Electronic Supplementary Information (ESI)

Table of Contents

1.	Experimental Section	. S2
	1.1 General	. S2
	1.2 Synthetic procedures and characterization data	. S2
	1.3 Chemical oxidation of PP-Ar	. S9
2.	Fluorescence spectra of TT-Ar and PP-Ar	S10
3.	Electrochemical data	S11
4.	ESR spectra of the radical cations and radical anions	S11
5.	DFT calculations	S13
6.	Appendix I : X-ray crystallographic data	S28
7.	Appendix II : ¹ H NMR, ¹³ C NMR and Mass spectra of all new compounds	S30
8.	References	S65

1. Experimental Section

1.1 General

All reagents and starting materials were purchased from commercial sources and used without further purification. Anhydrous dichloromethane (DCM) was distilled from CaH₂. Anhydrous THF and toluene were distilled from sodium-benzophenone immediately prior to use. 1,5-Dibromo-2,6-dimethylnaphthalene (*J. Am. Chem. Soc.* **1942**, *64*, 2875), 2-methyl-1-naphthylboronic acid (*Synlett*, **2003**, *5*, 705), 4-*tert*-butyl-2,6-dimethylbromobenzene (*J. Org. Chem.* **2003**, *68*, 6071) and 2-bromo-7-(*tert*-butyl)pyrene (*Chem. Eur. J.* **2013**, *19*, 16295) were prepared according to the literatures. ¹H and ¹³C NMR spectra were recorded using 300 MHz, 400 MHz and 500 MHz Bruker spectrometer in CDCl₃, CD₂Cl₂, CD₃CN, DMSO or THF-*d*₈ with tetramethylsilane (TMS) as the internal standard. The chemical shift was recorded in ppm and the following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad. HR ESI and APCI mass spectra were recorded on a MicrOTOF-QII instrument. UV-vis absorption spectra were recorded on a Shimadzu UV-3600 spectrophotometer. Cyclic voltammetry measurements were performed in dry dichloromethane on a CHI 620C electrochemical analyzer with a three-electrode cell, using 0.1 M Bu₄NPF₆ as supporting electrolyte, AgCl/Ag as reference electrode, gold disk as working electrode, Pt wire as counter electrode, and scan rate at 50 mV s⁻¹. The potential was externally calibrated against the ferrocene/ferrocenium couple. The single crystal was measured at low temperature (T = 100K) on a four circles goniometer Kappa geometry Bruker AXS D8 Venture equipped with a Photon 100 CMOS active pixel sensor detector using a Copper monochromatized ($\lambda = 1.54178$ Å) X-ray radiation. Continuous wave X-band ESR spectra were obtained with a Bruker ELEXSYS E500 spectrometer using a variable temperature Bruker liquid nitrogen cryostat.

1.2 Synthetic procedures and characterization data

A solution of 2-bromo-7-(*tert*-butyl) pyrene (1mmol, 337 mg) in 100 mL of freshly distilled THF was cooled to -78 °C, and *n*-butyllithium solution (1.1 mmol, 0.55 mL, 2M) was carefully added under nitrogen atmosphere. After stirring for 1h, pure iodomethane (1.5 mmol, 0.1 mL) was added. The mixture was stirred at -78 °C and was allowed to warm to room temperature through overnight. The mixture was quenched with Na₂S₂O₃ solution, and was extracted with ether. The extract was dried over anhydrous Na₂SO₄. After removal of the solvent under vacuum, the crude product was purified by column chromatography (silica gel, hexanes/DCM =9/1) to afford white compound 1 in 95% yield (258 mg). ¹H NMR (500 MHz, Chloroform-*d*): δ 8.20 (s, 2H), 8.03 (d, *J* = 8.9 Hz, 2H), 7.98 (d, *J* = 9.0 Hz, 2H), 7.97 (s, 2H), 2.80 (s, 3H), 1.59 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*): δ 131.17, 130.83, 127.73, 127.09, 125.62, 122.26, 77.16, 32.12, 22.22. HRMS analysis (APCI): calcd for C₂₁H₂₁ (M+H)⁺: 273.1645; found: 273.1638 (error: -2.7 ppm).

A solution of bromine (0.15 mL, 3 mmol) in anhydrous DCM (16 mL) was add dropwise to a degassed solution of compound **1** (1.62 g, 6 mmol) in anhydrous DCM (50 mL) at -78 °C under nitrogen atmosphere. The resulting mixture was allowed to slowly warmed up to room temperature and stirred overnight. Br₂ was neutralized with Na₂S₂O₃ solution. The organic layer was washed with saturated NaCl solution, dried over Na₂SO₄, filtered and evaporated to dryness. The residue was purified by column chromatography (silica gel, hexane) to give the compound **2** as white solid in 90% yield (1.9 g). ¹H NMR (500 MHz, Methylene Chloride-*d*₂): δ 8.47 (d, *J* = 9.3 Hz, 1H), 8.28 – 8.25 (m, 2H), 8.15 (d, *J* = 9.3 Hz, 1H), 8.06 (d, *J* = 8.9 Hz, 1H), 8.04 (s, 1H), 7.95 (d, *J* = 8.9 Hz, 1H), 2.85 (s, 3H), 1.57 (s, 9H). ¹³C NMR (126 MHz, Methylene Chloride-*d*₂): δ 130.76 , 130.21 , 129.55 , 128.32 , 126.96 , 126.88 , 126.32 , 123.47 , 123.11 , 53.84 , 32.03 , 24.86 . HRMS analysis (APCI): calcd for C₂₁H₂₀Br (M+H)⁺: 351.0735; found: 351.0743 (error: 2.3 ppm).

