Supporting Information for

Synthesis of Hydrosilanes via Lewis-Base-Catalyzed Reduction of Alkoxysilane by NaBH₄

Keiya Aoyagi,^{a,b} Yu Ohmori,^b Koya Inomata,^b Kazuhiro Matsumoto,^b Shigeru Shimada,^b Kazuhiko Sato,^b and Yumiko Nakajima^{*a,b}

^aDepartment of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan

^bInterdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

E-mail address: yumiko-nakajima@aist.go.jp (Y. Nakajima).

Contents

Experimental details and compound characterization data	S2
ReferencesS	10

Experimental details and compound characterization data

General considerations

All manipulations were performed under a nitrogen atmosphere using Schlenk techniques or a glove box. Hexane, C_6H_6 , toluene, THF and CH_2Cl_2 were purified by a solvent purification system (MBraun SPS-800 or Glass Contour Ultimate Solvent System). C_6D_6 was dried over sodium benzophenone ketyl and distilled. Me₂PhSiO*i*Pr (**1c**-*i***Pr**)¹, Me₂PhSiOPh (**1c**-**Ph**)², MePh₂SiOMe (**1d**)¹, Me₂(*t*Bu)SiOMe (**1g**)³ and *i*Pr₃SiOMe (**1h**)⁴ were prepared according to the literature procedures. NaBH₄ granular (99.99% trace metals basis) was purchased from Sigma-Aldrich Co. LLC. and used without purification. All other reagents were purchased from commercial suppliers and used without further purification unless otherwise noted. ¹H, ¹³C{¹H}, ¹¹B{¹H} and ²⁹Si{¹H} NMR spectra (¹H, 600 MHz; ¹¹B, 193 MHz; ¹³C, 151 MHz; ²⁹Si, 119 MHz) were recorded using a Bruker AVANCE 600 spectrometer. Chemical shifts are reported in δ (ppm) and are referenced to the residual solvent signals for ¹H and ¹³C, and to boron trifluoride diethyl ether complex (0.0 ppm) for ¹¹B and to trimethyl(phenyl)silane (-4.7 ppm) for ²⁹Si.

Synthesis of Me₂PhSiOtBu (1-tBu)

To a hexane solution (10 mL) of *t*BuOH (0.87 g, 12 mmol), was added Me₂PhSiCl (2.0 g, 12 mmol) and NEt₃ (1.2 g, 12 mmol). The reaction mixture was stirred at room temperature for 24 h. The solution was filtered, and the resulting solid was washed with hexane (20 mL). The filtrate and washings were combined. Fractional distillation was performed to give Me₂PhSiO*t*Bu (1-tBu) (0.79 g, 3.8 mmol, 32%).

Catalytic reduction of alkoxysilane with BH3 thf

A typical procedure (Table 1, entry 11) is as follows. A vial was charged with a THF solution (0.3 mL) of Me₂(*n*Oct)SiOMe (**1a**) (41 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and mesitylene (6.0 mg, 0.050 mmol) as an internal standard. To the solution was added 1 M BH₃·thf THF solution (0.20 mL, 0.20 mmol) at room temperature, and then the solution was stirred for 24 h. The reaction mixture was analyzed by ¹H NMR to determine the conversion of **1a** (0.18 mmol, 91%) and the NMR yield of Me₂(*n*Oct)SiH (**2a**) (0.18 mmol, 91%).

Catalytic reduction of alkoxysilane with NaBH₄

Determination of NMR yield

Typical procedure 1 (Table 2, entry 8) is as follows. A micro tube (diameter: φ 8, length: 50 mm, volume: 1 mL) was charged with a C₆D₆ suspension (0.05 mL) of NaBH₄ (7.6 mg, 0.20 mmol),

which is pre-grinded in a motar, $nOct_4NBr$ (5.6 mg, 0.010 mmol), Me₂(nOct)SiOMe (1a) (41 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and mesitylene (6.0 mg, 0.050 mmol) as an internal standard. After EtBr (22 mg, 0.20 mmol) was added, the solution was stirred at room temperature for 24 h (a magnetic stirrer bar: 01.5×8 mm, rotating speed: 1,500 rpm). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1a** (0.19 mmol, 93%) and the NMR yield of Me₂(*n*Oct)SiH (**2a**) (0.19 mmol, 93%).

