Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Primary Cycloalkylimines

Jean-Claude Guillemin, Wafa Nasraoui, Houda Gazzeh

Electronic Supplementary Information

Contents

Synthesis of imines 1b-1f and compound 3b . ¹ H and ¹³ C NMR spectra of imines 1b-1f and infrared spectra of 1b-1e . ¹ H and ¹³ C NMR spectra of tetradeutero imines 1e,1f .	S2 S3

General. NMR spectra were recorded on Bruker Avance 400 MHz spectrometer. Spectra were recorded in deuterochloroform referenced to $CHCl_3$ (¹H, 7.26 ppm) or $CDcl_3$ (¹³C, 77.16 ppm), or CD_2Cl_2 (¹H, 5.33 ppm) or CD_2Cl_2 (¹³C, 53.5 ppm),. Chemical shifts (δ) are reported in ppm and coupling constants (J) are reported in Hertz. The following abbreviations are used to describe multiplicity: s-singlet, d-doublet, q-quadruplet, sept-septet, m-multiplet, and br.-broad. Infrared spectra were recorded with the sample condensed at 77 K on a NaCl window of a homemade cryostat with a Nicolet Avatar 320 FT-IR spectrometer.

Preparation of Imines 1b-1f. Imines **1b-1f** were synthesized by vaporization *in vacuo* (0.1 mbar) of the corresponding α -aminonitrile **2b-2f** on powdered KOH heated to 90°C. The equipment consisted of a substrate inlet, a reactor (Φ : 3 cm, L: 30 cm) filled in half-section with powdered KOH (28 g, 0.5 mol) and heated to 90 °C, a cold finger filled with liquid nitrogen and a connection to the pump with a valve. The α -aminonitrile (0.2 g) was slowly vaporized on KOH and the formed products were trapped on the cold finger. A cosolvent (0.6 mL) can be added for analysis by NMR spectroscopy. When all the precursor was vaporized, the cold finger was isolated from the vacuum line and dry nitrogen gas was introduced, the liquid nitrogen was flushed under a stream of air, and products and solvent were collected in the NMR tube placed at the base of the cold finger. The presence of a few percent or traces of the corresponding ketone with the very hygroscopic cycloalkylimines cannot be avoided in the NMR tubes. In the case of the very reactive compound **1b**, due to the presence of butanenitrile isomer and trimer, the purity did not exceed 75%.

Hexahydro-2,4,6-tricyclobutyl-1,3,5-triazine 3b. Yield: 76 %. ¹H NMR (CDCl₃, 400 MHz , 296 K) δ 1.46 (s brd, 3H, NH) ; 1.42 (s brd, 4H, CH₂) ; 1.82 (tt, 6H, ³J_{HH} = 7.0 Hz, CH₂C=N) ; 2.02 (t, 12H, ³J_{HH} = 7.0 Hz, CH₂C=N). ¹³C NMR (CDCl₃, 100 MHz, 296 K) δ 14.5 (t, ¹J_{CH} = 135.5 Hz, CH₂), 36.5 (¹J_{CH} = 135.3 Hz, <u>C</u>H₂CN), 70.1 (s, N-C-N). HRMS. $[M+H]^+$ (C₁₂H₂₂N₃). m/z (th.): 208.18082. m/z (found): 208.1810.

Figure S1. 1 H NMR spectrum (CD₂Cl₂, 193 K) of imine **1b** and n-butanenitrile.

Figure S2. ¹³C NMR spectrum (CD₂Cl₂, 193 K) of imine **1b** and n-butanenitrile.

Figure S3. ¹H-coupled ¹³C NMR spectrum (CD₂Cl₂, 193 K) of imine **1b**.

N_H

Figure S4. Infrared spectrum (film, 77K) of imine 1b with small amounts of butanenitrile.

Figure S5. ¹H NMR spectrum (CD₂Cl₂, 193 K) of imine 1c.

Figure S6. ¹³C NMR spectrum (CD₂Cl₂, 296 K) of imine 1c.

Figure S7. Infrared spectrum (film) of imine 1c.

Figure S8. ¹H NMR spectrum (CD₂Cl₂, 193 K) of Imine 1d.

Figure S9. ¹³C NMR spectrum (CD₂Cl₂, 193 K) of Imine 1d.

Figure S10. Imine **1d** (CD₂Cl₂): (a) ¹H-decoupled ¹³C NMR spectrum (193 K). (b) ¹H-coupled ¹³C NMR spectrum (193 K). (c) ¹H-decoupled ¹³C NMR spectrum (273K).

Figure S11. Infrared Spectrum (film, 77 K) of imine 1d.

Figure S12. ¹H NMR (CD₂Cl₂, 193 K) of imine 1e.

Figure S13. 13 C NMR spectrum (CD₂Cl₂, 193 K) of imine 1e.

Figure S14. Infrared spectrum (film 77K) of imine 1e.

Figure S15. ¹H NMR spectrum (CD₂Cl₂, 193 K) of Imine 1f.

Figure S16. 13 C NMR spectrum (CD₂Cl₂, 183 K) of imine 1f.

Figure S17. 13 C NMR spectrum (CD₂Cl₂, 273 K) of imine 1f.

Figure S18. ¹H NMR spectrum of tetradeuterated imine **1e** in CD₃OD.

Figure S19. ¹³C NMR spectrum of tetradeuterated imine 1e in CD₃OD.

Figure S20. ¹H NMR spectrum of tetradeuterated imine **1f** in CD₃OD.

Figure S21. ¹³C NMR spectrum of tetradeuterated imine 1f in CD₃OD.