An oven-dried two-neck round bottom flask was charged with compound **2** (4.8 mmol, 1.68 g), 2-methyl-1-naphthylboronic acid (14.4 mmol, 2.68 g), Pd-PEPPSI-IPent (8 mmol%, 300 mg), *t*BuOK (14.4 mmol, 1.61g), 4 Å molecular sieve and purged with argon for 5 min. Dioxane (11.5 mL) and *t*BuOH (26.9 mL) were added subsequently under argon, then the mixture was purged with argon under -78 °C for 3 times. The resultant mixture was heated at 90 °C for 24h. After cooling to room temperature, water was added and the reaction mixture was extracted with dichloromethane. The organic layer was dried over sodium sulfate and then the solvent was removed under vacuum. The crude mixture was subjected to silica gel column chromatography (hexane/DCM=9/1) to afford the title product **3** as white solid in 90% yield (1.78 g). ¹H NMR (400 MHz, Methylene Chloride-*d*₂): δ 8.25 (d, *J* = 1.8 Hz, 1H), 8.20 (s, 1H), 8.15 (d, *J* = 1.8 Hz, 1H), 8.10 (s, 2H), 7.94 (dd, *J* = 8.3, 3.7 Hz, 2H), 7.80 (d, *J* = 9.2 Hz, 1H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.23 (d, *J* = 9.2 Hz, 1H), 7.16 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 1H), 6.93 (d, *J* = 9.0 Hz, 1H), 2.27 (s, 3H), 2.03 (s, 3H), 1.56 (s, 9H). ¹³C NMR (126 MHz, Methylene Chloride-*d*₂): δ 131.31, 131.00, 129.21, 128.38, 128.09, 127.96, 127.91, 127.33, 126.71, 126.52, 125.91, 125.39, 125.35, 122.77, 122.58, 53.84, 35.51, 32.06, 20.74, 20.30. HRMS analysis (APCI): calcd for C₃₂H₂₉ (M+H)⁺: 413.2260; found: 413.2264 (error: 1.0 ppm).

Compound **3** (1.76 g, 4.4 mmol), *N*-bromosuccinimide (8.8 mmol, 1.566 g) and benzoyl peroxide (0.88 mmol, 213 mg) were dissolved in 40 mL of CCl₄ and heated at 95 °C under nitrogen atmosphere. After 12 hours, the mixture was cooled to room temperature and the solvent was removed under reduced pressure. The reside was subjected to silica gel column chromatography using hexane/dichloromethane (9/1) as eluent to afford compound **4** as light yellow solid in 70% yield (1.0 g). ¹H NMR (500 MHz, Methylene Chloride-*d*₂): δ 8.47 (s, 1H), 8.31 (d, *J* = 1.8 Hz, 1H), 8.21 (d, *J* = 1.8 Hz, 1H), 8.17 (d, *J* = 2.7 Hz, 2H), 8.11 (d, *J* = 8.6 Hz, 1H), 7.99 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 9.2 Hz, 1H), 7.82 (d, *J* = 8.6 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.27 (d, *J* = 9.2 Hz, 1H), 7.22 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 1H), 6.97 (d, *J* = 9.1 Hz, 1H), 4.56 (d, *J* = 10.4 Hz, 1H), 4.48 (d, *J* = 10.4 Hz, 1H), 4.34 (d, *J* = 10.3 Hz, 1H), 1.56 (s, 9H). ¹³C NMR (126 MHz, Methylene Chloride-*d*₂): δ 150.46 , 135.17 , 135.01 , 133.80 , 131.26 , 130.59 , 129.81 , 128.96 , 128.49 , 128.23 , 127.31 , 127.27 , 127.22 , 127.16 , 127.11 , 123.51 , 123.31 , 122.91 , 53.84 , 33.37 , 33.25 , 32.00 . HRMS analysis (APCI): calcd for C32H27Br₂(M+H)⁺: 569.0461; found: 569.0474 (error: 2.3 ppm).

The compound 4 (1.14 g, 2 mmol), KOAc (1.96 g, 20 mmol) and *n*-butylammonium bromide (1.288 g, 4 mmol) were dissolved in 30 mL DMF under nitrogen atmosphere. The mixture was heated at 100 °C overnight. After cooling to room temperature, 30 mL ammonium chloride solution was added into the reaction mixture. The mixture was extracted with ethyl acetate (2*30 mL). The combined organic extract was dried over Na₂SO₄. The solvent was removed under vacuum and the residue was purified by column chromatography (silica gel, hexane/EA = 8/2) to afford the target compound **5** (880 mg) in 84% yield. ¹H NMR (500 MHz, Methylene Chloride-*d*₂): δ 8.38 (s, 1H), 8.31 (d, *J* = 1.8 Hz, 1H), 8.20 (d, *J* = 1.7 Hz, 1H), 8.18 (s, 2H), 8.09 (d, *J* = 8.6 Hz, 1H), 7.99 (d, *J* = 8.2 Hz, 1H), 7.86 (d, *J* = 9.3 Hz, 1H), 7.76 (d, *J* = 8.6 Hz, 1H), 7.49 (t, *J* = 7.5 Hz, 1H), 7.26 (s, 1H), 7.22 – 7.18 (m, 1H), 6.97 (d, *J* = 8.6 Hz, 1H), 5.07 – 4.98 (m, 2H), 4.80 (s, 2H), 1.83 (s, 3H), 1.82 (s, 3H), 1.57 (s, 9H). ¹³C NMR (126 MHz, Methylene Chloride-*d*₂): δ 150.18 , 131.50 , 129.11 , 128.68 , 128.67 , 128.50 , 127.53 , 126.97 , 126.71 , 126.63 , 125.37 , 125.35 , 123.35 , 123.12 , 65.31 , 64.93 , 53.84 , 32.03 , 20.83 , 20.77 . HRMS analysis (APCI): calcd for C₃₆H₃₂O₄ (M)⁺: 528.2305; found: 528.2295 (error: -1.8 ppm).

