Supporting Information

Supramolecular switching the self-assembly of cyclic peptide-polymer conjugate via host-guest chemistry

Qiao Song, Jie Yang, Julia Y. Rho, and Sébastien Perrier*

S1. Materials and Characterization

Materials

Fmoc-protected amino acids and coupling agents were purchased from Iris Biotech GmbH. mPEG5kNH_{2} was purchased from Rapp Polymere. CB[7] was kindly provided by Dr. Hao Chen from Shandong University. Boc-Phe-NHS, BCN-NHS and other chemicals were purchased from Sigma-Aldrich. Solvents were purchased from several departmental suppliers, Honeywell, Fisher and Sigma-Aldrich.

Characterization

Nuclear Magnetic Resonance Spectroscopy (NMR): ${ }^{1} \mathrm{H}$ NMR spectra were measured using either a Bruker Avance III HD 400 MHz NMR spectrometer or a Bruker Avance 500 MHz NMR spectrometer. The residual solvent peaks were used as internal references. Diffusion-ordered NMR spectroscopy (DOSY) was conducted using a Bruker Avance 500 MHz NMR spectrometer at $25^{\circ} \mathrm{C}$.

Gel Permeation Chromatography (GPC): GPC was measured using an Agilent PL50 instrument with a differential refractive index detector. The instrument contained two PolarGel H columns ($300 \mathrm{~mm} \times 7.5$ mm) and a PolarGel $5 \mu \mathrm{~m}$ guard column. DMF with $0.1 \% \mathrm{LiBr}$ additive was used as the eluent. The system ran at $1 \mathrm{~mL} \mathrm{~min}^{-1}\left(50^{\circ} \mathrm{C}\right)$, with an injection volume of $100 \mu \mathrm{~L}$. The samples were prepared by filtering them through $0.22 \mu \mathrm{~m}$ pore size PTFE membranes, before injection. Agilent EasyVial poly(methyl methacrylate) standards were used to calibrate the instrument and output data were analyzed using Agilent GPC/SEC software.

High-Performance Liquid Chromatography (HPLC): High-performance liquid chromatograms were measured using a Shimadzu Prominence HPLC, equipped with a Phenomenex Luna C18 column (250 $\mathrm{mm} \times 4.6 \mathrm{~mm}$) with $5 \mu \mathrm{~m}$ micron packing ($100 \AA$). Acetonitrile and water were used as mobile phase A and B, respectively. All solvents contained $0.04 \mathrm{vol} \%$ TFA. The gradient used for HPLC analysis was increased from 5% to 95% B in 30 minutes. Detection was achieved via monitoring UV absorption at 280 nm .

Mass Spectrometry (ESI-TOF): ESI-TOF mass spectra were measured using an Agilent 6130B single Quad to characterize the peptides in both positive and negative ionisation modes. Samples were dissolved in methanol.

Isothermal Titration Calorimetry (ITC): The ITC experiment was carried out on a Microcal ITC200 Malvern at 298.15 K in DI water. The guest molecule Phe $_{2}$-CP-PEG was in the sample cell, and the host molecule $\mathrm{CB}[7]$ in the injection syringe was prepared in the ten-fold concentration of the binding unit on the guest peptides. The concentration of $\mathrm{CB}[7]$ was calibrated by the titration with a standard solution of 1-adamantanamine hydrochloride. As for data analysis, the ITC data was fitted by a two sequential-binding sites model. In this way, all the thermodynamic parameters (binding constant $K, \mathrm{~d} H$, $\mathrm{d} S$) of the host-guest complexation between $\mathrm{CB}[7]$ and Phe_{2}-CP-PEG were finally obtained.

