined by qNMR with 1,2,4,5-tetrachlorobenzene as an internal standard. The ¹H NMR spectra of **2a**¹ and **2b**² were identical with reported data.

General Procedure B: To a solution of azide BCB 1 (0.124-0.152 mmol) in THF (0.33 M), phosphine^{*1} (1 eq) was added at room temperature (20-25 °C). After 24 h, the mixture was quenched with sat. NH₄Cl aq. (1.0-1.2 mL) and stirred for 1 h at room temperature. The resulting mixture was extracted with MeOH/CHCl₃ (1/9) or Et₂O. The combined organic layers were dried over MgSO₄, filtered and concentrated. Yields (**2c**, **2d**) were determined by qNMR with 1,2,4,5-tetrachlorobenzene as an internal standard.

2a, **2b**: The residue was purified by flash silica gel column chromatography (Hexane/EtOAc = 17/3 to 4/1) to afford ketone **2a** or aldehyde **2b** as a white solid. Yields (**2a**, **2b**) were determined by qNMR with 1,2,4,5-tetrachlorobenzene as an internal standard.

^{*1} PMe₃: Trimethyl phosphine (1.0 M THF solution) was used. At the time, THF solvent (0.48 M) was used to adjust total concentration to 0.33 M.

Table S1

^a No reaction. ^bComplex mixture.

3 Experimental Details of Mechanistic Study

-NMR Monitoring Experiments-

Figure S1

reaction mixture ①: To a solution of azide BCB 1a (14.2 mg, 0.0648 mmol) in THF- d_8 (60 µL), trimethyl phosphine (1.0 M THF solution, 72 µL, 0.072 mmol) was added at room temperature (20-25 °C). After 24 h, the mixture was diluted with THF- d_8 and analyzed by ¹H NMR (400 MHz, THF- d_8). Yield was determined by qNMR with as an internal standard with 1,2,4,5-tetrachlorobenzene.

Note: reaction mixture ①;

• Alkene signals (2H) of enamine appeared to overlap with other signals in 3.5-3.9 ppm.

• Trimethylphosphorane signals (N=PMe₃, 9H) appeared in 1.4 ppm.

• Signals of trimethylphosphine oxide (O=PMe₃) which was generated by Staudinger reaction appeared in 1.3 ppm.

Experiment to confirm the ¹H-NMR spectra of enamine C1

The ¹H-NMR spectra of the intermediate from azide BCB **1a** and PMe₃ (the reaction mixture ①) agreed with the ¹H-NMR spectra of iminophosphorane from vinyl azide **S18** and PMe₃ (reaction mixture ②).

reaction mixture (2): To a solution of vinyl azide **18S** (15.2 mg, 0.0693 mmol) in THF d_8 (62 µL), trimethyl phosphine (1.0 M THF solution, 76 µL, 0.076 mmol) was added at room temperature (20-25 °C). After 21 h, the mixture was diluted with THF- d_8 and analyzed by ¹H NMR (400 MHz, THF- d_8).

Comparison of the chemical shift of vinyl proton

4. Experimental Details of Mechanistic Study - Trapping Experiments-

4-1. Trap by Ac₂O and Lower Limit of Reaction Temperature for the Ring-opening

General Procedure C: To a solution of azide BCB **1a** or **1b** (0.124-0.127 mmol) in THF (0.33 M), phosphine (1 eq) was added. After 24 h, Ac₂O (10 eq) was added to the reaction mixture. After being stirred for 2 h, the mixture was concentrated. The resulting residue was purified by flash silica gel column chromatography (**S1a**: Hexane/AcOEt = 4/1 to 7/3, **S1a'**: CH₂Cl₂/EtOAc = 13/7 to 1/1, **S2**: Hexane/AcOEt = 7/3 to 3/2).

MeO MeO 1a (1b ((R = Me) $(R = H)$	PR' ₃ (1 THF, tir Ac ₂ O (1 2 h	eq) ne, T °C; 10 eq)	MeO MeO S1a (R = Me, X S1a' (R = Me, X S1b (R = H, X =	X + Ac = H) = Ac) H)	ring-ope HN ^{AC} MeO <u>Me</u> S2	or MeO H MeO Me MeO 2b
Entry	Substrate	R	PR'3	T°C	Time (h)	Yie	ld (%)
						BCBs	ring-opened products
1	1a	Me	PMe_3	0 °C	24	58 (S1a + S1a')	23 (S2)
2	1a	Me	PMe ₃	–78 to –50 °C	28.5	76 (S1a)	0
3	1b	н	PPh ₃	0 °C	24	27 (S1b)	23 (2b)
4	1b	н	PPh_3	20 to 25 °C	24	0	54 (2b)

Table S2

Amide BCB (S1a)

S1a: a yellow solid; $R_f = 0.3$ (Hexane/AcOEt = 7/3); ¹H NMR (400 MHz, CDCl₃): δ 6.91 (1H, s), 6.72 (1H, s), 6.10 (1H, brs), 3.86 (3H, s), 3.85 (3H, s), 3.23 (2H, dd, J = 14.6 Hz, 14.6 Hz), 1.96 (3H, s), 1.74 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 169.8, 150.9, 149.6, 140.2, 132.4, 107.6, 105.9, 59.7, 56.25, 56.23, 45.0, 24.2, 23.8; IR (neat): 3354, 2927, 1651, 1538, 1482 cm⁻¹; HRMS (FAB) calcd for C₁₃H₁₈NO₃ (M+H⁺): 236.1287, found: 236.1288.