Determination of isolated vield

Typical procedure 2 (Table 2, entry 8) is as follows. A 3 mL conical vial was charged with a C_6H_6 suspension (0.5 mL) of NaBH₄ (76 mg, 2.0 mmol), which is pre-grinded in a motar, $(nOct)_4NBr$ (56 mg, 0.10 mmol), Me₂(*n*Oct)SiOMe (**1a**) (410 mg, 2.0 mmol) and HMPA (18 mg, 0.10 mmol). EtBr (220 mg, 2.0 mmol) was added at room temperature, and then the solution was stirred at room temperature for 24 h (a magnetic stirrer bar: $\varphi 1.5 \times 8$ mm, rotating speed: 1,500 rpm). The solution was diluted with hexane (20 mL) and filtered through a silica gel pad (eluent: hexane (100 mL)). The volatiles were removed in vacuo to give $Me_2(nOct)SiH(2a)$ as a colourless liquid (319 mg, 1.9 mmol, 93%).

Gram scale synthesis of Ph₂SiH₂ (2k)

A 10 mL pear shaped flask was charged with a C₆H₆ suspension (2.5 mL) of NaBH₄ (0.76 g, 20 mmol), which is pre-grinded in a motar, $nOct_4NBr$ (280 mg, 0.50 mmol), Ph₂Si(OMe)₂ (1k) (2.4 EtH g, 10 mmol) and HMPA (360 mg, 2.0 mmol) and sealed with a septum equipped Q with a needle. EtBr (2.2 g, 20 mmol) was added at room temperature, and then the solution was stirred at room temperature for 24 h (a magnetic stirrer bar of φ 3 \times 10 mm, 1,500 rpm. The solution was diluted with hexane (20 mL) and filtered through a silica gel pad (eluent: hexane (100 mL)). The volatiles were removed in vacuo to give Ph₂SiH₂ (2k) as a colorless liquid (1.3 g, 7.3 mmol, 73%).

Compound characterization data

The products in Table 1 and Table 2, $Me_2(nOct)SiH$ (2a)⁵, Et_3SiH (2b)⁵, Me_2PhSiH (2c)⁵, $Me_2(C_6F_5)SiH(2f)^6$, $MeCySiH_2(3i)^7$, $MePhSiH(OMe)(2j)^5$, $MePhSiH_2(3j)^5$, $Ph_2SiH(OMe)(2k)^5$, Ph₂SiH₂ (**3k**)⁵, Me{Cl(CH₂)₃}SiH₂ (**3m**)⁸, Me{CF₃(CH₂)₂}SiH₂ (**3n**)⁹, $nC_{12}H_{25}SiH_3$ (**4p**)¹⁰, $CySiH_3$ (4q)⁷, and PhSiH₃ (4r)⁵ were identified by comparing their ¹H NMR data with those previously reported. MeCySiH(OMe) (2i) and Cyp₂SiH(OMe) (2l) were identified by comparing their ¹H NMR data with those alternatively synthesized by following the reported procedure.¹¹

MePh₂SiH (2d), Ph₃SiH (2e), Me₂(tBu)SiH (2g), iPr_3SiH (2h) and $nHexSiH_3$ (2o) were identified by comparing their ¹H NMR data with commercial sources.

dimethyl(octyl)silane (2a)

The general procedure was followed with Me₂(*n*Oct)SiOMe (**1a**) (41 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and 1 M BH₃·thf THF solution (0.20 mL, 0.20 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1a** (0.18 mmol, 91%) and the NMR yield of Me₂(*n*Oct)SiH (**2a**) (0.18 mmol, 91%).

Reduction with NaBH4

The general procedure 2 was followed with NaBH₄ (76 mg, 2.0 mmol), $nOct_4NBr$ (56 mg, 0.10 mmol), Me₂(nOct)SiOMe (**1a**) (410 mg, 2.0 mmol), HMPA (18 mg, 0.10 mmol) and EtBr (220 mg, 2.0 mmol). The residue was filtered with a silica gel pad (eluent: hexane (100 mL)) to provide **2a** as a colorless liquid in 93% (319 mg).

¹H NMR (C₆D₆, RT, ppm): δ 0.06 (d, 6H, ³*J*_{HH} = 3.6 Hz, Si*Me*₂), 0.57 (m 2H, SiC*H*₂(CH₂)₆CH₃), 0.92 (t, 3H, ³*J*_{HH} = 7.0 Hz, Si(CH₂)₇CH₃), 1.22-1.42 (m, 12H, SiCH₂(CH₂)₆CH₃)), 4.15 (sep, 1H, ³*J*_{HH} = 3.6 Hz, Si*H*).