The compound **5** (880 mg, 1.67 mmol), KOH (1.87 g, 33.4 mmol) were dissolved in 50 mL methanol under nitrogen atmosphere. The mixture was refluxed overnight. After cooling down to room temperature, the solvent was removed under vacuum and the residue was added with 100 mL water, which was then filtered to give pure white compound **6** (660 mg) in 90% yield. ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.59 (s, 1H), 8.39 (s, 1H), 8.29 (d, *J* = 9.0 Hz, 1H), 8.25 (d, *J* = 8.8 Hz, 2H), 8.15 (d, *J* = 8.6 Hz, 1H), 8.05 (d, *J* = 8.3 Hz, 1H), 7.94 (dd, *J* = 8.9, 4.6 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.11 (d, *J* = 9.2 Hz, 1H), 6.80 (d, *J* = 8.5 Hz, 1H), 4.41 (d, *J* = 14.2 Hz, 1H), 4.26 (d, *J* = 14.2 Hz, 1H), 4.11 (d, *J* = 3.4 Hz, 2H), 1.53 (s, 9H). ¹³C NMR (126 MHz, DMSO-*d*₆): δ 148.85 , 138.65 , 138.51 , 130.11 , 130.07 , 128.14 , 128.01 , 127.93 , 127.66 , 127.37 , 126.43 , 125.55 , 125.34 , 124.86 , 124.17 , 122.91 , 122.45 , 122.17 , 61.09 , 60.85 , 39.52 , 35.00 , 31.64 . HRMS analysis (APCI): calcd for C₃₂H₂₈O₂ (M)⁺: 444.2073; found: 444.2084 (error: 2.4 ppm).

A solution of oxalyl chloride (3.2 mL, 37.5 mmol) in 100 mL of freshly distilled CH₂Cl₂ was cooled to -78 °C, and DMSO (5.35 mL, 75 mmol) was carefully added under nitrogen atmosphere. After stirring for 15 min, a solution of compound **6** (660 mg, 1.5 mmol) in CH₂Cl₂ (50 mL) was added and the mixture was stirred at -78 °C for 2h. Et₃N (10.4 mL) was added successively and the solution was stirred at -78 °C for 1h. Then the cooling bath was removed, and the reaction mixture was allowed to warm up to room temperature and stirred for 30 min. The solvent was removed under vacuum and the residue was extracted with ethyl acetate (2*30 mL). The extract was washed with saturated aqueous Na₂CO₃ solution, brine and dried over anhydrous Na₂SO₄. After removal of the solvent under vacuum, the crude product was purified by column chromatography (silica gel, hexane/EA =4/1) to afford yellow compound **7** (528 mg) in 80% yield. ¹H NMR (500 MHz, Methylene Chloride-*d*₂): δ 9.87 (s, 1H), 9.58 (s, 1H), 8.89 (s, 1H), 8.37 (d, *J* = 1.8 Hz, 1H), 8.30 (d, *J* = 9.0 Hz, 1H), 8.25 (d, *J* = 8.9 Hz, 2H), 8.20 (d, *J* = 3.9 Hz, 2H), 8.16 (s, 1H), 8.07 (d, *J* = 8.2 Hz, 1H), 7.95 (d, *J* = 9.3 Hz, 1H), 7.65 (ddd, *J* = 8.1, 6.8, 1.1 Hz, 1H), 7.37 (d, *J* = 9.2 Hz, 1H), 7.33 – 7.30 (m, 1H), 7.15 (d, *J* = 8.5 Hz, 1H), 1.57 (s, 9H). ¹³C NMR (126 MHz, Methylene Chloride-*d*₂): δ 192.07, 191.59, 141.33, 134.30, 134.00, 132.92, 132.91, 131.94, 131.76, 130.11, 129.95, 129.76, 129.66, 128.92, 128.18, 128.07, 127.85, 127.65, 125.12, 124.26, 124.21, 123.89, 122.69, 53.84 . HRMS analysis (APCI): calcd for C₃₂H₂₅O₂ (M+H)⁺: 441.1845; found: 441.1849 (error: 1.0 ppm).