Amide BCB (S1a')

S1a': a yellow oil; $R_f = 0.45$ (CH₂Cl₂/EtOAc = 1/1); ¹H NMR (500 MHz, CDCl₃): δ 7.07 (1H, s), 6.65 (1H, s), 3.87 (3H, s), 3.85 (3H, s), 3.40 (1H, d, J = 13.5 Hz), 3.30 (1H, d, J = 13.5 Hz), 2.35 (6H, s), 1.83 (3H, s); IR (neat): 3593, 2935, 1667, 1590, 1481 cm⁻¹; HRMS (FAB) calcd for C₁₅H₁₉NO₄ (M⁺): 277.1314, found: 277.1395.

Enamine (S2)

S2: a yellow solid; $R_f = 0.33$ (Hexane/AcOEt = 3/2); ¹H NMR (500 MHz, CDCl₃): δ 6.75 (1H, s), 6.69 (1H, s), 6.58 (1H, brs), 6.06 (1H, s), 4.69 (1H, s), 3.87 (3H, s), 3.85 (3H, s), 2.29 (3H, s), 2.07 (3H, s); ¹³C NMR (125 MHz, CDCl₃): δ 168.6, 148.8, 146.8, 140.1, 130.7, 128.1, 113.3, 112.4, 102.4, 56.05, 55.92, 24.6, 19.1; IR (neat): 3355, 2933, 1667, 1513 cm⁻¹; HRMS (FAB) calcd for C₁₃H₁₈NO₃ (M+H⁺): 236.1287, found: 236.1287.

Amide BCB (1b)

1b: a yellow solid; $R_f = 0.4$ (CH₂Cl₂/EtOAc = 1/1); ¹H NMR (500 MHz, CDCl₃): δ 6.76 (1H, s), 6.70 (1H, s), 6.02 (1H, brs), 5.41 (1H, ddd, J = 4.8, 4.8, 1.8 Hz), 3.86 (3H, s), 3.84 (3H, s), 3.63 (1H, dd, J = 13.5, 4.8 Hz), 2.89 (1H, dd, J = 13.5, 1.8 Hz), 2.02 (3H, s); ¹³C NMR (125 MHz, CDCl₃): δ 169.9, 151.1, 149.9, 136.3, 134.4, 107.1, 106.4, 56.2, 49.5, 39.8, 23.4; IR (neat): 3308, 2925, 1666, 1531, 1488 cm⁻¹; HRMS (FAB) calcd for C₁₂H₁₆NO₃ (M+H⁺): 222.1130, found: 222.1138.

4-2. Intramoleculer Diels-Alder Trap of OQM Intermediate (Table 2)

Condition A: THF (50 mM), 24 h then H₂O, 20-25 °C, 24 h

To a solution of azide BCB 1 (1b or 1c, ca. 20 mg scale) in THF was added phosphine 4 (3 eq). After the reaction mixture was stirred at 20-25 °C for 24 h, H₂O (5%v/v) was added to the resulting solution. After being stirred at 20-25 °C for 24 h, the reaction mixture was directly purified by short silica gel column chromatography (5: Hexane/CH₂Cl₂ = 3/1 to CHCl₃/MeOH/Et₃N = 99/1/0 to 80/20/0.5, 6: pentane/CH₂Cl₂ = 100/1 to CHCl₃/MeOH/Et₃N = 90/10/0 to 85/15/0.5) to separate phosphine 4 from other products containing aminophosphine oxide 5 or 6. Yields (5, 6) were determined by qNMR with 1,2,4,5-tetrabromobenzene as an internal standard.

Condition B: THF (50 mM), H₂O (5%v/v), 20-25 °C, 24 h

To a solution of azide BCB 1 (1b or 1c, ca. 20 mg scale) in THF and H₂O (5%v/v) was added phosphine 4. After the reaction mixture was stirred at 20-25 °C for 24 h, the reaction mixture was directly purified by short silica gel column chromatography (5: Hexane/CH₂Cl₂ = 3/1 to CHCl₃/MeOH/Et₃N = 99/1/0 to 80/20/0.5, 6: pentane/CH₂Cl₂ = 100/1 to CHCl₃/MeOH/Et₃N = 90/10/0 to 85/15/0.5) to separate phosphine 4 from other products containing aminophosphine oxide 5 or 6. Yields (5, 6) were determined by qNMR with 1,2,4,5-tetrabromobenzene as an internal standard.

Two diastereomers (*cis*-**5**, *trans*-**5**) could be partially separated by flash column chromatography (CHCl₃/MeOH = 1/99 to 1/4). However, *trans*-**5** was purified by repetitive flash column chromatography (CHCl₃/MeOH = 1/99 to 1/4).

cis-5: upper spot; trans-5: under spot

Relative configurations were determined by *J*-coupling values (5 and 6) and X-ray crystallography (See page S21).

cis-Amino phosphine oxide (cis-5)

cis-5: a colorless solid; R_f = 0.45 (15% MeOH in CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.70-7.36 (12H, m), 7.19-7.06 (2H, m), 6.64 (1H, s), 6.45 (1H, s), 3.93 (1H, d, *J* = 3.7 Hz), 3.87-

3.72 (1H, m), 3.79 (3H, s), 3.78 (3H, s), 2.61 (1H, d, J = 16.5 Hz), 2.32-2.15 (2H, m), 1.54 (1H, d, J = 11.9 Hz), 1.48 (2H, brs); ¹³C NMR (100 MHz, CDCl₃): δ 149.1, 149.0, 147.6, 147.0, 134.3, 133.7, 133.5, 133.3, 133.2, 132.2, 132.12, 132.10, 132.0, 131.72, 131.70, 131.61, 131.58, 131.51, 131.49, 131.4, 131.3, 131.0, 129.9, 129.8, 128.4, 128.3, 127.8, 125.7, 125.6, 112.1, 110.8, 55.7, 55.6, 51.6, 43.12, 43.06, 29.0, 23.4; ³¹P NMR (162 MHz, CDCl₃) 31.9; IR (KBr): 2932, 1609, 1509, 1438, 1251 cm⁻¹; HRMS (EI) calcd for C₃₀H₃₀NO₃P (M⁺): 483.1963, found: 483.1971.