Small Angle Neutron Scattering (SANS): SANS was carried out on Larmor at the ISIS Pulsed Neutron Source (STFC Rutherford Appleton Laboratory, Didcot, UK). Prior to measurement, each sample was dissolved in $\mathrm{D}_{2} \mathrm{O}$ and placed in a 2 mm quartz cuvette. The scattering cross-section was measured over a Q-range of $0.004-0.5 \AA^{-1}$ where Q is defined as:

Here, θ is the scattered angle, and λ is the incident neutron wavelength.
A Q-range of 0.004-0.5 \AA^{-1} was achieved utilizing an incident wavelength range of $0.9-13.3 \AA$. The detector is located 4.1 m from the sample and is 664 mm wide $* 664 \mathrm{~mm}$ high with the beam in the centre of the detector. The beam size is 6 mm wide and 8 mm high. Each raw scattering data set was corrected for the detector efficiencies, sample transmission and background scattering and converted to scattering cross-section data ($\partial \Sigma / \partial \Omega$ vs. Q) using the instrument-specific software. These data were placed on an absolute scale $\left(\mathrm{cm}^{-1}\right)$ using the scattering from a standard sample (a solid blend of hydrogenous and perdeuterated polystyrene) in accordance with established procedures.

S2. Synthesis

a. Linear peptide (1), protected cyclic peptide (2), and cyclic peptide ($\left.\mathrm{H}_{2} \mathrm{~N}\right)_{2}-\mathrm{CP}-\mathrm{N}_{3}$ (3).

Linear peptide (1)

$\mathrm{H}_{2} \mathrm{~N}$-L-Lys(Boc)-D-Leu-L-Lys(N_{3})-D-Leu-L-Lys(Boc)-D-Leu-L-Trp(Boc)-D-Leu-COOH

Fully protected linear octapeptide was prepared via solid phase peptide synthesis (SPPS) on a Prelude Automated Peptide SynthesizerTM (Protein Technologies Inc.) using 2-chlorotrityl chloride resin as the solid support. The first Fmoc protected amino acid was coupled to the resin using DIPEA (4 eq.) in DCM, followed by capping of unreacted resin sites using a solution of MeOH:DIPEA:DCM (7:1:2, $v / v / v$). Deprotection of the Fmoc group of the amino acids was done using 20% piperidine in DMF. Subsequent amino acids were coupled using Fmoc-amino acids (5 eq.), HCTU (5 eq.) and NMM (10 eq.) in DMF. In the last step, the linear octapeptide was cleaved from the resin (while keeping protecting groups on) by a solution of 20 vol \% 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) in DCM.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, TFA- $d, \mathrm{ppm}): \delta=8.19(\mathrm{~d}, 1 \mathrm{H}), 7.67-7.33(\mathrm{~m}, 4 \mathrm{H}), 4.79-4.62(\mathrm{~m}, 7 \mathrm{H}), 4.58(\mathrm{~m}$, $1 \mathrm{H}), 3.49(\mathrm{~d}, 2 \mathrm{H}), 3.34(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~m}, 4 \mathrm{H}), 2.04-1.18(\mathrm{~m}, 57 \mathrm{H}), 1.14-0.68(\mathrm{~m}, 24 \mathrm{H})$

MS (ESI-ToF) (m/z): $[\mathrm{M}+\mathrm{H}]^{+} 1367.8$ (calculated: 1367.9), $[\mathrm{M}+\mathrm{Na}]^{+} 1389.8$ (calculated: 1389.8).

Figure S1 ${ }^{1} \mathrm{H}$ NMR spectrum of linear peptide (1) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Protected cyclic peptide (2)

Linear peptide ($827 \mathrm{mg}, 0.511 \mathrm{mmol}$) was cyclized by stirring at room temperature for 5 days in the presence of 1.2 equivalents of $\mathrm{DMTMM} \cdot \mathrm{BF}_{4}(201 \mathrm{mg}, 0.614 \mathrm{mmol})$ in 100 mL DMF. The solution was then concentrated to 10 mL under vacuum and then precipitated with cold methanol/water=1/1 to obtain a white powder as protected cyclic peptide 2 (yield: 450 mg).
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, TFA- $d, \mathrm{ppm}): \delta=8.12(\mathrm{~d}, 1 \mathrm{H}), 7.65-7.30(\mathrm{~m}, 4 \mathrm{H}), 5.24(\mathrm{t}, 1 \mathrm{H}), 4.90-4.63(\mathrm{~m}$, $7 \mathrm{H}), 3.37-2.99(\mathrm{~m}, 8 \mathrm{H}), 1.94-1.14(\mathrm{~m}, 57 \mathrm{H}), 1.10-0.69(\mathrm{~m}, 24 \mathrm{H})$.