¹³C NMR (C₆D₆, RT, ppm): δ –4.3 (s, Si*Me*), 14.3 (s, Si*Oct*), 14.4 (s, Si*Oct*), 23.1 (s, Si*Oct*), 24.8 (s, Si*Oct*), 29.7 (s, Si*Oct*), 29.7 (s, Si*Oct*), 32.3 (s, Si*Oct*), 33.6 (s, Si*Oct*).

²⁹Si NMR (C₆D₆, RT, ppm): δ –12.8 (s).

triethylsilane (2b)

Si-H

Reduction with BH₃·thf

The general procedure was followed with Et_3SiOMe (**1b**) (23 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and 1 M BH₃·thf THF solution (0.20 mL, 0.20 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1b** (0.16 mmol, 80%) and the NMR yield of Et_3SiH (**2b**) (0.15 mmol, 75%).

Reduction with NaBH₄

The general procedure 1 was followed with NaBH₄ (7.6 mg, 0.20 mmol), $nOct_4NBr$ (5.6 mg, 0.010 mmol), Et₃SiOMe (**1b**) (23 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and EtBr (22 mg, 0.20 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1b** (0.20 mmol, 96%) and the NMR yield of Et₃SiH (**2b**) (0.20 mmol, 96%).

¹H NMR (C₆D₆, RT, ppm): δ 0.53 (dq, 6H, ³*J*_{HH} = 3.2 Hz, ³*J*_{HH} = 7.9 Hz, SiC*H*₂CH₃), 0.90 (s, 9H, Si^{*t*}Bu), 3.88 (sep, 1H, ³*J*_{HH} = 3.2 Hz, Si*H*).

dimethyl(phenyl)silane (2c)

Reduction with BH₃·thf

The general procedure was followed with Me₂PhSiOMe (**1c**) (33 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and 1 M BH₃·thf THF solution (0.20 mL, 0.20 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1c** (0.18 mmol, 91%) and the NMR yield of Me₂PhSiH (**2c**) (0.18 mmol, 88%).

Reduction with NaBH4

The residue was filtered with a silica gel pad (eluent: pentane (100 mL)) to provide **2c** as a colorless liquid in 83% (226 mg).

¹H NMR (C₆D₆, RT, ppm): δ 0.21 (d, 6H, ³*J*_{HH} = 3.8 Hz, Si*Me*₂), 4.63 (sept, 1H, ³*J*_{HH} = 3.8 Hz, Si*H*), 7.19 (m, 3H, *m*, *p*-CH), 7.47 (m, 2H, *o*-CH).

¹³C NMR (C₆D₆, RT, ppm): δ –3.8 (s, Si*Me*), 128.3 (s, Si*Ph*), 129.5 (s, Si*Ph*), 134.3 (s, Si*Ph*), 137.4 (s, Si*Ph*).

²⁹Si NMR (C₆D₆, RT, ppm): δ-16.7 (s).

methyldiphenylsilane (2d)

Reduction with BH₃·thf

The general procedure was followed with MePh₂SiOMe (**1d**) (46 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and 1 M BH₃·thf THF solution (0.20 mL, 0.20 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1d** (0.15 mmol, 78%) and the NMR yield of MePh₂SiH (**2d**) (0.15 mmol, 78%).

Reduction with NaBH₄

The general procedure 1 was followed with NaBH₄ (7.6 mg, 0.2 mmol), $nOct_4NBr$ (5.6 mg, 0.010 mmol), MePh₂SiOMe (**1d**) (46 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and EtBr (22 mg, 0.2 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1d** (0.18 mmol, 92%) and the NMR yield of MePh₂SiH (**2d**) (0.18 mmol, 92%).

¹H NMR (C₆D₆, RT, ppm): δ 0.46 (d, 3H, ³*J*_{HH} = 3.8 Hz, Si*Me*), 5.14 (q, 2H, ³*J*_{HH} = 3.8 Hz, Si*H*₂), 7.12-7.20 (m, 3H, *m*,*p*-CH), 7.50 (m, 2H, *o*-CH).

¹³C NMR (C₆D₆, RT, ppm): δ –5.0 (s, Si*Me*), 128.3 (s, Si*Ph*), 129.6 (s, Si*Ph*), 135.2 (s, Si*Ph*), 135.5 (s, Si*Ph*).

