Supporting Information

Hydrogen Bonding between Hydroxylic Donors and MLCT-Excited Ru(bpy)₂(bpz)²⁺ Complex: Implications for Photoinduced Electron-Proton Transfer

Sergei V. Lymar,^{*} Gerald F. Manbeck and Dmitry E. Polyansky^{*}

Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, U.S.A.

email: dep@bnl.gov

Materials and methods. Dichloromethane (Aldrich, HPLC Plus, \geq 99.9%) was passed through activated neutral alumina following by drying over activated 3Å molecular sieves. 2,2,2-trichloroethanol (CCl₃CH₂OH, Aldrich, \geq 99%), 2,2,2-trifluoroethanol (CF₃CH₂OH, Aldrich, \geq 99%), 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol (CH₃C(CF₃)₂OH, Aldrich, \geq 97%), nonafluoro-tert-butyl alcohol ((CF₃)₃COH, Aldrich, \geq 99%) were used as received. Complex **1** ([Ru(bpy)₂(bpz)]²⁺) has been prepared according to literature procedures.¹

Samples were prepared in the inert atmosphere of a glove box and transferred into air-tight 1 cm pathlength optical cuvettes. Transient emission and absorption were measured using a home-built flash photolysis system² with excitation (475 nm) provided by ~2 ns pulses from a tunable OPO (VersaScan/240/ULD) pumped by the 354.7 nm output of a Nd/YAG laser (SpectraPhysics Lab 170). The excitation energy was maintained in the 7-8 mJ/pulse range. For transient absorption measurements, a pulsed 75 W Xe lamp was used as a probe light source. Kinetics traces were recorded using a Hamamatsu R928 PMT coupled to a double monochromator. Transient emission kinetics was recorded at 680 nm. Transient absorption spectra were emission corrected. Sample integrity during a transient experiment was routinely tested by comparing before-and-after UV/vis spectra measured with an Agilent 8453 spectrophotometer. The temperature of samples was controlled by home-built variable temperature cell holder in the range between -20 °C and 43 °C with a \pm 0.5 °C accuracy.

Measured emission decays of $\mathbf{1}(T)$ were fit to a single exponential function (using Origin 9.5 software) yielding the emission lifetimes: τ_0 in the absence and τ_{obs} in the presence of a quencher. Stern-Volmer lifetime plots, $\tau_0/\tau_{obs} - 1$ were vs. an added quencher concentration, were fit to the function,

$$y = \frac{ax}{1+bx}$$

from which parameters a and b and their standard errors were obtained. This function is a general form of the eq. 1 (main text); that is,

$$\frac{\tau_0}{\tau_{\text{obs}}} = 1 + \frac{\tau_0 (k_{\text{q}} - k_0) K_{\text{HB}}[\text{ROH}]}{1 + K_{\text{HB}}[\text{ROH}]}$$

Thus, $\tau_0 / \tau_{obs} - 1$, x = [ROH], $a = \tau_0 (k_q - k_0) K_{HB}$, and $b = K_{HB}$.

Standard error for k_q and other values derived from k_q and K_{HB} . were a general formalism for propagation of errors; that is,

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2 + \left(\frac{\partial f}{\partial z}\right)^2 \sigma_z^2 + \cdots$$

where σ_f is a standard error of f(x, y, z) and $\sigma_x, \sigma_y, \sigma_z$ are errors for independent variables x, y, z, etc. For example, the values of k_q for alcohols and their standard errors are obtained as follows:

$$k_q = \frac{a/b+1}{\tau_0}$$
$$\sigma_{k_q}^2 = \sigma_a^2 \left(\frac{1}{\tau_0 b}\right)^2 + \sigma_b^2 \left(\frac{a}{\tau_0 b^2}\right)^2$$

References:

1. D. P. Rillema, G. Allen, T. J. Meyer, and D. Conrad, *Inorg. Chem.*, 1983, 22, 1617-1622.

2. S. V. Lymar, M. Z. Ertem, A. Lewandowska-Andralojc, and D. E. Polyansky, *J. Phys. Chem. Lett.*, 2017, **8**, 4043-4048.

Table S1. Equilibrium constants, enthalpies, and entropies (K_{HB} , ΔH_{HB} , and ΔS_{HB}) for Hbonding of hydroxylic HB acids to **1**(T) and unimolecular rate constants (k_q) of emission quenching within the ROH-**1**(T) exciplexes in CH₂Cl₂ at 25 °C. Uncertainties are shown as standard errors of data fitting in Figs. S1 and S4.