trans-Amino phosphine oxide (trans-5)

trans-5: a colorless solid; $R_f = 0.45$ (15% MeOH in CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.72-7.63 (4H, m), 7.60-7.54 (3H, m), 7.51-7.46 (5H, m), 7.33 (1H, s), 7.21 (1H, ddd, J = 7.8, 7.7,

2.3 Hz), 7.05 (1H, ddd, J = 14.2, 7.8, 1.3 Hz), 6.46 (1H, s), 4.08 (1H, d, J = 10.2 Hz), 3.87 (3H, s), 3.83 (3H, s), 3.58 (1H, dd, J = 11.5, 10.2 Hz), 2.46 (1H, ddd, J = 14.5, 4.7, 2.3 Hz), 2.24-2.12 (3H, m, containing NH₂), 1.80 (1H, dddd, J = 14.5, 12.3, 11.5, 4.7 Hz), 1.58-1.52 (1H, m); ¹³C NMR (125 MHz, CDCl₃): δ 149.74, 149.67, 147.7, 147.5, 134.1, 133.5, 133.4, 133.3, 133.08, 133.06, 133.0, 132.3, 132.23, 132.17, 132.07, 132.05, 131.93, 131.91, 131.63, 131.55, 131.5, 131.0, 128.69, 128.65, 128.59, 128.56, 128.1, 128.0, 126.2, 126.1, 110.9, 110.7, 56.8, 56.2, 55.8, 47.7, 47.6, 30.7, 29.5; ³¹P NMR (162 MHz, CDCl₃) 32.8; IR (KBr): 3419, 2932, 1510, 1438, 1262 cm⁻¹; HRMS (EI) calcd for C₃₀H₃₀NO₃P (M⁺): 483.1963, found: 483.1918.

Amino phosphine oxide (6)

6 (mixture of *cis* : *trans* = **3** : **7**): a colorless solid; $R_f = 0.55$ (15% MeOH in CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.80-7.36 (12H, m),

7.19-6.95 (6H, m), 4.09 (0.3H, d, J = 9.7 Hz, H1_{trans}), 4.01 (0.7H, d, J = 3.8 Hz, H1_{cis}), 3.90 (0.7H, d, J = 11.6 Hz, H2_{cis}), 3.67-3.58 (0.3H, m, H2_{trans}), 2.73 (0.7H, dd, J = 16.3, 2.6 Hz, H4_{cis}), 2.55 (0.3H, dd, J = 11.6, 1.7 Hz, H4_{trans}), 2.38 (0.7H, ddd, J = 16.5, 11.6, 4.7 Hz, H3_{cis}), 2.33-2.18 (1H, m, H3'_{cis,trans}), 1.84-1.74 (0.3H, m, H3_{trans}), 1.68-1.52 (1H, m, H4'_{cis,trans}), 1.37 (2H, brs, NH₂); ¹³C NMR (125 MHz, CDCl₃): δ 150.5, 150.4, 149.2, 149.1, 140.7, 140.5, 136.3, 135.9, 134.4, 134.3, 133.6, 133.54, 133.50, 133.4, 133.2, 133.1, 133.0, 132.8, 132.7, 132.3, 132.2, 132.1, 132.0, 131.9, 131.7, 131.54, 131.46, 131.4, 131.1, 130.1, 130.1, 129.3, 129.4, 128.4, 128.33, 128.27, 128.2, 127.62, 127.55, 127.5, 126.4, 126.1, 125.8, 125.70, 125.67, 125.62, 125.56, 56.8, 51.7, 48.1, 48.0, 42.91, 42.87, 30.5, 29.8, 29.4, 23.7; ³¹P NMR (202 MHz, CDCl₃) 31.8, 31.2; IR (KBr): 3060, 3011, 2975, 1591, 1568, 1487, 1472, 1438, 1217 cm⁻¹; HRMS (FAB) calcd for C₂₈H₂₇NOP (M+H⁺): 424.1830, found: 424.1837.

5. Preparation of Substrates

Azide BCBs were prepared by directly azidation³ of benzocyclobutenols. The benzocyclobutenols were prepared from benzocyclobutenone $S5^4$ prepared according to the literature procedure.

N,O-Dimethyl-4,5-dimethoxy-2-iodobenzylamide (S4)⁴

To a solution 3,4-dimethoxyphenylacetic acid S3 (22.6 g, 115 mmol) in toluene (110 mL) was added thionyl cloride (10.0 mL, 138 mmol). The reaction mixture was stirred for 2 h at 70 °C. After the mixture was cooled to 0 °C, K₂CO₃ aq. (8 M, 57.0 mL) and N,Odimethylhydroxylamine hydorochloride (14.6 g, 150 mmol) were added at 0 °C. After being stirred at 0 °C to room temperature overnight, the mixture was quenched with 2 M HCl aq., extracted with Et₂O. The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The resulting residue was purified by passing through a plug of silica (Hexane/EtOAc = 1/1) to afford the crude Weinreb amide (28.3 g). To a solution of crude Weinreb amide (12.5 g, 55.5 mmol) in CHCl₃ (159 ml) were added CF₃CO₂Ag (14.7 g, 66.6 mmol) and iodine (16.9 g, 66.6 mmol) at room temperature, then, the mixture was stirred for 15 h at room temperature. After the mixture was filtered through a pad of Celite[®], the filtrate was washed with 10% (w/w) Na₂S₂O₃ aq.. After the combined organic layers were dried over MgSO₄ and concentrated. The resulting residue was purified by silica gel column chromatography ($CH_2Cl_2/EtOAc =$ 30/1 to 10/1) to afford aryl iodide S4 (13.1 g, 37.5 mmol, 64% for 2 steps) as a pale yellow solid.