²⁹Si NMR (C₆D₆, RT, ppm): δ –17.1 (s).

triphenylsilane (2e)

The general procedure 2 was followed with CH_2Cl_2 (0.5 mL), NaBH₄ (76 mg, 2.0 mmol), $nOct_4NBr$ (56 mg, 0.10 mmol), Ph₃SiOMe (**1e**) (580 mg, 2.0 mmol), HMPA (72 mg, 0.40 mmol) and EtBr (220 mg, 2.0 mmol). The residue was filtered with a silica gel pad (eluent: toluene (100 mL)) to provide the title compound **2e** as a white solid in 91% (474 mg).

¹H NMR (C₆D₆, RT, ppm): δ 5.71 (s, 1H, Si*H*), 7.09-7.19 (m, 9H, *m*,*p*-CH), 7.59 (m, 6H, *o*-C*H*). ¹³C NMR (C₆D₆, RT, ppm): δ 128.4 (s, Si*Ph*), 130.0 (s, Si*Ph*), 133.7 (s, Si*Ph*), 136.2 (s, Si*Ph*). ²⁹Si NMR (C₆D₆, RT, ppm): δ –17.5 (s). dimethyl(pentafluorophenyl)silane (2f)

The general procedure 1 was followed with NaBH₄ (7.6 mg, 0.20 mmol), $nOct_4NBr$ (5.6 mg, 0.010 mmol), Me₂(C₆F₅)SiOEt (**1f-Et**) (54 mg, 0.20 mmol), HMPA (7.2 mg, 0.040 mmol) and EtBr (22 mg, 0.20 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1f-Et** (0.19 mmol, 95%) and the NMR yield of Me₂(C₆F₅)SiH (**2f**) (0.14 mmol, 69%).

¹H NMR (C₆D₆, RT, ppm): δ 0.15 (dt, 6H, ³*J*_{HH} = 3.9 Hz, ⁵*J*_{CF} = 0.8 Hz, Si*Me*₂), 4.57 (ep, 1H, ³*J*_{HH} = 3.9 Hz, Si*H*).

tert-butyldimethylsilane (2g)

The general procedure 1 was followed with NaBH₄ (15.2 mg, 0.40 mmol), $nOct_4NBr$ (5.6 mg, 0.010 mmol), Me₂(*t*Bu)SiOMe (**1g**) (29 mg, 0.20 mmol), HMPA (36 mg, 0.20 mmol) and EtBr (44 mg, 0.40 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1g** (0.17 mmol, 85%) and the NMR yield of Me₂(*t*Bu)SiH (**2g**) (0.13 mmol, 64%).

¹H NMR (C₆D₆, RT, ppm): δ –0.02 (d, 6H, ³*J*_{HH} = 3.7 Hz, Si*Me*₂), 0.96 (t, 9H, ³*J*_{HH} = 7.9 Hz, SiCH₂CH₃), 3.87 (sep, 1H, ³*J*_{HH} = 3.7 Hz, Si*H*).

triisopropylsilane (2h)

The general procedure 1 was followed with NaBH₄ (15.2 mg, 0.40 mmol), $nOct_4NBr$ (5.6 mg, 0.010 mmol), ${}^{i}Pr_3SiOMe$ (**1h**) (38 mg, 0.20 mmol), HMPA (36 mg, 0.20 mmol) and EtBr (44 mg, 0.40 mmol). The resulting solution was analyzed by ${}^{1}H$ NMR to determine the conversion of **1h** (0.12 mmol, 58%) and the NMR yield of ${}^{i}Pr_3SiH$ (**2h**) (0.064 mmol, 32%).

¹H NMR (C₆D₆, RT, ppm): δ 0.95-1.05 (m, 3H, ³J_{HH} = 3.7 Hz, SiCH(CH₃)₂), 1.07 (d, 18H, ³J_{HH} = 6.5 Hz, SiCH(CH₃)₂), 3.59 (q, 1H, ³J_{HH} = 2.2 Hz, SiH).

cyclohexyl(methoxy)methylsilane (2i)

The general procedure 1 was followed with NaBH₄ (15.2 mg, 0.40 mmol), *n*Oct₄NBr (5.6 mg, 0.010 mmol), MeCySi(OMe)₂ (**1i**) (38 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and EtBr (44 mg, 0.40 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1i** (0.16 mmol, 81%) and the NMR yield of MeCySiH(OMe) (**2i**) (0.010 mmol, 5%) and MeCySiH₂ (**3i**) (0.15 mmol, 76%).

