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1 Proposed synthetic strategy
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Scheme SI-1: Proposed strategy for the synthesis of the DTPN target compound (left
panel) and its analogous compound MTDP (right panel).

In this section, we propose a strategy for the synthesis of the target compound (DTPN:
3-(3,5-dimethyl-5,6-dihydro-4H-cyclopenta[b]thiophen-4-ylidene)pyrrolidin-2-one) stud-
ied in the main text as well as its analogous compound (MTDP: 3-(4-Methyl-7-thiatricyclo
[6.4.0.02,6]dodeca-1(8),2(6),9,11-tetraen-3-ylidene)pyrrolidin-2-one). Modifying the strat-
egy previously used to synthesize the bio-mimetic photo-switch1 1 (see the main text) and
combining it with the literature data, synthetic route to DTPN is derived and presented
in Scheme SI-1. In particular, monomethylation in the α-position of the carbonyl group of
the starting material 5,6-dihydro-4H-cyclopenta[b]thiophen-4-one (previously reported
by Pinna et al. in Ref. 2) should easily provide the chiral compound 3,5-dimethyl-5,6-
dihydro-4H-cyclopenta[b]thiophen-4-one (precursor of the stator blade) as a racemic mix-
ture. The latter compound was also reported in a 2003 patent by Ewen et al.;3 thus con-
firming its feasibility.

The monomethylated synthetic intermediate can be conjugated to the commercially
available N-Boc pyrrolidinone by aldol condensation to obtain a mixture of diastereomers
which, after treatment with an organic acid (e.g. TFA) can easily provide the DTPN target
compound due to the simultaneous dehydration and elimination of the Boc protecting
group. Then, the racemic mixture of E-DTPN or Z-DTPN should be separated by HPLC
equipped with the chiral column.
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Using a similar synthetic strategy, a series of related compounds can be prepared as
well; e.g., the MTDP compound shown in the background (gray color) of Scheme SI-1.
This compound, deriving from the starting material 2-methyl-2,3-dihydro-1H-benzo[b]
cyclopenta[d]thiophen-1-one previously reported by Landaluce et al.,4 could be an inter-
esting derivative of the DTPN motor in which the methyl group in position 3 of the stator
is replaced by a condensed benzene ring. As deemed needed for practical applications,
substitutions at various positions of the stator and/or the rotor blade of the DTPN and
MTDP motors can be performed; thus paving a way to synthesizing a whole new family
of molecular motors.

2 Computational methods

2.1 SSR method

The SSR method5–10 employed in this work to obtain the ground and excited electronic
states energies, forces on the nuclei (the analytic gradient), and the non-adiabatic coupling
(NAC) vector employs ground state eDFT11–16 to describe the non-dynamic electron cor-
relation occurring due to multireference character of the ground state and eDFT for en-
sembles of ground and excited states17–20 to obtain excitation energies from a variational
time-independent formalism. The ensemble representation of the density and energy of a
strongly correlated electronic state results in occurrence of the fractional occupation num-
bers (FONs) of several frontier KS orbitals. Here, the SSR(2,2) method is used, where two
fractionally occupied orbitals accommodate two electrons in total. The energies of the
ground S0 and excited S1 states are obtained in SSR(2,2) from variational optimization
of an ensemble of a perfectly spin-paired singlet (PPS) electronic configuration and an
open-shell singlet (OSS) configuration with respect to the KS orbitals and their FONs (the
SA-REKS(2,2)7 orbital optimization), which is followed by solving a 2×2 secular problem(

EPPS
0 ∆SA

01
∆SA

01 EOSS
1

)(
a00 a01
a10 a11

)
=

(
ES0 0
0 ES1

)(
a00 a01
a10 a11

)
(SI-1)

for the actual S0 and S1 states.8–10 The interstate coupling parameter ∆SA
01 is calculated

simultaneously with the EPPS
0 and EOSS

1 energies when optimizing the KS orbitals (and
their FONs) in the SA-REKS(2,2) calculation.8–10

The analytic gradients of the S0 and S1 energies are calculated using the formalism of
Ref. 21. The gradients of the S0 and S1 states are related to the gradients of the PPS and
OSS states and the coupling element ∆SA

01 as

∇ESk = a2
kk∇EPPS

0 + a2
lk∇EOSS

1 + 2 akk alk ∇∆SA
01 ; l 6= k ; l, k = 0, 1 (SI-2)
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From the gradients ∇ESk and ∇∆SA
01 , the NAC vector H01 between S0 and S1 is calculated

as

H01 =
1

ES1 − ES0

(
2 a00 a01 G01 + h01

a00 a11 + a01 a10

)
, (SI-3)

where

G01 =
1
2
(∇ES0 −∇ES1) (SI-4)

h01 = ∇∆SA
01 (SI-5)

g01 =
1
2
(∇EPPS

0 −∇EOSS
1 ) . (SI-6)

2.2 DISH-XF method

A detailed description of the DISH-XF method22 can be found in the original article and
the references cited therein. Here, a brief account of its basic features is given. The DISH-
XF method combines the electronic equations derived from the exact factorization of the
electronic-nuclear wavefunction23–27 with the conventional TSH formalism.28 The exact
factorization enables one to seamlessly incorporate the effect of nuclear quantum momen-
tum, which depends on the shape of nuclear distribution, into the classical equations of
motion for the nuclei.