n-BuLi in hexane (2M, 3 mL, 6 mmol) was added to a solution of 4-*tert*-butyl-2,6-dimethylbromobenzene (1.446 g, 6 mmol) in anhydrous THF (50 mL) at -78 °C and the mixture was stirred at -78 °C for one and half hours. Then the reaction mixture was added with compound 7 (450 mg, 1 mmol) and allowed to warm up to room temperature overnight. The resulting mixture was quenched with water and extracted with ether (3*50 mL). The combined organic extract was dried over Na₂SO₄ and evaporated in vacuum. The crude product was washed by hexane to afford compound **7-a** as a yellow solid (900 mg, quantitative yield), which was used for the next step directly. Boron trifluoride diethyl etherate (0.5 mL) was added to a solution of compound **7-a** (327 mg, 0.3 mmol) in DCM (50 mL) and the yellow solution turned purple immediately. After 30 min, water was added to quench the reaction. The organic layer was separated and dried over Na₂SO₄. The solvent was removed under vacuum and the residue was washed with methanol to afford compound **8** (270 mg) in 90% yield, which was used directly to the next step. Compound **8** (270 mg, 0.27 mmol) was dissolved in 50 mL toluene under nitrogen, *p*-chloranil (246 mg, 1 mmol) was added and the mixture was surified by column chromatography (silica gel, hexane/toluene = 4/1) to give the compound **TT-Ar** as red solid in 50% yield (135 mg). ¹H NMR (500 MHz, THF-*d*s): δ 8.74 (s, 1H), 8.44 (s, 1H), 8.41 (s, 1H), 8.28 (s, 1H), 8.17 (d, *J* = 6.8 Hz, 1H), 8.05 (d, *J* = 7.5 Hz, 1H), 8.00 – 7.96 (m, 4H), 7.61 (d, *J* = 9.4 Hz, 1H), 7.51 (d, *J* = 4.7 Hz, 4H), 1.99 (s, 6H), 1.87 (s, 7H), 1.59 (s, 9H), 1.56 (d, *J* = 3.4 Hz, 18H). HRMS analysis (APCI): calcd for C₅₆H₅₅ (M+H)⁺: 727.4313; found: 727.4298 (error: -2.1 ppm).

10

An oven-dried two-neck round bottom flask was charged with 1,5-dibromo-2,6-dimethylnaphthalene (126 mg, 0.4 mmol), 1,2-methyl-1-naphthylboronic acid (372 mg, 2 mmol), Pd-PEPPSI-IPent (8 mmol%, 26 mg), *t*BuOK (269 mg, 2.4 mmol), 4 Å molecular sieve and purged with argon for 5 min. Dioxane (1.0 mL) and tBuOH (2.2 mL) were added subsequently under argon, then the mixture was purged under -78 °C for three times. The resultant mixture was heated at 90 °C for 24h. After cooling to room temperature, water was added and the reaction mixture was extracted with dichloromethane. The organic layer was dried over sodium sulfate and the solvent as removed under vacuum. The crude mixture was subjected to silica gel column chromatography (hexane /DCM=9/1) to afford the compound **10** (104 mg) as white solid in 60% yield. ¹H NMR (500 MHz, Methylene Chloride-*d*₂): δ 7.92 (t, *J* = 7.5 Hz, 2H), 7.58 – 7.54 (m, 1H), 7.43 (t, *J* = 7.0 Hz, 1H), 7.28 (t, *J* = 8.1 Hz, 1H), 7.23 (d, *J* = 8.6 Hz, 1H), 7.14 (d, *J* = 8.4 Hz, 1H), 7.08 (d, *J* = 8.4 Hz, 0H), 7.04 (d, *J* = 8.6 Hz, 1H), 2.12 (s, 1H), 2.08 (s, 2H), 1.95 (s, 3H). ¹³C NMR (75 MHz, Methylene Chloride-*d*₂): δ 133.68 , 133.31 , 132.78 , 131.91 , 129.23 , 128.38 , 127.77 , 126.48 , 126.46 , 126.09 , 125.97 , 125.39 , 125.33 , 125.31 , 53.84 , 20.21 , 19.88 . HRMS analysis (APCI): calcd for C₃₄H₂₉ (M+H)⁺: 437.2259; found: 437.2264 (error: 1.1 ppm).

Compound **10** (1.0 g, 2.3 mmol), *N*-bromosuccinimide (1.637 g, 9.2 mmol) and benzoyl peroxide (222 mg, 0.92 mmol) were dissolved in 80 mL of CCl₄ and heated at 95 °C under nitrogen atmosphere. After 12 hours, the mixture was cooled to room temperature and the solvent was removed under reduced pressure. The residue was subjected to silica gel column chromatography using hexane/dichloromethane (4/1) as eluent to afford compound **11** (692 mg) in 40% yield. ¹H NMR (500 MHz, Methylene Chloride-*d*₂): δ 8.10 (d, *J* = 8.5 Hz, 1H), 7.99 (d, *J* = 8.1 Hz, 1H), 7.81 (d, *J* = 8.6 Hz, 1H), 7.58 – 7.50 (m, 2H), 7.36 (t, *J* = 8.2 Hz, 1H), 7.24 (d, *J* = 8.7 Hz, 1H), 7.13 (d, *J* = 8.5 Hz, 1H), 4.39 – 4.33 (m, 2H), 4.25 – 4.18 (m, 2H). ¹³C NMR (126 MHz, Methylene Chloride-*d*₂): δ 133.85 , 129.99 , 129.01 , 128.55 , 128.47 , 128.22 , 127.48 , 127.33 , 127.14 , 53.84 , 33.19 , 32.55 . HRMS analysis (APCI): calcd for C₃₄H₂₄Br₄ (M)⁺: 747.8586; found: 747.8606 (error: 2.7 ppm).