¹H NMR (C₆D₆, RT, ppm): δ 0.10 (d, 3H, ³*J*_{HH} = 2.9 Hz, Si*Me*), 0.76 (m, 1H, SiC*H*(CH₂)₅), 1.14-1.30 (m, 6H, SiCH(CH₂)₅), 1.62-1.82 (m, 6H, SiCH(CH₂)₅), 3.33 (s, 3H, OMe) 4.61 (qd, 1H, ³*J*_{HH} = 3.0, 2.9 Hz, Si*H*).

cyclohexyl(methy)lsilane (3i)

The general procedure 2 was followed with NaBH₄ (152 mg, 4.0 mmol), $nOct_4NBr$ (56 mg, 0.10 mmol), MeCySi(OMe)₂ (**1i**) (380 mg, 2.0 mmol), HMPA (18 mg, 0.10 mmol) and EtBr (440 mg, 4.0 mmol). The residue was filtered with a silica gel pad (eluent: cold pentane (100 mL)) to provide **3i** as a colorless liquid in 73% (187 mg).

¹H NMR (C₆D₆, RT, ppm): δ 0.00 (t, 3H, ³*J*_{HH} = 4.2 Hz, Si*Me*), 0.69 (m, 1H, SiC*H*(CH₂)₅), 1.07-1.24 (m, 6H, SiCH(CH₂)₅), 1.57-1.73 (m, 6H, SiCH(CH₂)₅), 3.82 (qd, 2H, ³*J*_{HH} = 2.9, 4.2 Hz, Si*H*).

¹³C NMR (C₆D₆, RT, ppm): δ 14.2 (s, Si*Me*), 22.0 (s, Si*Cy*), 27.0 (s, Si*Cy*), 27.9 (s, Si*Cy*), 29.1 (2, Si*Cy*).

²⁹Si NMR (C₆D₆, RT, ppm): δ –27.1 (s).

methoxy(methyl)phenylsilane (2j)

The general procedure 1 was followed with NaBH₄ (15.2 mg, 0.40 mmol), $nOct_4NBr$ (5.6 mg, 0.010 mmol), MePhSi(OMe)₂ (**1j**) (36 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and EtBr

(44 mg, 0.40 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1j** (0.15 mmol, 75%) and the NMR yield of MePhSiH(OMe) (**2j**) (0.010 mmol, 5%) and MePhSiH₂ (**3j**) (0.14 mmol, 71%).

¹H NMR (C₆D₆, RT, ppm): δ 0.32 (t, 3H, ³*J*_{HH} = 2.9 Hz, Si*Me*)), 3.30 (s, 3H, O*Me*), 5.18 (q, 1H, ³*J*_{HH} = 2.9 Hz, Si*H*), 7.20 (m, 3H, *m*, *p*-C*H*), 7.56 (m, 2H, *o*-C*H*).

methyl(phenyl)silane (3j)

The general procedure 2 was followed with NaBH₄ (152 mg, 4.0 mmol), $nOct_4NBr$ (56 mg, 0.10 mmol), MePhSi(OMe)₂ (**1j**) (360 mg, 2.0 mmol), HMPA (18 mg, 0.10 mmol) and EtBr (440 mg, 4.0 mmol). The residue was filtered with a silica gel pad (eluent: cold pentane (100 mL)) to provide **3j** as a colorless liquid in 66% (161 mg).

¹H NMR (C₆D₆, RT, ppm): δ 0.18 (t, 3H, ³*J*_{HH} = 4.3 Hz, Si*Me*), 4.49 (q, 2H, ³*J*_{HH} = 4.3 Hz, Si*H*₂), 7.11-7.19 (m, 3H, *m*, *p*-CH), 7.45 (m, 2H, *o*-CH).

¹³C NMR (C₆D₆, RT, ppm): δ –7.7 (s, Si*Me*), 128.3 (s, Si*Ph*), 129.8 (s, Si*Ph*), 133.4 (s, Si*Ph*), 135.1 (s, Si*Ph*).

²⁹Si NMR (C₆D₆, RT, ppm): δ –35.5 (s).

methoxydiphenylsilane (2k)

The general procedure 1 was followed with NaBH₄ (15.2 mg, 0.40 mmol), $nOct_4NBr$ (5.6 mg, 0.010 mmol), Ph₂Si(OMe)₂ (**1k**) (49 mg, 0.20 mmol), HMPA (7.2 mg, 0.040 mmol) and EtBr (44 mg, 0.40 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1k** (0.15 mmol, 73%) and the NMR yield of Ph₂SiH(OMe) (**2k**) (0.0060 mmol, 3%) and Ph₂SiH₂ (**3k**) (0.14 mmol, 72%).