S4: ¹H NMR (400 MHz, CDCl₃): δ 7.24 (1H, s), 6.83 (1H, s), 3.85 (8H, s), 3.73 (3H, s), 3.23 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 149.3, 148.4, 130.7, 121.5, 113.1, 89.2, 61.5, 56.1, 55.9, 43.9, 32.4; IR (KBr): 2968, 1663, 1599, 1505, 1379, 1257 cm⁻¹; HRMS (FAB) calcd for C₁₂H₁₇INO₄ (M+H⁺): 366.0203, found: 366.0209.

4,5-Dimethoxybenzocyclobuten-1-one (S5)⁴

To a solution of S4 (4.62 g, 13.2 mmol) in THF (68 mL) was added *t*-BuLi (1.9 M Pentane solution, 20.7 mL, 39.5 mmol) at -78 °C. After being stirred for 1 h at -78 °C, the reaction mixture was quenched with saturated NH₄Cl aq.. The resulting mixture was extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄ and concentrated. The resulting residue was purified by flash silica gel column chromatography (Hexane/Acetone = 5/1 to 4/1) to afford benzocyclobutenone S5 (843 mg, 4.73 mmol, 36%) as a pale yellow solid. ¹H NMR spectrum data of benzocyclobutenone S5 was identical with reported data⁴.

S5: ¹H NMR (400 MHz, CDCl₃): δ 7.01 (1H, s), 6.82 (1H, s), 3.98 (3H, s), 3.86 (5H, s).

Benzocyclobutenol (S6a)

To a solution of **S5** (939 mg, 5.27 mmol) in THF (37 mL) was added MeLi (1.1 M Et₂O solution, 9.6 mL, 10.5 mmol) at -78 °C. After being stirred for 30 min at -78 °C, the reaction mixture was quenched with 1 M HCl aq.. The organic layers were washed with sat. Na₂CO₃ aq., dried over MgSO₄ and concentrated. The residue was purified by flash silica gel column chromatography (Hexane/EtOAc = 3/2) to afford alcohol **S6a** (964 mg, 4.97 mmol, 94%) as a pale yellow solid.

S6a: ¹H NMR (400 MHz, CDCl₃): δ 6.78 (1H, s), 6.74 (1H, s), 3.864 (3H, s), 3.860 (3H, s), 3.28 (1H, d, J = 13.6 Hz), 3.14 (1H, d, J = 13.6 Hz), 2.21 (1H, s), 1.65 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 150.4, 148.9, 141.9, 131.9, 107.3, 104.1, 76.6, 55.63, 55.60, 47.0, 25.4; IR (neat): 3447, 3019, 1591, 1484, 1310 cm⁻¹; HRMS (EI) calcd for C₁₁H₁₄O₃ (M⁺): 194.0943, found: 194.0974.

To a solution of **S6a** (214 mg, 1.11 mmol) in toluene (1.0 mL) and DMF (2.0 mL) was added DPPA (0.48 mL, 2.2 mmol) and DBU (0.35 mL, 2.2 mmol) at 0 °C. After being stirred at 0 °C for 2 h and at 40 °C for 20 h, the reaction mixture was cooled to room temperature, quenched with H₂O and extracted with Et₂O. The organic layers were washed with H₂O and 1 M HCl aq., dried over MgSO₄ and concentrated. The residue was purified by flash silica gel column chromatography (Hexane/CH₂Cl₂ = 7/3 to 3/2) to afford azide **1a** (171 mg, 0.778 mmol, 70%) as a dark green solid.

1a: ¹H NMR (400 MHz, CDCl₃): δ 6.77 (1H, s), 6.74 (1H, s), 3.873 (3H, s), 3.869 (3H, s), 3.34 (1H, d, J = 13.4 Hz), 3.20 (1H, d, J = 13.4 Hz), 1.63 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 151.5, 149.9, 137.9, 131.9, 107.4, 104.6, 66.7, 56.12, 56.08, 44.3, 24.0; IR (neat): 2925, 2100, 1591, 1484 cm⁻¹; HRMS (FAB) calcd for C₁₁H₁₃O₂N₃ (M⁺): 219.1008, found: 219.1034.

Amino BCB (3a)

To a solution of **1a** (41 mg, 0.19 mmol) in MeOH (1.3 mL) was added Palladium 10 wt% on activated Carbon (9.0 mg, 0.029 mmol) and stirred under H₂ atmosphere at room temperature for 6 h. The mixture was filtered through Celite[®], extracted with MeOH and concentrated. The residue was purified by recrystallization (Hexane/Et₂O = 3/7) to afford amine **3a** (31 mg, 0.16 mmol, 85%) as a white solid.

3a: ¹H NMR (400 MHz, CDCl₃): δ 6.80 (1H, s), 6.72 (1H, s), 3.852 (3H, s), 3.845 (3H, s), 3.22 (1H, d, J = 13.5 Hz), 3.06 (1H, d, J = 13.5 Hz), 2.93 (2H, brs), 1.59 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 150.8, 149.7, 142.0, 131.8, 107.8, 104.7, 59.9, 56.2, 47.0, 26.0; IR (neat): 3419, 2965, 1636, 1593, 1484 cm⁻¹; HRMS (EI) calcd for C₁₁H₁₅O₂N (M⁺): 193.1103, found: 193.1123.