DISH-XF is a mixed quantum-classical method where the electronic degrees of free-
dom are treated quantum mechanically and the classical description in terms of trajec-
tories is used for the nuclear degrees of freedom. For a given nuclear trajectory R(I), the
time-dependent electronic wavefunction ΦR(I)(r, t) is expanded in terms of the wavefunc-

tions of the Born-Oppenheimer (BO) states as ΦR(I)(r, t) = ∑l C(I)
l (t)φl(r; R(I)(t)) and the

time evolution of an element ρ
(I)
lk (t) = C(I)∗

l (t)C(I)
k (t) of the reduced density matrix ρ(I)(t)

is described by

d
dt

ρ
(I)
lk (t) =

i
h̄

{
E(I)

l (t)− E(I)
k (t)

}
ρ
(I)
lk (t)−∑

j

{
σ
(I)
l j (t)ρ(I)

jk (t)− ρ
(I)
l j (t)σ(I)

jk (t)
}

+ ∑
j

{
Q(I)

jl (t) + Q(I)
jk (t)

}
ρ
(I)
l j (t)ρ(I)

jk (t) (SI-7)

where E(I)
l and φl(r; R(I)(t)) are the energy and the wavefunction of the l-th BO state,

σ
(I)
jk is a non-adiabatic coupling matrix element between the jth and kth BO electronic

states, and Q(I)
jk is a term that gives quantum correction to the nuclear motion arising

from electronic-nuclear correlations;25–27 the latter term is derived from the exact factor-
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ization of the electronic-nuclear wavefunction.22 In Eq. (SI-7),the superscript (I) indicates
a quantity obtained at the nuclear configuration R(I).

In Eq. (SI-7), the Q(I)
jk term yields coupling between the nuclear quantum momenta

ih̄∇ν|χ|/|χ| and the electronic phases f(I)
ν,j and f(I)

ν,k

Q(I)
jk = ∑

ν

ih̄
Mν

∇ν|χ|
|χ|

∣∣∣∣∣
R(I)(t)

·
(

f(I)
ν,j − f(I)

ν,k

)
(SI-8)

where Mν is a mass of the νth nucleus. The nuclear quantum momenta are obtained from
a number of auxiliary nuclear trajectories generated for electronic states other than the
running state l. Although the concept of auxiliary trajectories for decoherence-induced
surface hopping dynamics is not new,29 the correction used here is derived from the exact
quantum equations and no further renormalization of the electronic density matrix is
needed.

An auxiliary trajectory R(I)(t′) is generated when a nonzero ρkk(t′) is encountered at
a time t′ and is evolved classically with a uniform velocity obtained from the energy con-
servation law. The electronic phase term f(I)

ν,k = −
∫ t∇νE(I)

k (t′)dt′ is evaluated by time
integration of the momentum changes at the kth BO state. To calculate the quantum mo-
mentum, a fictitious Gaussian nuclear density |χk|2 with a uniform variance σ is associ-
ated with the auxiliary trajectory at each BO state. Then, the nuclear quantum momentum
is ∇ν|χ|/|χ|(R(I)(t)) = − 1

2σ2 (R(I)
ν (t)− 〈R(I)

ν (t)〉), where 〈R(I)
ν (t)〉 = ∑k ρ

(I)
kk R(I)

kν (t). The
uniform variance σ can be either obtained from the initial distribution of nuclear trajecto-
ries or set as a parameter. Here, a uniform value σ = 0.1 a.u. is used.

Nuclear trajectories follow the Newtonian equations of motion on the PES of the run-
ning state l, i.e., the force on the νth nucleus is F(I)

ν = −∇νE(I)
l . When the surface hop

probability becomes greater than a random number, a surface hop is initiated. The sur-
face hop probability from the running state l to another state k( 6= l) at a time interval
[t, t + ∆t] is calculated as

Pl→k =
2<
[
ρ
(I)
lk (t)σ(I)

lk (t)
]

ρ
(I)
ll (t)

∆t , (SI-9)

where the same constraints as in the Tully’s fewest switches algorithm28,30 are imposed
on the hopping transition; i.e., when E(I)

k is greater than the total energy, the transition is
forbidden and, when a negative hopping probability is obtained (e.g., due to the phase
factor of ρ

(I)
lk (t)), the probability is set to zero. Upon a successful surface hop, the nuclear

velocities are rescaled to satisfy the total energy conservation, and the running state is
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switched to the new state.

2.3 Computational details

All the quantum chemical computations are carried out using the beta-testing version of
the TeraChem R© program31–36 (v1.92P, release 7f19a3bb8334), which implements the SSR
method and the analytic derivatives formalism.21 All the calculations employ the 6-31G*
basis set37 and the BH&HLYP exchange-correlation density functional.38–40 The geometry
optimizations are performed using the DL-FIND module41 interfaced with TeraChem R©.
The geometries of the conical intersections are optimized by the CIOpt program42 with
the penalty function formalism and using the analytic energy gradients of the intersecting
states.