¹H NMR (C₆D₆, RT, ppm): δ 3.40 (s, 3H, OMe), 5.61 (s, 1H, SiH), 7.09-7.19 (m, 6H, m, p-CH), 7.65 (m, 4H, o-CH).

diphenylsilane (3k)

The general procedure 2 was followed with NaBH₄ (152 mg, 4.0 mmol), $nOct_4NBr$ (56 mg, 0.10 mmol), Ph₂Si(OMe)₂ (**1k**) (490 mg, 2.0 mmol), HMPA (18 mg, 0.10 mmol) and EtBr (440 mg, 4.0 mmol). The residue was filtered with a silica gel pad (eluent: cold pentane (100 mL)) to **3k** as a colorless liquid in 72% (265 mg).

¹H NMR (C₆D₆, RT, ppm): δ 5.08 (s, 2H, Si*H*), 7.09-7.19 (m, 6H, *m*, *p*-C*H*), 7.51 (m, 4H, *o*-C*H*). ¹³C NMR (C₆D₆, RT, ppm): δ 128.4 (s, Si*Ph*), 130.1 (s, Si*Ph*), 131.7 (s, Si*Ph*), 136.0 (s, Si*Ph*). ²⁹Si NMR (C₆D₆, RT, ppm): δ –33.2 (s).

dicyclopentyl(methoxy)silane (21)

The general procedure 1 was followed with NaBH₄ (15.2 mg, 0.40 mmol), $nOct_4NBr$ (5.6 mg, 0.010 mmol), Cyp₂Si(OMe)₂ (**1**) (38 mg, 0.20 mmol), HMPA (36 mg, 0.20 mmol) and EtBr (44 mg, 0.40 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **11** (0.17 mmol, 86%) and the NMR yield of Cyp₂SiH(OMe) (**21**) (0.010 mmol, 5%) and Cyp₂SiH₂ (**31**) (0.15 mmol, 77%).

¹H NMR (C₆D₆, RT, ppm): δ 1.04 (m, 1H, SiC*H*(CH₂)₄), 1.36 (m, 2H, SiCH(CH₂)₄), 1.46 (m, 2H, SiCH(CH₂)₄), 1.58 (m, 2H, SiCH(CH₂)₄), 1.80 (m, 2H, SiCH(CH₂)₄), 3.43 (s, 3H, OMe), 4.57 (t, 2H, ³J_{HH} = 2.3 Hz, SiH).

dicyclopentylsilane (31)

The general procedure 2 was followed with NaBH₄ (152 mg, 4.0 mmol), $nOct_4NBr$ (56 mg, 0.10 mmol), $Cyp_2Si(OMe)_2$ (**1**) (460 mg, 2.0 mmol), HMPA (360 mg, 2.0 mmol) and EtBr (440 mg,

4.0 mmol). The residue was filtered with a silica gel pad (eluent: cold pentane (100 mL)) to provide **31** as a colorless liquid in 72% (242 mg).

¹H NMR (C₆D₆, RT, ppm): δ 0.99 (m, 1H, SiC*H*(CH₂)₄), 1.36 (m, 2H, SiCH(CH₂)₄), 1.46 (m, 2H, SiCH(CH₂)₄), 1.58 (m, 2H, SiCH(CH₂)₄), 1.80 (m, 2H, SiCH(CH₂)₄), 3.92 (t, 2H, ³J_{HH} = 3.2 Hz, Si*H*).

¹³C NMR (C₆D₆, RT, ppm): δ 20.8 (s, Si*Cyp*), 27.2 (s, Si*Cyp*), 30.4 (s, Si*Cyp*).

²⁹Si NMR (C₆D₆, RT, ppm): δ –16.7 (s).

3-chloropropylmethylsilane (3m)

The general procedure 1 was followed with NaBH₄ (15.2 mg, 0.40 mmol), *n*Oct₄NBr (5.6 mg, 0.010 mmol), Me{Cl(CH₂)₃}Si(OMe)₂ (**1m**) (37 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and EtBr (44 mg, 0.40 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1m** (0.16 mmol, 78%) and the NMR yield of Me{Cl(CH₂)₃SiH (**3m**) (0.14 mmol, 70%).