Azide BCB (1b)³

To a solution of **S5** (201 mg, 1.12 mmol) in MeOH (11 mL) was added NaBH₄ (51.4 mg, 1.34 mmol) at 0 °C. After being stirred for 40 min at room temperature, the reaction mixture was quenched with sat. NH₄Cl aq. and extracted with EtOAc (x5). The organic layers were washed with brine, dried over MgSO₄ and concentrated The residue was purified by open silica gel column chromatography (Hexane/EtOAc = 1/1) to afford alcohol **S6b** (188 mg, 1.04 mmol, 93%) as a pale yellow solid. To a solution of alcohol **S6b** (251 mg, 1.39 mmol) in toluene (1.2 mL) and DMF (2.5 mL) were added DPPA (0.60 mL, 2.8 mmol) and DBU (0.40 mL, 2.8 mmol) at 0 °C. After being stirred at 0 °C for 2 h and 40 °C for 20 h, the reaction mixture was cooled to room temperature. The mixture was quenched with H₂O and extracted with Et₂O. The organic layer was washed with H₂O and 1 M HCl aq., dried over MgSO₄ and concentrated in *vacuo*. The residue was purified by flash silica gel column chromatography (Pentane/Et₂O = 5/1) to afford azide BCB **1b** (216 mg, 1.05 mmol, 76%) as a blue oily solid.

1b: ¹H NMR (400 MHz, CDCl₃): δ 6.79 (1H, s), 6.70 (1H, s), 4.75 (1H, d, J = 4.4 Hz), 3.85 (3H, s), 3.84 (3H, s), 3.49 (1H, dd, J = 13.7, 4.4 Hz), 3.12 (1H, d, J = 13.7 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 151.7, 149.9, 133.8, 106.8, 106.3, 58.4, 56.1, 56.0, 37.9; IR (neat): 3003, 2930, 2832, 2100, 1591, 1486 cm⁻¹; HRMS (EI) calcd for C₁₀H₁₁N₃O₂ (M⁺): 205.0851, found: 205.0849.

Magnesium (0.13 g, 5.4 mmol) and 1-bromo-2-vinylbenzene S7 (0.60 mL, 4.6 mol) were mixed in THF (2.0 mL) under argon atmosphere. After 5 min, the reaction mixture produced heat. Subsequently the mixture was cooled with an ice bath and stirred until all Mg was dissolved. chlorodiphenylphosphine (0.74 mL, 4.0 mmol), dissolved in THF (1.2 mL) was slowly added to keep the solution gently boiling. After being stirred for 1 h

under reflux, the reaction mixture was quenched with water and ice. The product was extracted with Et₂O. Purification was done by flash silica gel column chromatography (CH₂Cl₂/*n*-Pentane = 1/1) to afford styryl phosphine **10** (0.65 g, 2.2 mmol, 55%) as a white solid. ¹H NMR spectrum data of styryl phosphine **10** was identical with reported data⁵.

Benzocyclobutenol (S10)⁶

To a solution of 2-bromobenzaldehyde S8 (5.35 g, 28.9 mmol) in CH₂Cl₂ (40 mL) were added Me₃SI (15.9 g, 72.3 mmol) and BuNEt₃Cl (263 mg, 1.15 mmol), then 50% NaOH aq. (40 ml) at 0 °C. After being stirred for 14 h at room temperature, H₂O was added to the reaction mixture and the resulting solution was extracted with CH₂Cl₂. The organic layers were washed with H₂O, brine, dried over MgSO₄ and concentrated. The residue was purified by open silica gel column chromatography (short column, Hexane/Et₂O = 20/1 to 10/1) to afford epoxide S9 (5.16 g, 25.9 mmol, 90%) as a colorless oil. To a solution of MgBr₂ (3.01 g, 16.4 mmol) in THF (100 ml), a solution of epoxide S9 (1.63 g, 8.18 mmol) in THF (25+6+5 mL) was cannulated at -78 °C. To the resulting solution was added n-BuLi (6.14 ml, 1.6 M hexane solution, 9.82 mmol) at -78 °C. After being stirred at -78 °C for 20 min, the reaction mixture was warmed up to 0 °C and stirred for 20 min at 0 °C. The mixture was quenched with sat. NH₄Cl aq. and extracted with Et₂O. The organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by open silica gel column chromatography (Pentane/CH₂Cl₂ = 1/2to CH₂Cl₂) to afford benzocyclobutenol S10 (141 mg, 1.00 mmol, 12%) as a colorless solid.

S10: $R_f = 0.25$ (CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.22 (3H, m), 7.15 (1H, d, J = 7.3 Hz), 5.30 (1H, dd, J = 8.0, 4.4 Hz), 3.63 (1H, dd, J = 14.3, 4.4 Hz), 3.04 (1H, J = 14.3 Hz), 2.26-2.12 (1H, m); ¹³C NMR (100 MHz, CDCl₃): δ 147.7, 142.3, 129.5, 127.2, 123.6, 122.2, 71.2, 42.5; IR (neat): 3304, 2925, 1600, 1457 cm⁻¹; HRMS (EI) calcd for C₈H₉O (M+H⁺): 121.0654, found: 121.0653.