MS (ESI-ToF) (m/z): [M+Na] 1371.8 (calculated: 1371.8).

Figure $\mathrm{S} 2{ }^{1} \mathrm{H}$ NMR spectrum of protected cyclic peptide (2) (400 MHz, TFA- d)

Deprotected cyclic peptide $\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2}-\mathrm{CP}-\mathrm{N}_{3}(3)$

Removal of the -Boc protecting groups was achieved by adding a mixture of trifluoroacetic acid (TFA, 5 mL), triisopropylsilane (TIPS, 0.28 mL) and water (0.28 mL) to the protected cyclic peptide 2 (200 mg) and stirring for 3 hours. The resulting solution was then precipitated in ice cold diethyl ether and washed twice with ice cold diethyl ether to give an off-white powder as the deprotected cyclic peptide $\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2}$-CP- $\mathrm{N}_{3} 3$ (yield: 140 mg).
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, TFA- $d, \mathrm{ppm}): \delta=7.56(\mathrm{~s}, 1 \mathrm{H}), 7.39-6.86(\mathrm{~m}, 4 \mathrm{H}), 5.14(\mathrm{t}, 1 \mathrm{H}), 4.89-4.56(\mathrm{~m}, 7 \mathrm{H})$, 3.38-3.03 (m, 8H), 2.05-1.07 (m, 30H), 1.01-0.67 (m, 24H).

MS (ESI-ToF) (m/z): $[\mathrm{M}+\mathrm{H}]^{+} 1049.7$ (calculated: 1049.7), $[\mathrm{M}+\mathrm{Na}]^{+} 1071.7$ (calculated: 1071.7).

Figure S3 ${ }^{1} \mathrm{H}$ NMR spectrum of $\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2}-\mathrm{CP}-\mathrm{N}_{3}(3)(400 \mathrm{MHz}$, TFA- $d)$
b. Synthesis of Phe $_{2}-\mathbf{C P}-\mathrm{N}_{3}$

(Boc-Phe) $\mathbf{2}_{2}$ CP-N \mathbf{N}_{3} (4)

$\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2}-\mathrm{CP}-\mathrm{N}_{3}(50.0 \mathrm{mg}, 0.039 \mathrm{mmol})$ and Boc-Phe-NHS $(56.7 \mathrm{mg}, 0.157 \mathrm{mmol})$ were dissolved in 3 mL DMF, and NMM ($30.4 \mathrm{mg}, 0.235 \mathrm{mmol}$) was added afterwards. The reaction was left overnight and purified by precipitation in ice cold diethyl ether twice to give an off-white powder as the product (Boc-Phe) ${ }_{2}$-CP-N 4 (yield: 50 mg).

MS (ESI-ToF) (m/z): [M+Na] 1565.8 (calculated: 1565.9).

Phe $_{2}$-CP-N \mathbf{N}_{3} (5)

Removal of the -Boc protecting groups was achieved by adding a mixture of trifluoroacetic acid (TFA, 1 mL), triisopropylsilane (TIPS, $66 \mu \mathrm{~L}$) and water ($66 \mu \mathrm{~L}$) to the (Boc-Phe) $)_{2}$-CP- $\mathrm{N}_{3} 4(40 \mathrm{mg})$ and stirring for 1 hours. The resulting solution was then precipitated in ice cold diethyl ether and washed twice to give a light yellow powder as the product $\mathrm{Phe}_{2}-\mathrm{CP}-\mathrm{N}_{3} 5$ (yield: 36 mg).
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, TFA- $d, \mathrm{ppm}): \delta=7.61(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 6 \mathrm{H}), 7.51-6.86(\mathrm{~m}, 4 \mathrm{H}), 5.17(\mathrm{t}, 1 \mathrm{H})$, 4.94-4.59 (m, 7H), 4.50 (m, 2H), 3.48-2.99 (m, 12H), 2.02-1.12 (m, 30H), 1.08-0.69 (m, 24H).