The minimum energy pathways (MEPs) are obtained using the nudged elastic band
(NEB) method with fixed end points.41 The NEB method has an advantage that it con-
verges to a MEP provided that sufficient number of discrete images are used.43 For both
the S0 and S1 states, the following MEPs were optimized: EP S0min → CI90, CI90 → ZP
S0min, ZP S0min→ CI270, CI270→ EP S0min; when joined, the MEPs complete a full loop
of the motor. The EP S0min→ CI90 and ZP S0min→ CI270 legs of the total MEP comprise
40 discrete images, and the other two legs comprise 60 images.

The NAMD simulations are performed by the UNI-xMD program, a standalone code
which implements the DISH-XF method.22 When calculating the NAC vector, the gra-
dients ∇ESk (k = 0, 1) and ∇∆SA are calculated by the TeraChem R© program and then
picked up by an external script that implements Eq. (SI-3); the calculated NAC vectors,
analytic gradients, and the S1 and S0 energies are parsed to the UNI-xMD code. The nu-
clear equations of motion are integrated using the velocity-Verlet algorithm with the time
step of 20 a.u. (0.48 fs). The electronic equations of motion (SI-7) are integrated by the 4-th
order Runge-Kutta method with the time step of 0.002 a.u. (4.8× 10−5 fs). When integrat-
ing the electronic equations of motion, the electronic energies E(I)

l and the non-adiabatic

σ
(I)
lk couplings are linearly interpolated between the end points of the integration interval

of the nuclear equations of motion.
The initial conditions at the start of the NAMD trajectories are set up by sampling the

Wigner function of a canonical ensemble44,45 at T = 300K. The trajectories starting in the
EP conformation were propagated for 900 steps (432 fs) and the trajectories starting in the
ZP conformation for 800 steps (384 fs). The trajectories were propagated using the NVE
ensemble, i.e., the microcanonical ensemble, where the total number of particles N, the
system’s volume V and the total – electronic + nuclear kinetic – energy E are conserved.
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3 Cartesian coordinates of the S0 and S1 species and MECI
points

Cartesian coordinates and total energies of the species reported in the main article.

Table SI-1: Cartesian coordinates (Å) and S0 and S1 total energies (hartree a.u.) of equilib-
rium conformations of DTPN obtained in SSR-BH&HLYP/6-31G* calculations.

X Y Z X Y Z

EP conformation ZP conformation

C 2.334792 2.976554 -1.943717 2.352527 3.000545 -1.764580
C 1.044964 2.203749 -2.317369 1.114066 2.157455 -2.157003
C 0.629578 1.506197 -1.021541 0.644220 1.554939 -0.833508
H 2.118107 4.019790 -1.714566 2.074202 4.036743 -1.573466
H 3.066918 2.967571 -2.747637 3.113214 3.006247 -2.541731
H 0.263038 2.872648 -2.650732 0.339001 2.789363 -2.582774
C -0.630422 1.172983 -0.718123 -0.650233 1.298891 -0.614639
C 1.306740 1.187917 -3.429295 1.486849 1.076612 -3.172501
H 2.077691 0.477781 -3.136425 2.300038 0.461655 -2.794795
C -1.186759 0.621513 0.570233 -1.747604 1.424987 -1.647642
C -2.684412 0.962346 0.504378 -2.933741 0.674654 -1.022515
N -2.909432 1.117072 -0.912743 -2.613484 0.705818 0.382742
C -1.784076 1.399104 -1.629411 -1.314318 0.984325 0.677103
O -1.783125 1.754240 -2.788995 -0.859283 1.025527 1.797585
C 3.631114 0.997309 1.192900 3.622380 1.065182 1.405994
S 4.262978 2.206516 0.128896 4.256556 2.278463 0.344418
C 2.787693 2.237771 -0.732403 2.783803 2.304940 -0.519185
C 1.853132 1.395837 -0.212050 1.843431 1.472452 0.010760
C 2.353159 0.641597 0.913932 2.344731 0.707981 1.130569
H 4.259517 0.584906 1.960384 4.250776 0.655781 2.174793
H 0.396238 0.647907 -3.661930 0.646231 0.421527 -3.385877
H 1.639434 1.696427 -4.331878 1.807409 1.527903 -4.108839
C 1.662573 -0.461285 1.657473 1.660996 -0.408047 1.856412
H 1.193019 -1.162390 0.972242 1.177971 -1.084854 1.154481
H 2.379814 -1.014338 2.256374 2.387881 -0.980446 2.425833
H 0.891945 -0.093817 2.329239 0.889917 -0.039148 2.519400
H -3.798322 1.368407 -1.299508 -3.245766 0.443738 1.112399
H -3.305537 0.174433 0.919804 -3.883829 1.161377 -1.222490
H -2.901030 1.883449 1.047150 -2.995640 -0.347730 -1.397024
H -1.061568 -0.457821 0.627066 -2.014788 2.471124 -1.799482
H -0.722774 1.054917 1.448730 -1.481530 1.015158 -2.616021

E(S0) -1032.177593 -1032.171758
E(S1) -1031.995604 -1031.992806
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Table SI-2: Cartesian coordinates (Å), branching plane vectors (hartree/bohr) and total
energies (hartree a.u.) of S1/S0 MECI points of DTPN obtained in SSR-BH&HLYP/6-31G*
calculations.