Azide BCB (1c)

*With DPPA, alcohol **S13** could not be converted to azide **1d** only to afford phosphate as an intermediate. Therefore, we chose another method to convert alcohol **S12** to azide $1c.^7$ OH 1. TMSCI (2.5 eq)

To a solution of S11⁸ (91.6 mg, 0.775 mmol) in THF (5.5 mL) was added MeLi (1.1 M Et₂O solution, 1.4 mL, 1.6 mmol) at -78 °C. After the reaction mixture was stirred for 30 min at -78 °C, to the reaction mixture was added MeLi (1.1 M Et₂O solution, 3.0 mL, 3.3 mmol) at -78 °C. After being stirred for 30 min at -78 °C, the reaction mixture was quenched with 1 M HCl aq. and extracted with Et₂O. The organic layers were washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash silica gel column chromatography (Pentane/Et₂O = 4/1 to 1/1) to afford alcohol S12⁷³ (78.8 mg. 0.587 mmol, 76%) as a colorless solid. To a solution of alcohol S12 (93.8 mg, 0.699 mmol) in CH₂Cl₂ (7 mL) were added imidazole (190 mg, 2.79 mmol) and TMSCl (220 µl, 1.74 mmol) at 0 °C. After being stirred for 1 h at room temperature, the reaction mixture was quenched with H₂O and extracted with CH₂Cl₂. The organic layer was washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (short column, Pentane/Et₂O = 8/1) to afford silyl ether (125 mg, 0.606 mmol) as a colorless oil. To a solution of silvl ether (125 mg, 0.606 mmol) in DCE (3 mL) were added TMSN₃ (95.5 µl, 0.727 mmol) and FeCl₃ (a half micro spatula) at room temperature. After being stirred for 10 min at room temperature, the reaction mixture was quenched with H₂O and extracted with CH₂Cl₂. The organic layer was washed with H₂O and brine, dried over MgSO₄ and concentrated. The residue was purified by flash silica gel column chromatography (Pentane/Et₂O = 50/0 to 50/1) to afford azide BCB 1c (84.6 mg, 0.531 mmol) as a colorless oil.

1c: $R_f = 0.25$ (Hexane/EtOAc = 100/1); ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.23 (2H, m), 7.20 (1H, d, J = 7.3 Hz), 7.17 (1H, d, J = 7.3 Hz), 3.42 (1H, d, J = 14.0 Hz), 3.29 (1H, d, J = 14.0 Hz), 1.67 (3H, s); ¹³C NMR (125 MHz, CDCl₃): δ 147.0, 140.7, 129.8, 127.6, 123.9, 120.9, 67.3, 45.1, 24.0; IR (neat): 3445, 2086, 1634, 1458 cm⁻¹; HRMS (FAB)

calcd for C₉H₉N (M-N₂⁺): 131.0735, found: 131.0736.

Azide BCB (1d)⁹

*With DPPA, alcohol **S13** could not be converted to azide **1d** only to afford phosphate as an intermediate. Therefore, we chose another method to convert alcohol **S13** to azide **1d**.

To a solution of alcohol **S13** (97.1 mg, 0.808 mmol) in CH₂Cl₂ (8.1 mL) were added Ts₂O (1.31 g, 4.04 mmol) and pyridine (0.648 ml, 8.08 mmol) at 0 °C. After being stirred for 3 h at room temperature, the reaction mixture was quenched with sat. NaHCO₃ aq. and extracted with Et₂O. The organic layers were washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash silica gel column chromatography (Hexane/Et₂O = 15/1) to afford tosylate **S14** (178 mg, 0.647 mmol, 80%) as a white solid. To a solution of alcohol tosylate **S14** (178 mg, 0.647 mmol) in DMF (13 mL) was added NaN₃ (214 mg, 3.23 mmol). After being stirred for 11 h at 60 °C, the reaction mixture was cooled to room temperature. The mixture was quenched with H₂O and extracted with Et₂O. The organic layer was washed with H₂O, dried over MgSO₄ and concentrated. The residue was purified by flash silica gel column chromatography (10 mixture) to 10/1) to afford azide **1d** (83.6 mg, 0.575 mmol, 89%) as a blue oil.

1d: $R_f = 0.4$ (Hexane/EtOAc = 10/1); ¹H NMR (500 MHz, CDCl₃): δ 7.34 (1H, dd, J = 7.4, 7.4 Hz), 7.28 (1H, dd, J = 7.4, 7.4 Hz), 7.24 (1H, d, J = 7.4 Hz), 7.15 (1H, d, J = 7.4 Hz), 4.88 (1H, dd, J = 4.9, 2.3 Hz), 3.61 (1H, dd, J = 14.3, 4.9 Hz), 3.23 (1H, dd, J = 14.3, 2.3 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 143.0, 142.4, 129.9, 127.6, 123.5, 122.7, 59.0, 38.7; IR (neat): 2931, 2100, 1603, 1457 cm⁻¹; HRMS (EI) calcd for C₈H₇N₃ (M⁺): 145.0640, found: 145.0658.