¹H NMR (C₆D₆, RT, ppm): δ –0.11 (t, 3H, ³*J*_{HH} = 4.2 Hz, Si*Me*₂), 0.40 (m, 2H, SiC*H*₂CH₂CH₂Cl), 1.46 (m, 2H, SiCH₂CH₂CH₂Cl), 3.05 (t, 2H, ³*J*_{HH} = 6.8 Hz, SiCH₂CH₂CH₂Cl), 3.77 (sept, 2H, ³*J*_{HH} = 4.2 Hz, Si*H*₂).

3,3,3-trifluoropropylmethylsilane (**3n**)

The general procedure 1 was followed with NaBH₄ (15.2 mg, 0.40 mmol), $nOct_4NBr$ (5.6 mg, 0.010 mmol), Me{F₃C(CH₂)₂}Si(OMe)₂ (**1n**) (37 mg, 0.20 mmol), HMPA (7.2 mg, 0.040 mmol) and EtBr (44 mg, 0.40 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1n** (0.16 mmol, 78%) and the NMR yield of Me{F₃C(CH₂)₂}SiH (**3n**) (0.13 mmol, 64%).

¹H NMR (C₆D₆, RT, ppm): δ –0.21 (t, 3H, ³*J*_{HH} = 4.1 Hz, Si*Me*₂), 0.52 (m, 2H, SiC*H*₂CH₂CF₃), 1.66 (m, 2H, SiC*H*₂C*H*₂CF₃), 3.63 (sept, 2H, ³*J*_{HH} = 4.1 Hz, Si*H*₂).

hexylsilane (40)

The general procedure 1 was followed with NaBH₄ (22.8 mg, 0.60 mmol), $nOct_4NBr$ (5.6 mg, 0.010 mmol), nHexSiOMe (10) (23 mg, 0.20 mmol), HMPA (7.2 mg, 0.040 mmol) and EtBr (65 mg, 6.0 mmol). The resulting solution was analyzed by ¹H NMR to determine the NMR yield of $nHexSiH_3$ (40) (0.13 mmol, 67%).

¹H NMR (C₆D₆, RT, ppm): δ 0.51-0.56 (m, 2H, SiCH₂(CH₂)₄CH₃), 0.86 (t, 3H, ³J_{HH} = 7.2 Hz, SiCH₂(CH₂)₄CH₃), 1.12-1.35 (m, 8H, SiCH₂(CH₂)₄CH₃), 3.61 (t, 3H, ³J_{HH} = 3.9 Hz, SiH₃).

dodecylsilane (4p)

The general procedure 2 was followed with NaBH₄ (228 mg, 6.0 mmol), $nOct_4NBr$ (56 mg, 0.10 mmol), $nC_{12}H_{25}Si(OMe)_3$ (**1p**) (580 mg, 2.0 mmol), HMPA (72 mg, 0.40 mmol) and EtBr (650 mg, 6.0 mmol). The residue was filtered with a silica gel pad (eluent: cold pentane (100 mL)) to provide **4p** as a colorless liquid in 76% (305 mg).

¹H NMR (C₆D₆, RT, ppm): δ 0.55 (m, 2H, SiCH₂(CH₂)₁₀CH₃), 0.92 (t, 3H, ³J_{HH} = 7.1, SiCH₂(CH₂)₁₀CH₃), 1.18-1.38 (m, 20H, SiCH₂(CH₂)₁₀CH₃).

¹³C NMR (C₆D₆, RT, ppm): δ 6.1 (s, SiC₁₂H₂₅), 14.3 (s, SiC₁₂H₂₅), 23.1 (s, SiC₁₂H₂₅), 26.7 (s, SiC₁₂H₂₅), 29.6 (s, SiC₁₂H₂₅), 29.8 (s, SiC₁₂H₂₅), 29.9 (s, SiC₁₂H₂₅), 30.1 (s, SiC₁₂H₂₅), 30.1 (s, SiC₁₂H₂₅), 30.1 (s, SiC₁₂H₂₅), 32.3(s, SiC₁₂H₂₅), 32.9 (s, SiC₁₂H₂₅).

²⁹Si NMR (C₆D₆, RT, ppm): δ –59.4 (s).

dodecylsilane-d₃ (4p-d₃)

The general procedure 2 was followed with NaBD₄ (99 atom% D, 250 mg, 6.0 mmol), $nOct_4NBr$ (56 mg, 0.10 mmol), $nC_{12}H_{25}Si(OMe)_3$ (**1p**) (580 mg, 2.0 mmol), HMPA (72 mg, 0.40 mmol) and EtBr (650 mg, 6.0 mmol). The residue was filtered with a silica gel pad (eluent: cold pentane (100 mL)) to provide **4p** as a colorless liquid in 70% (286 mg, 1.4 mmol, 98 atom% D).