The compound **11** (2.4 g, 3.2 mmol), KOAc (12.56 g, 128 mmol) and *n*-butylammonium bromide (4.0 g, 12.8 mmol) were dissolved in 40 mL DMF under nitrogen atmosphere. The mixture was heated at 100 °C overnight. After cooling to room temperature, 30 mL ammonium chloride solution was added into the reaction mixture. The mixture was extracted with ethyl acetate (2*30 mL). The combined organic extract was dried over Na₂SO₄. The solvent was removed under vacuum and the residue was purified by column chromatography (silica gel, hexane/EA = 7/3) to afford the target compound **11-a** (1.8 g) in 84% yield. ¹H NMR (300 MHz, Methylene Chloride-*d*₂): δ 8.07 (d, *J* = 8.5 Hz, 1H), 7.99 (d, *J* = 8.1 Hz, 1H), 7.73 (d, *J* = 8.5 Hz, 1H), 7.52 (ddd, *J* = 8.1, 6.9, 1.1 Hz, 1H), 7.46 (d, *J* = 8.7 Hz, 1H), 7.34 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 1H), 7.23 (d, *J* = 8.7 Hz, 1H), 7.12 (d, *J* = 8.6 Hz, 1H), 4.93 (d, *J* = 12.6 Hz, 1H), 4.74 (s, 2H), 1.90 (s, 3H), 1.76 (s, 3H). ¹³C NMR (75 MHz, Methylene Chloride-*d*₂): δ 170.64 , 170.57 , 135.11 , 133.81 , 133.63 , 133.27 , 133.20 , 133.09 , 129.23 , 128.51 , 127.29 , 127.25 , 127.16 , 126.86 , 126.79 , 126.68 , 64.92 , 64.64 , 53.84 , 20.91 , 20.69 . HRMS analysis (APCI): calcd for C₄₂H₃₆O₈ (M)⁺: 668.2417; found: 668.2405 (error: -1.8 ppm).

The compound **11-a** (2.14 g, 3.2 mmol), KOH (7.168 g, 128 mmol) were dissolved in 100 mL methanol under nitrogen atmosphere. The mixture was refluxed overnight. After cooling down to room temperature, the solvent was removed under vacuum and the residue was added with 100 mL water, which was then filtered to give pure white compound **11-b** (1.4 g) in 87.5% yield. ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.12 (d, *J* = 8.5 Hz, 1H), 8.05 (d, *J* = 8.1 Hz, 1H), 7.92 (d, *J* = 8.5 Hz, 1H), 7.61 (d, *J* = 8.8 Hz, 1H), 7.55 – 7.49 (m, 1H), 7.36 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.06 (d, *J* = 8.7 Hz, 1H), 7.02 (d, *J* = 8.5 Hz, 1H), 5.19 (t, *J* = 5.0 Hz, 1H), 5.02 (t, *J* = 5.0 Hz, 1H), 4.15 (qd, *J* = 13.7, 4.5 Hz, 2H), 4.09 – 3.97 (m, 2H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ 138.31, 137.81, 132.33, 131.88, 131.70, 131.05, 128.10, 127.81, 126.45, 125.81, 125.53, 125.29, 125.10, 124.93, 60.75, 60.60, 39.52. HRMS analysis (APCI): calcd for C₃₄H₂₈O₄ (M)⁺: 500.1981; found: 500.1982 (error: 0.2 ppm).

A solution of oxalyl chloride (6.0 mL, 70 mmol) in 200 mL of freshly distilled CH₂Cl₂ was cooled to -78 °C, and DMSO (9.8 mL, 138 mmol) was carefully added under nitrogen atmosphere. After stirring for 15 min, a solution of compound **11-b** (700 mg, 1.4 mmol) in CH₂Cl₂ (200 mL) was added and the mixture was stirred at -78 °C for 2h. Et₃N (19 mL) was added successively and the solution was stirred at -78 °C for 1h. Then the cooling bath was removed, and the reaction mixture was allowed to warm up to room temperature and stirred for 30 min. The solvent was removed under vacuum and the residue was extracted with ethyl acetate (2*30 mL). The extract was washed with saturated aqueous Na₂CO₃ solution, brine and dried over anhydrous Na₂SO₄. After removal of the solvent under vacuum, the crude product was purified by column chromatography (silica gel, hexane/EA =7/3) to afford light yellow compound **12** (485 mg) in 70% yield. ¹H NMR (500 MHz, Methylene Chloride-*d*₂) δ 9.73 (s, 1H), 9.61 (s, 1H), 8.24 (s, 2H), 8.11 (d, *J* = 8.2 Hz, 1H), 8.01 (d, *J* = 8.8 Hz, 1H), 7.72 (ddd, *J* = 8.1, 6.8, 1.1 Hz, 1H), 7.56 (d, *J* = 9.0 Hz, 1H), 7.48 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 1H), 7.33 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (126 MHz, Methylene Chloride-*d*₂) δ 190.96 , 190.83 , 136.46 , 135.70 , 133.88 , 133.82 , 130.69 , 130.00 , 129.19 , 129.05 , 128.57 , 127.52 , 124.59 , 123.21 , 53.84 . HRMS analysis (APCI): calcd for C₃₄H₂₁O₄ (M+H)⁺: 493.1436; found: 493.1434 (error: -0.3 ppm).