Cartesian coordinates g-vector h-vector
X Y Z X Y Z X Y Z

CI90

C 2.646127 2.673245 -1.993325 0.039023 -0.028355 0.027922 -0.009491 -0.025583 -0.023771
C 1.159975 2.284831 -2.100157 -0.188993 0.082041 -0.007330 0.136347 -0.315333 -0.186139
C 0.831112 1.445071 -0.880733 0.297583 -0.189295 0.044822 -0.087985 -0.011323 -0.095616
H 2.811985 3.744242 -2.085444 -0.019742 0.003492 -0.017216 -0.025185 -0.006737 0.002737
H 3.244956 2.187027 -2.762005 -0.004119 -0.001741 -0.024673 0.022007 0.006649 0.005192
H 0.543556 3.167458 -1.892917 0.040050 0.037463 -0.087281 -0.010893 -0.027752 0.064473
C -0.455480 0.961685 -0.543459 0.087461 -0.043013 -0.396858 0.043554 -0.098957 0.075574
C 0.739594 1.703835 -3.443199 0.042866 0.020940 0.012290 0.002828 0.042466 -0.044478
H 1.272227 0.780175 -3.657669 0.000451 -0.004422 0.002456 -0.001795 0.009725 0.005763
C -1.196591 -0.210466 -1.155493 -0.056354 -0.024351 0.159747 -0.052668 0.197111 -0.356124
C -2.553946 -0.048712 -0.458869 -0.049448 -0.082456 -0.032528 0.000915 0.032940 0.028576
N -2.691879 1.385783 -0.359433 0.150148 0.053018 0.089111 -0.046287 -0.015046 -0.127527
C -1.405556 1.960308 -0.207359 -0.497342 0.311435 0.224664 0.134757 -0.184624 0.573372
O -1.247320 3.135884 0.116135 0.044988 -0.273966 -0.069403 -0.012845 0.051788 -0.079164
C 3.569208 1.267315 1.570497 0.070338 0.043666 -0.020644 -0.014859 -0.003784 -0.000281
S 4.359779 2.239588 0.340504 0.105067 -0.033848 0.121163 0.023228 -0.026405 -0.020231
C 3.000340 2.154750 -0.649295 -0.138347 -0.075345 0.065405 -0.000486 -0.018869 0.003663
C 1.976069 1.431875 -0.057960 0.055996 0.062893 -0.007144 -0.117015 0.396982 0.187542
C 2.315843 0.896030 1.240628 0.020122 0.045555 -0.063880 0.010654 0.007452 -0.006654
H 4.111845 1.034744 2.468068 -0.001269 -0.003092 0.004325 0.001421 -0.002762 -0.001787
H -0.323958 1.499692 -3.453592 -0.013744 -0.000524 -0.021018 0.000119 -0.001002 0.001949
H 0.961075 2.410309 -4.239347 -0.006736 -0.001837 -0.012292 -0.007112 -0.001008 -0.013627
C 1.427471 0.021547 2.062774 0.029691 -0.006210 -0.041955 -0.027450 0.002343 0.007917
H 1.454539 -0.996781 1.678998 -0.001956 -0.013608 0.008518 0.005240 -0.001342 -0.003772
H 1.749066 0.001823 3.099130 -0.024965 -0.000257 0.002786 -0.002027 0.001810 -0.001667
H 0.400751 0.358847 1.990856 -0.018011 0.003824 0.040510 0.015610 -0.009155 0.015008
H -3.362932 1.746133 0.296874 -0.032067 0.021269 -0.041720 0.021749 0.017648 -0.014036
H -3.365842 -0.493499 -1.029695 -0.001010 0.008996 0.015235 0.005283 -0.003591 0.007010
H -2.519332 -0.532346 0.521802 -0.016109 0.002296 -0.010514 0.003951 -0.000845 0.003881
H -1.335749 -0.162826 -2.242009 0.057207 0.055029 0.040310 -0.045386 -0.061533 -0.028297
H -0.760936 -1.184374 -0.935902 0.029221 0.030402 -0.004808 0.033819 0.048736 0.020515