Phenyl acetylene (S17)

To a solution of 3,4-dimethoxy toluene S15 (1.93 g, 12.6 mmol) in CHCl₃ (50 mL) were added iodine (3.52 g, 13.9 mmol) and CF₃CO₂Ag (3.08 g 13.9 mmol) at room temperature. After being stirred for 23 h at room temperature, the reaction mixture was quenched with 10% Na₂S₂O₃ ag. and diluted with CH₂Cl₂. The resulting mixture was filtered through a Celite pad. The filtrate was washed with 10% Na₂S₂O₃ aq. and brine, dried over MgSO₄ and concentrated. The residue was purified by silica gel column chromatography (Hexane/EtOAc = 8/1) to afford aryl iodide S16 (3.49 g, 12.5 mmol, 99%) as a colorless oil. To a solution of aryl iodide S16 (3.49 g, 12.5 mmol) in THF (34 mL) were added CuI (95.2 mg, 0.500 mmol), Pd(PPh₃)₂Cl₂ (175 mg, 0.250 mmol). After being stirred for 10.5 h, the reaction mixture was quenched with sat. NH₄Cl aq. and extracted with EtOAc. The organic layer was washed with sat. NH4Cl aq. and concentrated. The residue was dissolved in MeOH in 80 ml and to the resulting solution, K₂CO₃ (5.18 g, 37.5 mmol) was added. After being stirred for 3 h, the reaction mixture was quenched with 1 N HCl aq. (30 ml) and sat. NH₄Cl aq.. The resulting solution was extracted with Et₂O and the organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash silica gel column chromatography (Hexane/Et₂O = 8/1 to 4/1) to afford phenyl acetylene S17 (1.93 g, 10.9 mmol, 87% for 2 steps) as a white solid. **S17**: $R_f = 0.45$ (Hexane/EtOAc = 4/1); ¹H NMR (500 MHz, CDCl₃): δ 6.95 (1H, s), 6.69 (1H, s), 3.88 (3H, s), 3.85 (3H, s), 3.20 (1H, s), 2.40 (3H, s); ¹³C NMR (125 MHz, CDCl₃):

δ 149.5, 146.6, 134.2, 114.9, 113.3, 112.4, 82.8, 79.3, 56.0, 55.8, 20.1; IR (neat): 3307, 2365, 2345, 1605, 1508 cm⁻¹; HRMS (EI) calcd for C₁₁H₁₂O₂ (M⁺): 176.0837, found: 176.0808.

Vinyl azide (S18)¹⁰

To a solution of phenyl acetylene **S17** (357 mg, 2.02 mmol) in DMSO (8.1 mL) were added H₂O (73 μ l, 4.0 mmol), TMSN₃ (0.53 ml, 4.0 mmol), and Ag₂CO₃ (55.7 mg, 0.202 mmol) at room temperature. After being stirred for 2 h at 80 °C, the reaction mixture was cooled to room temperature and extracted with Et₂O. The organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash silica gel column chromatography (Hexane/EtOAc = 10/1 to 2/1) to afford vinyl azide **S18** (225 mg, 1.02 mmol, 51%) as an orange oil.

S18: $R_f = 0.5$ (Hexane/EtOAc = 4/1); ¹H NMR (400 MHz, CDCl₃): δ 6.78 (1H, s), 6.71 (1H, s), 5.03 (1H, d, J = 0.9 Hz), 4.71 (1H, d, J = 0.9 Hz), 3.89 (3H, s), 3.87 (3H, s), 2.34 (3H, s); ¹³C NMR (125 MHz, CDCl₃): δ 149.2, 146.7, 145.1, 128.5, 126.8, 113.2, 112.3, 102.4, 56.0, 55.9, 19.3; IR (neat): 3002, 2936, 2848, 2090, 1631, 1606, 1515 cm⁻¹; HRMS (EI) calcd for $C_{11}H_{13}N_3O_2$ (M⁺): 219.1008, found: 219.1021.

6. References

- 1. Solomek, T.; Klan, P., et al., J. Org. Chem. 2010, 75, 7300-7309.
- 2. Le, T. N.; Cho, W.-J., Chem. Pharm. Bull. 2008, 56, 1026 -1029.
- 3. Thompson, A. S.; Grabowski, E. J. J., et al., J. Org. Chem. 1993, 58, 5886-5888.
- 4. Aidhen, I. S.; Ahuja, J. R., Tetrahedron Lett. 1992, 33, 5431-5432.
- 5. Lexer, C.; N. G.; Slugovc, C., et al., J. Organomet. Chem. 2011, 696, 2466-2470.
- 6. Ting, C. P.; Maimone, T. J., Angew. Chem. Int. Ed. Engl. 2014, 53, 3115-3119.
- 7. Sawama, Y.; Sajiki, H. et al., Chem. Eur. J. 2012, 18, 16608-16611.
- 8. Hosoya, T.; Suzuki, K. et al., Synlett, 1995, 177-179.
- 9. Iida, K.; Yoshioka, M., et al., J. Org. Chem. 1999, 64, 7407-7411.
- 10. Liu, Z.; Liao, P.; Bi, X. Org. Lett. 2014, 16, 3668-3671.

7. X-ray Crystal Graphic Data

cis-5 was crystalized as a BF_4 salt from MeOH : toluene.

Figure S3: ORTEP drawing of *cis*-**5** ($R_1 = 6.8\%$).

	A. Crystal Data
Empirical Formula	$C_{30}H_{33}BF_4NO_4P$
Formula Weight	589.37
Crystal Color, Habit	colorless, platelet
Crystal Dimensions	0.200 X 0.100 X 0.020 mm
Crystal System	orthorhombic
Lattice Type	Primitive
Lattice Parameters	a = 10.49949(19) Å
	b = 15.8323(3) Å
	c = 35.2366(6) Å
	$V = 5857.41(18) \text{ Å}^3$
Space Group	Pbca (#61)
Z value	8
D _{calc}	1.337 g/cm^3