MS (ESI-ToF) (m/z): $[\mathrm{M}+\mathrm{H}]^{+} 1343.8$ (calculated: 1343.8), $[\mathrm{M}+\mathrm{Na}]^{+} 1365.8$ (calculated: 1365.8).

Figure $\mathrm{S} 4{ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Phe}_{2}-\mathrm{CP}-\mathrm{N}_{3}(5)(400 \mathrm{MHz}, \mathrm{TFA}-d)$

c. Synthesis of mPEG-BCN

mPEG5k-NH 2 ($200 \mathrm{mg}, 0.04 \mathrm{mmol}$) and BCN-NHS ($17.5 \mathrm{mg}, 0.06 \mathrm{mmol}$) were dissolved in 2 mL DMF, and NMM ($10.3 \mathrm{mg}, 0.08 \mathrm{mmol}$) was added afterwards. The reaction was left overnight. Then the DMF solution was precipitated in diethyl ether and washed once to give a white powder as the product mPEG-BCN 6 (yield: 210 mg).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{ppm}\right): \delta=4.23(\mathrm{~d}, 2 \mathrm{H}), 3.88-3.56$ (br, PEG backbone), 3.41 (s, 3H), 3.36 (m, $2 H), 2.38-2.20(\mathrm{~m}, 6 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~m}, 2 \mathrm{H})$.

Figure $\mathrm{S} 5{ }^{1} \mathrm{H}$ NMR spectrum of mPEG-BCN (6) (500 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right)$

d. Synthesis of (Phe) $)_{2}$-CP-PEG

Phe $_{2}-$ CP- $\mathrm{N}_{3}(10 \mathrm{mg}, 0.0074 \mathrm{mmol})$ and mPEG-BCN ($58 \mathrm{mg}, 0.0117 \mathrm{mmol}$) were dissolved in 1 mL DMF. The reaction was left for 2 days. Then the DMF solution was precipitated in diethyl ether. The precipitate was collected using centrifugation and dried under vacuum. The resulting solid was then dissolved in 2 mL DCM and 8 mL diethyl ether was added dropwise to obtain white precipitate. Finally, the $\mathrm{Phe}_{2}-\mathrm{CP}-\mathrm{N}_{3}$ conjugate 7 was obtained by centrifugation and dried under vacuum as an off-white solid (yield: 46 mg).

Figure S6 HPLC spectra for $\mathrm{Phe}_{2}-\mathrm{CP}-\mathrm{N}_{3}$ and $\mathrm{Phe}_{2}-\mathrm{CP}-\mathrm{PEG}$ monitored by UV detector at 280 nm .

Figure S7 GPC traces (DMF $+0.1 \% \mathrm{LiBr}$) of mPEG-BCN and Phe_{2}-CP-PEG. The GPC was calibrated with poly(methyl methacrylate) standards.

Figure $\mathrm{S} 8{ }^{1} \mathrm{H}$ NMR spectrum of Phe_{2}-CP-PEG (7) (400 MHz, TFA- d)
e. Synthesis of mPEG-Phe

mPEG-Phe-Boc (8)

mPEG5k-NH $2(100 \mathrm{mg}, 0.02 \mathrm{mmol})$ and Boc-Phe-NHS ($14.5 \mathrm{mg}, 0.04 \mathrm{mmol}$) were dissolved in 1 mL DMF, and NMM ($10.3 \mathrm{mg}, 0.08 \mathrm{mmol}$) was added afterwards. The reaction was left overnight and purified by precipitation in ice cold diethyl ether twice to give a white powder as the product mPEG-Phe-Boc 8 (yield: 100 mg).

mPEG-Phe (9)

Removal of the -Boc protecting groups was achieved by adding a mixture of trifluoroacetic acid (TFA, $0.5 \mathrm{~mL})$, and DCM (1 mL) to $\mathrm{mPEG}-\mathrm{Phe}-\mathrm{Boc}(70 \mathrm{mg})$ and stirring for 1 hour. The resulting solution was then precipitated in ice cold diethyl ether and washed twice to give a white powder as the product mPEG-Phe 9 (yield: 58 mg).