E(S0) -1032.061857
E(S1) -1032.061842

CI270

C 2.635393 2.986506 -1.725426 0.002467 0.025942 0.051067 0.019576 -0.011552 0.014522
C 1.224313 2.459384 -2.066171 -0.094587 -0.092438 -0.087797 0.059795 -0.316739 -0.159356
C 0.721985 1.745177 -0.830760 0.185692 0.138061 -0.098043 -0.018927 0.028113 0.081512
H 2.631450 4.066484 -1.585989 -0.001737 0.012632 -0.012370 -0.019094 -0.003444 -0.004861
H 3.377371 2.767486 -2.487843 -0.015811 -0.001854 -0.026076 0.014069 0.008807 0.001944
H 0.527285 3.261783 -2.297075 0.028598 0.038846 -0.035567 0.012703 -0.026046 0.050174
C -0.608754 1.307054 -0.669048 0.148200 0.242953 0.375692 -0.055716 0.058036 -0.046927
C 1.209035 1.460687 -3.236535 0.031530 0.072066 0.001571 0.011700 0.024695 -0.040626
H 1.970085 0.697017 -3.099788 -0.003421 -0.001150 0.004300 -0.000538 0.008198 0.003444
C -1.565079 1.977136 0.300340 -0.134966 -0.066419 -0.106643 0.225501 -0.179996 0.335927
C -2.754813 1.011829 0.207624 -0.069823 0.059548 0.072260 -0.001866 -0.033107 -0.027318
N -2.121158 -0.267109 -0.015000 0.110052 0.046886 -0.153925 0.009831 0.019710 0.119725
C -0.917497 -0.068820 -0.732055 -0.267444 -0.588589 -0.082923 -0.178781 0.095479 -0.561203

Continued on next page
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Table SI-2 – Continued from previous page
Cartesian coordinates g-vector h-vector

X Y Z X Y Z X Y Z

O -0.303646 -1.003660 -1.245903 -0.085887 0.258529 0.078217 0.007828 -0.048050 0.061728
C 3.356996 1.053071 1.638754 0.069129 0.036810 -0.012235 -0.005927 0.007689 0.002722
S 4.259627 2.100275 0.554657 0.092968 -0.053879 0.113707 0.014213 -0.035062 -0.028443
C 2.914530 2.283759 -0.444714 -0.142422 -0.074798 0.034267 0.013954 -0.021808 -0.011921
C 1.817935 1.593433 0.044914 0.033581 0.028246 0.010384 -0.114001 0.437167 0.227506
C 2.078533 0.856008 1.258467 0.025495 0.047584 -0.053442 -0.003317 -0.015840 -0.008088
H 3.865323 0.628342 2.484414 -0.002518 -0.002257 0.004587 0.000889 -0.003181 -0.003273
H 0.246467 0.965379 -3.287256 0.000527 -0.009410 -0.028671 -0.006857 -0.004770 -0.003013
H 1.399738 1.983922 -4.169861 -0.000499 -0.014881 -0.028295 -0.008850 -0.013815 -0.012945
C 1.103144 -0.061442 1.917810 0.014180 0.007563 -0.015558 -0.002749 0.004764 0.002176
H 0.791024 -0.825010 1.209710 0.008097 -0.014678 0.020373 -0.000567 0.006715 -0.000845
H 1.546521 -0.535937 2.787325 -0.013307 -0.006035 0.000997 0.000269 -0.000036 -0.000361
H 0.207319 0.467840 2.227505 -0.006707 -0.002301 0.022616 -0.003197 0.001408 0.006202
H -2.687123 -1.007106 -0.392281 0.008073 -0.030763 0.045279 0.032007 -0.004128 0.002641
H -3.356650 1.008476 1.113611 -0.003485 -0.013329 -0.015111 -0.002251 0.004424 -0.008446
H -3.390332 1.311574 -0.629266 -0.008335 -0.011240 0.013002 0.001155 0.003024 -0.001955
H -1.198230 2.033451 1.334416 0.051563 -0.021351 -0.076282 -0.048692 0.031728 0.052816
H -1.866500 2.985997 0.018727 0.040798 -0.010294 -0.015382 0.047840 -0.022380 -0.043457

E(S0) -1032.063607
E(S1) -1032.063592
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EP

ZP

CI270

CI90

θ = 182.2º θ = 270.9º

θ = 94.7º θ = 7.8º

Figure SI-1: Molecular geometries of the ground state minima and conical intersections
of DTPM. For definition of the central dihedral angle θ, see Scheme 2 of the main text.
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97.0º
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Figure SI-2: The branching plane (BP) vectors of the S1/S0 conical intersections CI90 and
CI270 (obtained by torsion about the C4=C3′ bond through ca. 90◦ and 270◦, respectively)
of the DTPN motor optimized in this work. Panels a) and b) show the geometries and
the branching plane vectors ~g and ~h of the CIs (hydrogen atoms removed for clarity).
The relative energies ∆E (in kcal/mol) are given with respect to the 2(EP) ground state
energy. See Scheme 2 of the main text for definition of the dihedral angle θ. The scans of
the S1 (red) and S0 (blue) PESs near the respective CIs are shown on the right hand side
of the respective panels. Panel c) shows the Lewis structures of the ground and excited
electronic states at a CI geometry.
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4 Vertical excitation energies and absorption spectra of EP
and ZP conformations