Entry	R-OH	$k_{ m q},$ $10^6 { m s}^{-1}$	$K_{ m HB},$ $ m M^{-1}$	$-\Delta H_{\rm HB}$, kcal/mol	$-\Delta S_{\rm HB},$ cal/(mol K)
1	Cl ₃ C-CH ₂ –OH	3.85 ± 0.08	0.92 ± 0.03	4.07 ± 0.02	13.83 ± 0.04
2	F ₃ C-CH ₂ –OH	3.55 ± 0.11	1.40 ± 0.07	4.15 ± 0.03	13.27 ± 0.14
3	Me-C(CF ₃₎₂ –OH	4.65 ± 0.20	2.7 ± 0.2	4.30 ± 0.04	12.50 ± 0.16
4	NC- OH	4.37 ± 0.11	7.1 ± 0.3	n/d	n/d
5	0 ₂ N - OH	3.82 ± 0.11	8.9 ± 0.4	n/d	n/d
6	F ₃ C-C(CF ₃₎₂ –OH	5.84 ± 0.32	12.6 ± 0.8	4.8 ± 0.1	10.35 ± 0.34

Table S2. Observed bimolecular rate constants (k_q^{obs}), H-bonding equilibrium constants (K_{HB}), and unimolecular rate constants (k_q and k_0^{HB}) for reaction of *p*-substituted phenols with **1**(T) in CH₂Cl₂ at 25 °C.

Phenol	$K_{\mathrm{HB}},$ M^{-1}	$k_{\rm q}^{\rm obs},$ $10^7 { m M}^{-1} { m s}^{-1}$	$k_{ m q},$ $10^6 { m s}^{-1}$	$k_0^{\rm HB},$ $10^6 { m s}^{-1}$
MeO-	1.5 ± 0.14	150 ± 51	1000 ± 100	3.5 ± 0.5
€₩	1.7 ± 0.17	42 ± 51	240 ± 24	3.6 ± 0.5
сі-Д-он	3.0 ± 0.3	6.0 ± 5.1	22 ± 2.1	4.0 ± 0.6
MeOC(O)	4.6 ± 0.5	2.0 ± 0.7	6.1 ± 0.5	4.3 ± 0.7

Fig. S1 Stern-Volmer lifetime plots for quenching of **1**(T) in CH₂Cl₂ ($\tau_0 = 585$ ns) by: 1,1,1-trichloroethanol (A); 1,1,1-trifluoroethanol (B); 1,1,1,3,3,3-Hexaflouro-2-methylpropane-2-ol (C); nonafluoro-*tert*-butanol (D); *p*-cyanophenol (E); and *p*-nitrophenol (F).

Fig. S2. Dependence of $\log k_q$ obtained from Stern-Volmer lifetime plots for quenching of **1**(T) by ROH in CH₂Cl₂ on quencher's hydrogen bonding acidity (α_2^{H}). 2,2,2-trichloroethanol (1), 2,2,2-trifluoroethanol (2), 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol (3), *p*-cyanophenol (4), *p*-nitrophenol (5), nonafluoro-tert-butyl alcohol (6). The square bi-colored point at $\alpha_2^{\text{H}} = 0$ corresponds to the rate of **1**(T) decay in the absence of any quenchers. The black dashed line is drawn through the black points only (alcohols and no quencher), and the red gives a linear fit for the entire data set. Assuming that $k_q = k_0^{\text{HB}}$ for all quenchers in this set, we have,

$$\log k_0^{\rm HB} = (0.53 \pm 0.07)\alpha_2^{\rm H} + (6.25 \pm 0.05)$$

In this equation, α_2^{H} serves as a descriptor for the rate of physical quenching through H-bonding, which have been used for evaluating the k_0^{HB} values in Table 2, main text.

Fig. S3. Transient absorption spectra measured following a 480 nm laser excitation of **1** in CH₂Cl₂ in the absence of a quencher (A); with 2.5 M of CCl₃CH₂OH (B); with 0.75 M of (CF₃)₃COH (C). Alcohols with lowest (CCl₃CH₂OH, $\alpha_2^{H} = 0.5$) and highest (CF₃)₃COH, $\alpha_2^{H} = 0.862$) HB acidities in the series used in the current study have been selected for these flash photolysis experiments. The spectra-kinetic data in all 3 panels are similar showing a prompt appearance of the **1**(T) and the bleach of **1** followed by complete recovery of **1** without formation of end products. These observations are consistent with the occurrence of only physical quenching pathway (k_0^{HB} in Scheme 1, main text) for both CCl₃CH₂OH and (CF₃)₃COH.

Fig. S4. van't Hoff plot for the H-bonding in CH₂Cl₂ between **1**(T) and 1,1,1-trichloroethanol (A); 1,1,1-trifluoroethanol (B); 1,1,1,3,3,3-Hexaflouro-2-methylpropane-2-ol (C); and nonafluoro-*tert*-butanol (D).

Fig. S5. Dependencies of the enthalpy (A) and entropy (B) for the H-bonding between 1(T) and halogenated alcohols from Table 1(main text) in CH₂Cl₂ on the alcohol's hydrogen bonding acidity.