n-BuLi in hexane (2M, 3.0 mL, 6 mmol) was added to a solution of 4-tert-butyl-2,6-dimethylbromobenzene (1.446 g, 6 mmol) in anhydrous THF (20 mL) at -78 °C and the mixture was stirred at -78 °C for one hour. Then the reaction mixture was added with compound 12 (250 mg, 0.5 mmol) and allowed to warm up to room temperature overnight. The resulting mixture was quenched with water and extracted with ether (3*50 mL). The combined organic extract was dried over Na2SO4 and evaporated in vacuum. The crude product was washed by hexane to afford compound 12-a as a yellow solid (542 mg, quantitative yield), which was used for the next step directly. Boron trifluoride diethyl etherate (0.5 mL) was added to a solution of compound 12-a (342 mg, 0.3 mmol) in DCM (50 mL) and the yellow solution turned green immediately. After 30 min, water was added to quench the reaction. The organic layer was separated and dried over Na2SO4. The solvent was removed under vacuum and the residue was washed with methanol to afford compound 13 (270 mg) in 90% yield, which was used directly to the next step. Compound 13 (270 mg, 0.27 mmol) was dissolved in 50 mL toluene under nitrogen, p-chloranil (246 mg, 1 mmol) was added and the mixture was stirred for 2h at 80 °C. The color of the solution turned to dark green. The solvent was removed under vacuum and the residue was purified by column chromatography (silica gel, hexane/toluene = 4/1) to give the compound PP-Ar as green solid in 50% yield (135 mg). ¹H NMR (500 MHz, THF-d₈) δ 8.71 Hz, 4H), 1.96 (s, 6H), 1.76 (s, 6H), 1.49 (s, 18H). ¹³C NMR (126 MHz, THF-d₈) & 151.26, 137.82, 137.77, 131.25, 130.07, 129.07, $126.96\ ,\ 126.68\ ,\ 125.28\ ,\ 125.02\ ,\ 124.96\ ,\ 124.87\ ,\ 123.57\ ,\ 123.46\ ,\ 35.00\ ,\ 31.94\ ,\ 20.41\ .\ HRMS\ analysis\ (APCI):\ calcd\ for\ C_{82}H_{\$1}\ ,\ C_{81}H_{\$1}\ ,\ C_$ (M+H)⁺: 1065.6335; found: 1065.6333 (error: -0.2 ppm).

1.3 Chemical oxidation of PP-Ar

NO•SbF₆ (5.3 mg, 0.02 mmol) dissolved in dry acetonitrile (50 µl) was added into the 2 mL dry DCM solution of **PP-Ar** (10.6 mg, 0.01 mmol). The oxidized compound was formed in 5 min leading to deep brown color, and the solvent was removed under vacuum to give the dication **PP-Ar**²⁺ without further purification. ¹H NMR (500 MHz, Methylene Chloride- d_2): δ 9.35 (s, 1H), 8.86 (d, J = 7.5 Hz, 1H), 8.34 (d, J = 9.2 Hz, 1H), 8.20 (d, J = 7.9 Hz, 1H), 8.08 (t, J = 7.8 Hz, 1H), 7.94 (d, J = 9.1 Hz, 1H), 7.29 (d, J = 14.3 Hz, 4H), 1.97 (s, 6H), 1.87 (s, 6H), 1.43 (d, J = 6.2 Hz, 18H). Due to its instability under ambient condition, its mass spectrum was not recorded.

2. Fluorescence spectra of TT-AR and PP-AR

Fig. S1. Normalized absorption (Abs) and fluorescence (Flu) spectra of AA-Ar, TT-Ar and PP-Ar measured in DCM. The excitation wavelength for fluorescence measurements was 400 nm, 580 nm and 702 nm, respectively.

3. Electrochemical data

Fig. S2. Differential pulse voltammograms $(1 \times 10^{-3} \text{ M})$ of AA-Ar, TT-Ar and PP-Ar in dry dichloromethane with 0.1 M Bu₄NPF₆ as the supporting electrolyte, AgCl/Ag as reference electrode, Au as working electrode (surface area = 12.6 mm²), Pt wire as counter electrode (potential step = 0.004 V, pulse amplitude = 0.05 V, pulse width = 0.05 s in the oxidation mode). The electrode potential was externally calibrated by Fc⁺/Fc couple.

4. ESR spectra of the radical cations and radical anions

Fig. S3. (a) ESR spectrum of TT-Ar⁺ recorded in DCM (radical cation) at room temperature together with its simulated spectrum and (b) hyperfine coupling constants (in mT) of TT-Ar⁺.

Fig. S4. (a) ESR spectrum of TT-Ar⁻ recorded in THF (radical anion) at room temperature together with its simulated spectrum and (b) hyperfine coupling constants (in mT) of TT-Ar⁻.

Fig. S5. (a) ESR spectra of **PP-Ar**⁻⁺ recorded in DCM (radical cation) at room temperature together with its simulated spectrum and (b) hyperfine coupling (in mT) constants of **PP-Ar**⁻⁺.

Fig. S6. (a) ESR spectra of **PP-Ar**⁻⁻ recorded in THF (radical anion) at room temperature together with its simulated spectrum and (b) hyperfine coupling constants (in mT) of **PP-Ar**⁻⁻.

5. DFT calculations

Theoretical calculations were performed with the Gaussian09 rev. D program suite.^[1] All calculations were carried out using the density functional theory (DFT) method with Becke's three-parameter hybrid exchange functionals and the Lee-Yang-Parr correlation functional (B3LYP) employing the 6-31G(d,p) basis set for all atoms.^[2] NOON (natural orbital occupation number) calculations were done by spin unrestricted UCAM-B3LYP/6-31G(d,p) method and the diradical character (y_0) was calculated according to Yamaguchi's scheme: $y_0 = 1 - (2T/(1 + T^2))$, and $T = (n_{HOMO} - n_{LUMO})/2$ (n_{HOMO} is the occupation number *n* of the HOMO, n_{LUMO} is the occupation number *n* of the LUMO).^[3] Time-dependent DFT (TD-DFT) calculations have been performed at the B3LYP/6-31G(d,p) level of theory. ACID plot was calculated by using the method developed by Herges.^[4]

Fig. S7. The calculated (UCAM-B3LYP/6-31G(d,p)) diradical character of a series of [n,2]peri-acenoacenes: (a) n=4, (b) n=5, (c) n=6, (d) n=7, (e) n=8, (f) n=9.