At the S0 equilibrium geometries of EP and ZP (optimized by the SSR-BH&HLYP/6-
31G* method), the vertical excitation energies (VEEs) were calculated by both the SSR
method and the TD-DFT method with the same density functional and basis set, i.e., TD-
BH&HLYP/6-31G*. Table SI-3 compares the excitation energies obtained in both sets of
calculations. There is a good agreement between the VEEs obtained by both methods for
the optically bright S1 state; the latter state corresponds to a π → π∗ one-electron tran-
sition centered around the C3′=C4 double bond and has a large oscillator strength. The
S2 and S3 states have charge transfer character and involve transitions from the lone pair
orbitals of the O atom (S2) and the S atom (S3) to the π∗ orbital of the C3′=C4 bond. These
excited states lie ca. 0.2–0.4 eV above the S1 state and have a very low oscillator strengths.
The S4 state corresponds to a one-electron transition from the doubly occupied π orbital
of the C3′=C4 bond to the anti-bonding π∗ orbital of the C3a=C6a bond; this state has a
modest oscillator strength and lies ca. 0.9–1.0 eV above the S1 state. Hence, the S1 state is
an optically bright state populated by the photoexcitation and a photochemically active
state leading to breaking the π component of the central C3′=C4 double bond.

Table SI-3: Vertical excitation energies (eV) of the ground state equilibrium conforma-
tions of DTPN motor obtained in the SSR-BH&HLYP/6-31G* and TD-BH&HLYP/6-31G*
calculations. Oscillator strengths of the transitions are given in parentheses.

SSR TD-DFT
conformation S1← S0 S1← S0 S2← S0 S3← S0 S4← S0

EP 4.95 (0.39) 4.96 (0.49) 5.16 (0.00) 5.60 (0.04) 5.80 (0.24)
ZP 4.87 (0.35) 4.84 (0.40) 5.23 (0.01) 5.41 (0.16) 5.82 (0.15)

The UV absorption spectra of the EP and ZP conformers were simulated theoreti-
cally46 by convolution of the vertical excitations calculated at one hundred geometries
obtained from sampling the Wigner function of the respective conformer at T=300K. The
Lorentzian lineshape L(λ; λi, fλi) = fλi

σ2

σ2+(λ−λi)
, centered around the calculated excita-

tion wavelengths λi with an amplitude given by the respective oscillator strength fλi and
broadened by a uniform width σ = 10 nm was used to simulate absorption spectra of the
lowest (S1) absorption band. The resulting spectra are shown in Fig. SI-3. SSR and TD-
DFT predict very close absorption maxima for the S1 ← S0 transition; 264 nm (SSR) and
268 nm (TD-DFT) for the EP conformation and 268 nm (SSR) and 273 nm (TD-DFT) for
the ZP conformation. However, the shapes of the lowest absorption band of the EP and
ZP conformers are somewhat different. The lower left panel of Fig. SI-3 shows the differ-
ence of the calculated absorptivities of the EP and ZP conformations. At 299 nm, the EP
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conformer shows noticeably lower absorptivity than ZP; the latter is much less absorbing
at 263 nm. The lower right panel shows the ratio of the EP and ZP absorptivities. The
ZP conformer has ca. 1.4 times lower absorptivity than the EP conformer at 235 nm. The
ratio is inverted (to ca. 0.7) at the wavelength of 311 nm. The described differences in the
absorptivity of the EP and ZP conformers can be used for their identification during the
photoreactions and for manipulating the course of the photoreactions by predominantly
exciting one of the conformers.

SSR
TD-DFT

SSR
TD-DFT

EP ZP

264
268

268
273

299

263 235

311

Figure SI-3: First excitation band of the DTPN motor calculated by the SSR-BH&HLYP/6-
31G* (solid line) and by TD-BH&HLYP/6-31G* (dashed line) methods. Difference of the
absorbances and ratio of the absorbances are shown in the lower left and right panels,
respectively.
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5 Total charges on the pyrrolidinone blade of DTPN along
the S1 and S0 MEPs

The total charges on the pyrrolidinone blade along the MEPs, see Figure SI-4, were calcu-
lated by summing up the Mulliken charges on the respective atoms. The Mulliken charges
were calculated from the relaxed SSR density matrices21 of the S1 and S0 states. The re-
laxed density matrices calculated by the TeraChem R© program were saved in the form of
the natural orbitals and orbital occupation numbers to an external file in the “molden”
format. The SSR natural orbitals were used by the OrbKit suite47 to obtain the Mulliken
charges.

At the FC geometry, the photoexcitation is due to a one-electron π → π∗ transition
located around the C3′=C4 bond (axle of the motor); which breaks the π component of
the bond. Near the FC points, the pyrrolidinone total charge Q varies in the range of
−0.1–−0.2, which indicates that both states, S1 and S0, possess covalent character. On

HN

O

S

HN

O

S

HN

O

S

hν

S1S0

the S0 MEP, the pyrrolidinone’s charge remains small, ca. −0.1–−0.2, whereas the pyrro-
lidinone’s charge along the S1 MEP rapidly decreases towards CIs. This indicates that
breaking of the π component of the C3′=C4 double bond occurs by homolytic (diradical)
mechanism in the S0 state and that the S1 state has predominantly charge transfer char-
acter. At the CIs, where the S1 and S0 energies become degenerate, the S0 state remains
covalent (Q ∼ −0.1–−0.2) and the S1 state has a pronounced ionic character (Q ∼ −0.5).