¹H NMR (C₆D₆, RT, ppm): δ 0.54 (t, 2H, ³*J*_{HH} = 7.9 Hz, SiC*H*₂(CH₂)₁₀CH₃), 0.92 (t, 3H, ³*J*_{HH} = 7.5, SiCH₂(CH₂)₁₀CH₃), 1.18-1.38 (m, 20H, SiCH₂(CH₂)₁₀CH₃).

¹³C NMR (C₆D₆, RT, ppm): δ 5.9 (s, SiC₁₂H₂₅), 14.3 (s, SiC₁₂H₂₅), 23.1 (s, SiC₁₂H₂₅), 26.6 (s, SiC₁₂H₂₅), 29.6 (s, SiC₁₂H₂₅), 29.8 (s, SiC₁₂H₂₅), 30.0 (s, SiC₁₂H₂₅), 30.1 (s, SiC₁₂H₂₅), 30.1 (s, SiC₁₂H₂₅), 30.1 (s, SiC₁₂H₂₅), 32.3(s, SiC₁₂H₂₅), 32.8 (s, SiC₁₂H₂₅).

²⁹Si NMR (C₆D₆, RT, ppm): δ –60.2 (sept, ¹*J*_{SiD} = 29.3 Hz).

cyclohexylsilane (4q)

The general procedure 1 was followed with NaBH₄ (22.8 mg, 0.60 mmol), $nOct_4NBr$ (5.6 mg, 0.010 mmol), CySi(OMe)₃ (**1q**) (23 mg, 0.20 mmol), HMPA (7.2 mg, 0.040 mmol) and EtBr (65 mg, 6.0 mmol). The resulting solution was analyzed by ¹H NMR to determine the NMR yield of CySiH₃ (**4q**) (0.13 mmol, 67%).

¹H NMR (C₆D₆, RT, ppm): δ 0.75 (m, 1H, SiC*H*(CH₂)₅), 1.05-1.18 (m, 5H, ax-C*H*), 1.50-1.66 (m, 5H, eq-C*H*), 3.58 (d, 3H, ³*J*_{HH} = 3.1 Hz, Si*H*₃).

phenylsilane (4r)

The general procedure 1 was followed with NaBH₄ (22.8 mg, 0.60 mmol), $nOct_4NBr$ (5.6 mg, 0.010 mmol), PhSi(OMe)₃ (**1r**) (22 mg, 0.20 mmol), HMPA (7.2 mg, 0.040 mmol) and EtBr (65 mg, 6.0 mmol). The resulting solution was analyzed by ¹H NMR to determine the NMR yield of PhSiH₃ (**4r**) (0.10 mmol, 49%).

¹H NMR (C₆D₆, RT, ppm): δ 4.23 (s, 3H, Si*H*), 7.07 (m, 2H, *m*, *p*-C*H*), 7.11 (m, 1H, *p*-C*H*), 7.39 (m, 2H, *o*-C*H*).

References

- 1) L. Horner and J. Mathias, J. Organomet. Chem., 1985, 282, 155.
- 2) P. F. Hudrlik and D. K. Minus, J. Organomet. Chem., 1996, 521, 157.
- 3) W. J. Leigh, R. Boukherroub and C. Kerst, J. Am. Chem. Soc., 1998, 120, 9504.
- 4) R. Savela, W. Zawartka and R. Leino, Organometallics, 2012, 31, 3199.

- 5) K. Aoyagi, K. Matsumoto, S. Shimada, K. Sato and Y. Nakajima, Organometallics, 2019, 38, 210.
- 6) A. J. Oliver and W. A. G. Graham, J. Organomet. Chem. 1969, 19, 17.
- 7) K. G. Penman, W. Kitchin and W. Adcock, J. Org. Chem., 1989, 54, 5390.
- 8) A. W. P. Jarvie and R. J. Rowley, J. Organomet. Chem., 1973, 57, 261.
- 9) A. Benouargha, D. Boulahia, B. Boutevin, G. Caporiccio, F. Guida-Pietrasanta and A. Ratsimihety, *Phosphourus Sulfur Silicon Relat. Elem.*, 1996, **113**, 79.
- 10) L. Rosenberg and D. N. Kobus, J. Organomet. Chem., 2003, 685, 107.
- 11) J. Ohshita, R. Taketsugu, Y. Nakahara and A. Kunai, J. Organomet. Chem., 2004, 689, 3258.