Fig. S8. ACID plots of TT with different isovalues.

Fig. S9. ACID plots of PP with different isovalues.

Fig. S10. ACID plots of PP^{2+} with isovalue of 0.025.

Table S1. Total Energies (a.u.) of compounds AA-Ar, TT-Ar, and PP-Ar calculated at the B3LYP/6-31G level of DFT (Energy of AA-Ar was set as 0).

Compound	Energy (Hartree)	
AA-Ar	-1543.29	
TT-Ar	-2166.72	
PP-Ar	-3173.25	

Table S2. The Cartesian coordinates of optimized structure of TT-Ar

	Х	Y	Ζ
С	4.60259589	-0.6159037	-0.00966458
С	5.28519597	-0.44315746	-1.22913204
С	6.62920501	-0.04631407	-1.21563671
С	7.32675546	0.18904166	-0.02749505
С	6.62307757	0.00969184	1.17203222
С	5.28407669	-0.38605531	1.20555151
С	4.58778729	-0.67686974	-2.55045307
С	8.80260445	0.62880649	0.00442627
С	8.91410337	2.00446299	0.70381159

С	9.40743685	0.75784817	-1.40619864
С	9.63428418	-0.41204014	0.79099088
С	4.58242049	-0.55992527	2.53353608
С	3.16261379	-1.03659978	-0.00202311
С	2.8255576	-2.41654142	0.00430427
С	3.82356628	-3.43352234	0.01048405
С	3.48215315	-4.77011009	0.01474027
С	2.13339863	-5.16572731	0.01276853
С	1.11550755	-4.21639127	0.00753997
С	1.44435119	-2.81938358	0.0042376
С	0.41470127	-1.8463624	0.00043062
С	0.7543484	-0.47062468	-0.00219023
С	-0.27521521	0.50721018	-0.00351818
С	0.05557319	1.8869341	-0.00516596
С	-0.96276376	2.8674617	-0.00441564
С	-0.63934369	4.25966509	-0.00565062
С	0.75435281	4.63752601	-0.00880137
С	1.73957911	3.70413771	-0.01020098
С	1.44158604	2.29103093	-0.00802998
С	2.43368126	1.3310066	-0.00869725
С	2.14111786	-0.06397974	-0.0042208
С	-0.27574454	-4.59262245	0.00452352
С	-1.26511499	-3.66562699	-0.00065882
С	-0.97804546	-2.24822821	-0.00168501
С	-1.99228531	-1.29484492	-0.00475714
С	-1.66385519	0.10657084	-0.0034836
С	-2.65203647	1.09768822	-0.00245589
С	-2.33805861	2.47161402	-0.00228199
С	-3.33852484	3.47811617	-0.00041797
С	-3.0315307	4.83269662	-0.00090096
С	-1.6662224	5.20207966	-0.00383993
С	-3.43371861	-1.71142825	-0.011831
С	-4.11343422	-1.895109	-1.2312125
С	-5.46064761	-2.28093955	-1.21693598
С	-6.16426263	-2.49355967	-0.02805348
С	-5.463241	-2.30339944	1.17137493
С	-4.1210261	-1.91858867	1.2040482
С	-3.40883127	-1.68790991	-2.5531283
С	-7.64467139	-2.91758301	0.00484845
С	-7.77509432	-4.27672231	0.73260292
С	-8.24312837	-3.07052306	-1.4061001
С	-8.46893057	-1.85111696	0.76446001

С	-3.42155835	-1.73505238	2.53189801
С	-4.16519179	5.87852121	0.00219289
С	-5.04423882	5.68797977	-1.25649328
С	-5.03428976	5.69025672	1.26809927
С	-3.63223422	7.32406782	-0.00130199
Н	7.12640853	0.0775768	-2.17119348
Н	7.12524212	0.1818291	2.12014894
Н	3.72155517	-0.0170159	-2.66825786
Н	4.21585882	-1.70382405	-2.6320641
Н	5.26667608	-0.49580036	-3.38796257
Н	9.95987922	2.33050158	0.74069162
Н	8.53933231	1.96986457	1.7307917
Н	8.34026165	2.76512084	0.16440144
Н	10.45411166	1.07034082	-1.33122172
Н	8.88246026	1.50653039	-2.00831216
Н	9.38441912	-0.19339266	-1.94769174
Н	9.57569902	-1.39790733	0.31833327
Н	9.28623388	-0.51575877	1.82281317
Н	10.68802341	-0.11266717	0.82331983
Н	5.26588165	-0.36738294	3.36477696
Н	4.18636132	-1.5745232	2.64787534
Н	3.73190488	0.12374358	2.62979797
Н	4.86671093	-3.13801324	0.01196164
Н	4.26267898	-5.52541848	0.0195219
Н	1.87552	-6.22129323	0.01538202
Н	0.99983844	5.69635157	-0.0100733
Н	2.78387166	4.00486845	-0.01260753
Н	3.4728324	1.6431036	-0.01221052
Н	-0.51879909	-5.65203996	0.00600294
Н	-2.30382162	-3.97684099	-0.00376327
Н	-3.69558824	0.80034773	-0.00190932
Н	-4.37525713	3.15312546	0.00154621
Н	-1.38882806	6.25010254	-0.00470579
Н	-5.95574616	-2.41392099	-2.17238164
Н	-5.97016608	-2.45774387	2.12002937
Н	-2.9933336	-0.6777836	-2.63225523
Н	-4.09605421	-1.83802794	-3.38995506
Н	-2.57178944	-2.38408368	-2.67460795
Н	-7.20645934	-5.05486535	0.21304055
Н	-8.8245616	-4.59057957	0.76997006
Н	-7.40619639	-4.224612	1.76095557
Н	-8.20920234	-2.13096109	-1.96704432