6 Results of NAMD simulations

For each of the equilibrium S0 conformations, EP and ZP, one hundred initial conditions
were generated by sampling the Wigner function of the respective conformation at T =
300K. Out of one hundred initial conditions, 36 were randomly selected to run the trajec-
tories. Starting in the S1 state at the initial geometries and with the initial nuclear veloci-
ties, 36 EP trajectories were propagated for 432 fs (900 steps; integration step 0.48 fs) and
36 ZP trajectories were propagated for 384 fs (800 steps). All the trajectories underwent
transition to the S0 state within the allotted time.
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BLA, Å
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EP

ZP

CI90

CI270

ZP

CI90

CI270

CI270

CI90

Figure SI-4: Total charge Q pyrrolidinone blade of DTPN along the S1 (red) and S0 (blue)
MEPs as a function of the dihedral angle θ (see Scheme 2 of the main text for definition)
and the BLA distortion.
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The trajectories were analyzed visually and the distribution of the products was ob-
tained from the distribution of the dihedral angle θ, for definition see Scheme 2 of the
main article. The distributions of the dihedral angle θ at the start and at the end of the
EP and ZP trajectories are shown in Figure SI-5 and the variations of the dihedral angle θ
with the propagation time are shown in Fig. SI-6.

EP-trajectories ZP-trajectories

Figure SI-5: Distribution of the dihedral angle θ (in deg.) at the start of the trajectories
(green) and at the end of the trajectories (red). Grey bars in the left panel show the θ
values at the end of the renegade EP-trajectories propagating in the opposite (i.e., CW)
direction. Vertical dotted lines show the cut-off θ value used to discriminate between the
reactants (to the left of the line) and products (to the right of the line).

At the end of the EP trajectories, 3 trajectories fell back (NEP
back) to the EP conformation

and 31 (NEP
f wrd) continued to the ZP conformation; the quantum yield of isomerization

is calculated as φEP→ZM =
NEP

f wrd

NEP
f wrd+NEP

back
, which yields the value reported in Table 2 of the

main article, 0.91 ± 0.05. The latter value and its statistical uncertainty were obtained
by the bootstrap resampling48 of the distribution of the dihedral angle θ at the end of
the trajectories. When deciding which trajectory yields the ZP or the EP conformation, a
threshold value θthrsh = 300◦ was used; ZP corresponds to θ > θthrsh and EP to θ ≤ θthrsh.

A similar procedure was applied to the analysis of the ZP trajectories. Out of the 36
ZP trajectories 1 returned back to ZP and 35 moved forward to EP; the φZP→EM quantum
yield with the margin of error estimated by bootstrapping is 0.97± 0.03, see Table 2 of the
main article. The threshold value of θ used to discriminate between EP and ZP was set at
100◦, see Fig. SI-5.

All 36 ZP trajectories followed torsion of the pyrrolidinone unit in the counterclock-
wise (CCW) direction. From the 36 EP trajectories 34 followed torsion in the CCW di-
rection and 2 in the CW direction. The two renegade trajectories were discarded when
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determining the quantum yield and the S1 lifetime of the EP trajectories. The origin of the
imperfect directionality of the EP trajectories is discussed later. Here, it is described how
the unidirectionality of the torsion was determined for the EP and ZP trajectories.

a)

b)

tim
e, fs

θ, deg.

BLA
, Å

tim
e, fs

θ, deg.

BLA
, Å

EP

ZP

EP

ZP

ZP

EP

Figure SI-6: Dihedral angle θ (deg.) and the BLA distortion (Å) as functions of the prop-
agation time (fs) along the NAMD trajectories initiated in the EP conformation (a) and in
the ZP conformation (b). Purple dots show the S1 → S0 surface hops for the trajectories
propagating in the direction of isomerization (to the ZP and EP conformations, respec-
tively) and cyan dots show the surface hops for the trajectories turning back to the initial
conformation. The black curves in the panel a) show the two renegade trajectories prop-
agating in the opposite (i.e., CW) direction of torsion.
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The unidirectionality uni is defined as the ratio NCCW

NCCW+NCW of the number of trajecto-
ries NCCW undergoing torsion in the CCW direction to the total number of trajectories
NCCW + NCW . Obviously, the ZP trajectories display perfect 100% unidirectionality, see
Table 2 of the main article. For the EP trajectories, the CCW and CW trajectories were dis-
criminated by the angle θ at the time of the S1 → S0 surface hop, see Fig. SI-6, where the
hop events are shown as purple (for forward trajectories) or cyan (for backward trajecto-
ries) dots. Most of the hops, for the CCW propagating trajectories, occur near θ ∼ 270◦

(i.e., near CI270) and, for the CW propagating trajectories, near θ ∼ 90◦ (CI90). Hence, the
value of θhop can be used to discriminate between CCW and CW trajectories, e.g., setting
θCCW/CW

thrsh = 180◦. The value of the unidirectionality uni = 0.94± 0.04 reported in Ta-
ble 2 of the main article was obtained from the distribution of the θhop values for the EP
trajectories as NCCW

NCCW+NCW and its margin of error determined by bootstrapping (with 104

samples).
The distribution of the S1 → S0 hop times for the EP and ZP trajectories is shown in

Fig. SI-7. The hop times were fitted by a Gaussian distribution g(t) = 1
σ
√

2π
e−

(t−µ)2

2 σ2 with
the mean µ and dispersion σ. The values of µ and σ reported in Table 2 of the main article
were obtained by the bootstrap method with 104 samples. These values are reported in
Table 2 of the main article and used in the Gaussian curves shown in Fig. SI-7.