Figure S9 ${ }^{1} \mathrm{H}$ NMR spectrum of mPEG-Phe (9) (400 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right)$

S3. Self-assembly of Phe $_{2}$-CP-PEG conjugate

The self-assembly of the conjugate was realized simply by dissolving Phe_{2} - CP -PEG into either $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{D}_{2} \mathrm{O}$ at different concentrations. Specifically, for ${ }^{1} \mathrm{H}$ NMR and DOSY measurement, $5 \mathrm{mg} / \mathrm{mL} \mathrm{D}_{2} \mathrm{O}$ solution was used, while for SANS measurement, $2 \mathrm{mg} / \mathrm{mL} \mathrm{D}_{2} \mathrm{O}$ solution was used.

Figure S10 DOSY spectrum of mPEG-BCN $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$
SASfit software was used to fit the data, using a cylindrical micelle (CYL+CHAINS) model. SLD values were calculated using based on the molecular structure of the conjugate and solvent, and the $V_{\text {brush }}$ value was calculated by dividing the molecular weight of the polymer by Avogadro's number multiplied by the density. The $R_{\text {core }}$ value was fixed at $5 \AA$, representing the radius of the cyclic peptide
itself. To determine the $N_{\text {agg }}$, the length of the nanotube calculated by the CYL+CHAINS model was divided by $4.7 \AA$ (the distance between two cyclic peptides).

Length of nanotube $/ \AA$	$n_{\text {agg }}$	R_{g} / \AA	$R_{\text {corr }} / \AA$	$S L D_{\text {core }}$ $/ \mathrm{cm}^{-1}$	$S L D_{\text {brush }}$ $/ \mathrm{cm}^{-1}$	$S L D_{\text {solvent }}$ $/ \mathrm{cm}^{-1}$	$V_{\text {brush }}$ $/ \mathrm{cm}^{-3}$
168 ± 5	0.00787 ± 0.00031	27.0 ± 0.6	5	$8.33 \mathrm{e}-7$	$5.18 \mathrm{e}-7$	$6.37 \mathrm{e}-6$	7374

S4. Host-guest interaction between mPEG-Phe and CB[7]

For ${ }^{1} \mathrm{H}$ NMR measurement, a $5 \mathrm{mg} / \mathrm{mL}_{2} \mathrm{O}$ solution of mPEG-Phe was used to obtain ${ }^{1} \mathrm{H}$ NMR spectrum of mPEG -Phe in $\mathrm{D}_{2} \mathrm{O}$. Afterwards, 1 equivalent $\mathrm{CB}[7]$ was added into the mPEG-Phe solution and mixed thoroughly before measuring ${ }^{1} \mathrm{H}$ NMR spectrum of mPEG-Phe/CB[7].

Figure $\mathrm{S} 11{ }^{1} \mathrm{H}$ NMR spectra of mPEG-Phe and mPEG-Phe/CB[7] ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$).

S5. Host-guest interaction between Phe $_{2}$-CP-PEG and CB[7]

For ${ }^{1} \mathrm{H}$ NMR and DOSY measurement, a $5 \mathrm{mg} / \mathrm{mL} \mathrm{D}_{2} \mathrm{O}$ solution of Phe_{2}-CP-PEG was used to obtain ${ }^{1} \mathrm{H}$ NMR spectrum of Phe_{2}-CP-PEG in $\mathrm{D}_{2} \mathrm{O}$. Afterwards, 2 equivalents, and 3 equivalents of $\mathrm{CB}[7]$ was added into the Phe_{2}-CP-PEG solution and mixed thoroughly before measuring ${ }^{1} \mathrm{H}$ NMR and DOSY spectra of Phe_{2}-CP-PEG/CB[7], respectively.