F ₀₀₀	2464.00		
m(CuKa)	13.703 cr	n ⁻¹	
	B. Intens	sity Measurements	
Diffractometer	R-AXIS	RAPID	
Radiation	CuKa (l =	= 1.54187 A)	
	multi-lay	er mirror monochromated	
Voltage, Current 40kV, 30		mA	
Temperature	-100.0°C		
Detector Aperture	460.0 x 2	256.0 mm	
Data Images	300 expo	sures	
w oscillation Range (c=54.0,	f=0.0)	80.0 - 260.0°	
Exposure Rate		30.0 sec./ ^o	
w oscillation Range (c=54.0,	f=90.0)	80.0 - 260.0°	
Exposure Rate		30.0 sec./ ^o	
w oscillation Range (c=54.0,	f=180.0)	80.0 - 260.0°	
Exposure Rate		30.0 sec./ ^o	
w oscillation Range (c=54.0,	f=270.0)	80.0 - 260.0°	
Exposure Rate		30.0 sec./ ^o	
w oscillation Range (c=0.0, f	=0.0)	80.0 - 260.0°	
Exposure Rate		30.0 sec./ ^o	
Detector Position		127.00 mm	
Pixel Size		0.100 mm	
2qmax		136.4°	
No. of Reflections Measured		Total: 63297	
		Unique: 5355 (Rint = 0.0653)	
Corrections		Lorentz-polarization	
		Absorption	
		(trans. factors: 0.680 - 0.973)	
C. S	Structure S	olution and Refinement	
Structure Solution		Direct Methods (SHELXT Version 2014/5)	
Refinement		Full-matrix least-squares on F ²	

Function Minimized	S w (Fo2 - Fc2)2
Least Squares Weights	$w = 1/[s^{2}(Fo^{2}) + (0.1027 \cdot P)^{2}$
	+ 5.2183 . P]
	where $P = (Max(Fo^2, 0) + 2Fc^2)/3$
2qmax cutoff	136.4°
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	5355
No. Variables	391
Reflection/Parameter Ratio	13.70
Residuals: R1 (I>2.00s(I))	0.0687
Residuals: R (All reflections)	0.0970
Residuals: wR2 (All reflections)	0.2004
Goodness of Fit Indicator	1.041
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$1.09 \text{ e-/}\text{Å}^3$
Minimum peak in Final Diff. Map	-0.39 e-/Å ³

 $\mathit{trans}\textbf{-}\textbf{5}$ was crystalized as a BF_4 salt from MeOH : toluene.

Figure S4: ORTEP drawing of *trans*-5 ($R_1 = 5.4\%$).

	A. Crystal Data
Empirical Formula	$C_{37}H_{39}BF_4NO_3P$
Formula Weight	663.50
Crystal Color, Habit	colorless, platelet
Crystal Dimensions	0.180 X 0.150 X 0.060 mm
Crystal System	triclinic
Lattice Type	Primitive
Lattice Parameters	a = 7.93080(14) Å
	b = 13.1455(2) Å
	c = 17.4250(3) Å
	$a = 76.619(5)^{\circ}$
	$b = 88.302(6)^{\circ}$
	$g = 73.541(5)^{\circ}$
	V = 1693.64(8) Å3
Space Group	P-1 (#2)
Z value	2
Deale	1.301 g/cm^3
F000	696.00
m(CuKa)	12.235 cm ⁻¹

B. Intensity Measurements

Diffractometer	R-AXIS RAPID
Radiation	CuKa (1 = 1.54187 Å)
	multi-layer mirror monochromated
Voltage, Current	40kV, 30mA
Temperature	-100.0°C
Detector Aperture	460.0 x 256.0 mm
Data Images	100 exposures
w oscillation Range (c=54.0, f=0.0)	80.0 - 260.0°
Exposure Rate	15.0 sec./ ^o
w oscillation Range (c=54.0, f=90.0)	80.0 - 260.0°
Exposure Rate	15.0 sec./ ^o
w oscillation Range (c=54.0, f=180.0)	80.0 - 260.0°
Exposure Rate	15.0 sec.^{0}
w oscillation Range (c=54.0, f=270.0)	80.0 - 260.0°
Exposure Rate	15.0 sec./ ^o
w oscillation Range (c=0.0, f=0.0)	80.0 - 260.0°
Exposure Rate	15.0 sec./ ^o
Detector Position	127.00 mm
Pixel Size	0.100 mm
2qmax	136.5°
No. of Reflections Measured	Total: 19539
	Unique: 6073 (Rint = 0.0438)
Corrections	Lorentz-polarization
	Absorption
	(trans. factors: 0.662 - 0.929)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SHELXT Version 2018/2)
Refinement	Full-matrix least-squares on F2
Function Minimized	$S \le (Fo^2 - Fc^2)^2$
Least Squares Weights	$w = 1/[s^{2}(Fo^{2}) + (0.0935 \cdot P)^{2}$
	+ 0.1158 . P]
	where $P = (Max(Fo^2, 0) + 2Fc^2)/3$
2qmax cutoff	136.5°
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	6073
No. Variables	454
Reflection/Parameter Ratio	13.38
Residuals: R1 (I>2.00s(I))	0.0542
Residuals: R (All reflections)	0.0713
Residuals: wR2 (All reflections)	0.1644
Goodness of Fit Indicator	1.081
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.35 e^{-}/Å^{3}$
Minimum peak in Final Diff. Map	$-0.32 \text{ e}^{-/}\text{Å}^{3}$

Amide BCB Me-1H

PPM 220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 -10.0

Diamide BCB Me-1H

Enamine-1H

Amide BCB H-1H

aminophos-cis-1H

aminophos-cis-13C

aminophos-cis-31P

aminophos-trans-13C

aminophos-trans-31P

Iodobenzylamide-1H

OH BCB Me-13C

Azide BCB Me-13C

NH2 BCB Me-13C

azide BCB-1H

benzocyclobutenol-1H

phenyl acetylene 1H

phenyl acetylene 13C

S44

vinyl azide-1H

vinyl azide-13C