EP-trajectories ZP-trajectories

Figure SI-7: Distribution of hop times for the EP (left panel) and ZP (right panel) trajec-
tories. Blue curves show probability density of the the hop times fitted using the normal
distribution, see Table 2 for the fitted values of the mean (µ) and standard deviation (σ)
of the normal distribution.

Population of the S1 state as a function of propagation time was calculated as a fraction
of all the trajectories residing in the S1 state at a given instance t. The S1 populations nS1(t)
obtained from the raw data for the EP and ZP trajectories are shown in Fig. SI-8 by blue

dots. The raw populations were fitted by an exponential function f (t) = e−
t−t0

τ with the
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offset t0 and the exponential decay parameter τ. The populations nS1(t) were resampled
by bootstrapping and, for each bootstrap image, the exponential fit was repeated. The
values of the offset t0 and the decay constant τ shown in Table 2 were then obtained
by averaging over all the bootstrap samples. For all the bootstrap samples, the value of
the R2 parameter was calculated and then averaged over all the samples. The averaged
R2 for the EP and ZP trajectories are 0.966± 0.015 and 0.992± 0.004, respectively. The
exponential fit curves with the bootstrapped parameters t0 and τ are shown in Fig. SI-8
in red color. The S1 lifetimes were obtained for each bootstrap sample as τS1 = t0 + τ∗

and then averaged over all the samples. The final S1 lifetime values are reported in Table
2 of the main article.

EP-trajectories ZP-trajectories

Figure SI-8: Population (n) of the S1 state as a function of the propagation time t (in fs).
The S1 populations are shown by blue dots and the exponential fits are shown by the red
curves. See Table 2 for the parameters of the exponential decay.

For the two renegade EP trajectories undergoing torsion in the CW, rather than CCW,
direction, the initial geometries (generated by sampling the Wigner function) were in-
spected. As the Wigner function is build upon the normal modes of the S0 equilibrium
geometry of EP, the amplitudes ak(i) of the normal modes Qk in the generated initial
geometries R(i) were calculated

ak(i) = Q†
k · (R(i)− R0) , (SI-10)

where i labels the initial geometry and R0 is the equilibrium geometry of EP. Then, the

amplitudes ak(i) were averaged over all (Ntraj) the initial conditions āk =
1

Ntraj
∑

Ntraj
i=1 ak(i).

The average amplitudes āk of the low frequency modes of EP are shown in the right
panel of Fig. SI-9 for the CCW trajectories (blue, Ntraj = 34) and the CW trajectories (red,

∗This follows from the condition f (τS1) = e−1
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Ntraj = 2). The amplitudes of the higher frequency modes average out to near zero values
(as it ought to be). To inspect the absolute magnitude of the displacements along the
normal modes to the initial geometries the square amplitudes a2

k(i) were also calculated
and averaged over the CCW and CW trajectories. The average square amplitudes ā2

k are
shown in the left panel of Fig. SI-9.
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Figure SI-9: Average squares ā2
k of the amplitudes of the normal modes (left panel) and av-

erage amplitudes āk of the normal modes (right panel) for the initial geometries of the EP
trajectories. Red columns show amplitudes for the CW trajectories, blue columns for the
CCW trajectories. The two normal modes whose contributions into the CW trajectories
stand out are shown in the upper panel.

From Fig. SI-9 it is obvious that two normal modes make conspicuously large contri-
butions to the initial geometries of the CW propagating trajectories. These are the lowest
frequency mode Q1 and the mode Q6. The former corresponds predominantly to a tilt-
ing motion of the pyrrolidinone blade, the latter to puckering of the pyrrolidinone ring.
Large amplitudes of these modes result in a geometry where the pyrrolidinone ring at-
tains flatter (less puckered) shape and a noticeably more upright orientation than in the
S0 equilibrium geometry of EP.
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Figure SI-10: Superimposed initial geometries of the trajectories propagating in the di-
rection of the CCW torsion (blue) and the CW torsion (red). The initial geometries are
averaged over all the respective trajectories.
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In Fig. SI-10, the initial geometries of the CCW and CW trajectories averaged over all
the respective trajectories are shown in blue (CCW) and red (CW) color. The geometric
difference results in a certain degree of pre-twist of the CW initial geometries which favors
propagation in the wrong direction. The vary large amplitudes of the modes Q1 and Q6
became possible due to sampling the Wigner function at the ambient temperature, when
it may be expected that many low frequency modes are excited. At lower temperatures,
large displacements along these modes are less likely to occur. Hence, the unidirectional-
ity of the EP trajectories should improve at lower temperatures. However, even though
the initial conditions of the current NAMD simulations were, perhaps, the least favorable,
a sufficiently high unidirectionality, ca. 94%, was obtained in the simulations, see Table 2
of the main article.
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