For SANS measurement, 2 equivalent $\mathrm{CB}[7]$ was added into $2 \mathrm{mg} / \mathrm{mL} \mathrm{D}_{2} \mathrm{O}$ solution of Phe_{2}-CP-PEG and balanced overnight before measurement. SASfit software was used to fit the data, using a polymer chain model (DozierStar).

I_{0}	R_{g} / \AA	alpha	$n u$	N
0.108 ± 0.004	75 ± 2	0.210 ± 0.015	0.6	2.31 ± 0.16

S6. Reformation of tubular supramolecular polymers by adding ADA

Figure S12 ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Phe}_{2}-\mathrm{CP}-\mathrm{PEG} / \mathrm{CB}[7]$ and $\mathrm{Phe}_{2}-\mathrm{CP}-\mathrm{PEG} / \mathrm{CB}[7] / \mathrm{ADA}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$.

S7. DOSY

The DOSY spectra were processed according to Stejskal-Tanner formula, as shown below:

$$
\frac{I}{I_{0}}=\exp \left[-(G \gamma \delta)^{2}\left(\Delta-\frac{\delta}{3}\right) D\right]=\exp [-A \cdot D] \quad A=(G \gamma \delta)^{2}\left(\Delta-\frac{\delta}{3}\right)
$$

Where I / I_{0} is the intensity decay at certain gradient strength, γ is the gyromagnetic ratio of the nucleus, δ and Δ are the duration and separation of the gradient pulses, and D is the diffusion coefficient of the molecule.

The intensity I was obtained by integrating the peak of PEG backbone for mPEG-BCN, Phe_{2}-CP-PEG, and $\mathrm{Phe}_{2}-\mathrm{CP}-\mathrm{PEG} / \mathrm{CB}[7], A$ was calculated based on gradient strength. Then $\ln (I)$ was plotted against A, and linear fitting gave the diffusion coefficient as the slope, as shown in Figure S 13.

Figure S13 Relationship of $\ln (I)$ and A for mPEG-BCN, Phe 2_{2}-CP-PEG, and Phe $_{2}$-CP-PEG/CB[7] and the corresponding linear fitting.

The results are summarized as below:
Table S1 Summary of results from DOSY experiment

	Solvent	Temperature	$D /\left(\mathrm{m}^{2} / \mathrm{s}\right)$	r^{2}	R_{h}
mPEG-BCN	$\mathrm{D}_{2} \mathrm{O}$	$25^{\circ} \mathrm{C}$	$(1.0 \pm 0.1) \times 10^{-10}$	0.993	2.5 nm
Phe ${ }_{2}$-CP-PEG	$\mathrm{D}_{2} \mathrm{O}$	$25^{\circ} \mathrm{C}$	$(2.2 \pm 0.1) \times 10^{-11}$	0.904	11.2 nm
Phe $_{2}$-CP-PEG/CB[7]	$\mathrm{D}_{2} \mathrm{O}$	$25^{\circ} \mathrm{C}$	$(6.5 \pm 0.2) \times 10^{-11}$	0.975	3.8 nm

Here, the hydrodynamic radius is estimated according to the Stokes-Einstein Equation, given the assumption that all the aggregations are hydrodynamically spherical.
$D=\frac{k_{B} T}{6 \pi \eta R_{h}}$
Where D is the diffusion constant, k_{B} is Boltzmann's constant, T is temperature, η is the dynamic viscosity, and R_{h} is the hydrodynamic radius of the spherical particle $\left(k_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}, \mathrm{~T}=298.15\right.$ $\mathrm{K}, \eta=8.89 \times 10^{-4} \mathrm{~N} \mathrm{~m} \mathrm{~s}^{-2}$).