_

Н	-9.29280684	-3.37254177	-1.33044762
Н	-7.72125577	-3.83591035	-1.98960329
Н	-8.12459658	-1.72886906	1.7955333
Н	-9.52611289	-2.13796872	0.79781925
Н	-8.39693902	-0.87641325	0.27089193
Н	-2.58980239	-2.43863709	2.64732417
Н	-4.11380081	-1.89231171	3.36328798
Н	-2.99956004	-0.72903367	2.62681221
Н	-5.85730617	6.42267274	-1.26897164
Н	-5.49478033	4.69190543	-1.29112474
Н	-4.45427067	5.81894701	-2.16949422
Н	-4.43733631	5.82407718	2.17614823
Н	-5.48331634	4.69371623	1.30863813
Н	-5.84806838	6.42409724	1.28523654
Н	-4.47268466	8.02538077	0.00074507
Н	-3.02979791	7.53495062	-0.89085299
Н	-3.02386989	7.53707918	0.88369524

Table S2. The Cartesian coordinates of optimized structure of PP-Ar

	Х	Y	Z
С	1.0135469	4.18402259	-0.23090256
С	0.50554893	5.52536763	-0.31004555
С	1.38876908	6.59740379	-0.37306009
С	2.77953051	6.38303821	-0.35381712
С	3.29317422	5.1077678	-0.26929908
С	2.43708182	3.96652123	-0.20548089
С	2.9528082	2.65044032	-0.1150106
С	2.06544671	1.54636253	-0.07604608
С	0.63704154	1.76752636	-0.09463353
С	0.12180702	3.08795053	-0.16676245
С	-0.251572	0.66419511	-0.03326245
С	2.53841519	0.21337589	-0.01766736
С	1.68268471	-0.8862713	0.03105857
С	2.19078882	-2.23300467	0.0800065
С	1.31072019	-3.30696673	0.16172095
С	1.7812759	-4.67266796	0.23888451
С	0.92228705	-5.71799407	0.31461547
С	4.43751612	2.45513556	-0.03088717
С	5.08007245	2.5096776	1.22582915
С	6.47168842	2.41502162	1.28459508
С	7.26624975	2.26273359	0.13966981
С	6.60389817	2.18702216	-1.08894676

C 5.20937686 2.28240055 1.19522697 C 4.2851567 2.68881908 2.49946859 C 4.55564737 2.11894551 -2.55722821 C 8.80028808 2.21763918 0.27037798 C 9.29908516 3.57610967 0.81931949 C 9.29908516 3.57610967 0.81931949 C 9.4970273 1.95940427 -1.67880809 C 3.66789044 -2.48861869 0.01112281 C 4.44550618 -2.54701303 1.128226619 C 5.63647368 -3.04829038 -1.28512999 C 4.427774652 -2.73078303 -1.23953373 C 3.82576748 -2.69637662 2.53915023 C 3.47696154 -2.67395817 -2.2608057 C 7.91171185 -3.53760164 -0.24932938 C 8.6400896 -3.4937608 1.106824 C 7.99813719 -4.98241336 -0.7975651 C -1.01354897 -4.18401563 </th <th></th> <th></th> <th></th> <th></th> <th></th>					
C 4.2851567 2.68881908 2.49946859 C 4.55564737 2.21894551 -2.55722821 C 8.80028808 2.21763918 0.27037798 C 9.29908516 3.57610967 0.81931949 C 9.21381751 1.09556788 1.2487374 C 9.4970273 1.9944427 -1.0788069 C 3.66789044 -2.48861869 0.01112281 C 4.44550618 -2.54701303 1.18252409 C 5.63647368 -3.0482038 -1.2812969 C 5.63647368 -2.0482038 -1.2812969 C 5.63647368 -2.07307830 -1.2820691 C 3.82576748 -2.67395817 -2.5208555 C 7.91171185 -3.53760164 -0.24932938 C 8.6400896 -3.4937608 1.1068284 C -9.9813719 -4.9243356 0.3014403 C -0.329317952 -5.10775831 0.32098714 C -0.329317952 -5.640307		С	5.20937686	2.28240055	-1.19522697
C 4.5554737 2.21894551 -2.55722821 C 8.80028808 2.21763918 0.27037798 C 9.29908516 3.57610967 0.81931949 C 9.21381751 1.09356788 1.2487374 C 9.4970273 1.95940427 -1.07880899 C 3.66789044 -2.4861869 0.01112281 C 4.44550618 -2.54701303 1.18282409 C 5.807674 -2.86468264 1.08981753 C 6.43012245 -3.13318956 -0.12266619 C 5.63647368 -3.04829038 -1.2812999 C 4.27774652 -2.73078303 -1.2953373 C 3.82576748 -2.29637662 2.53915023 C 3.8276748 -2.29637662 2.53915023 C 3.8276748 -2.29637662 2.53915023 C 3.8276748 -2.29637662 2.508057 C 9.91171185 -3.547504 -0.29032938 C 9.051370 -3.5837508	(С	4.2851567	2.68881908	2.49946859
C 8.8028808 2.21763918 0.27037798 C 9.29908516 3.57610967 0.81931949 C 9.21381751 1.09356788 1.24873774 C 9.4970273 1.95940427 -1.07880809 C 3.66789044 2.48861869 0.01112281 C 4.44550618 2.54701303 1.18282409 C 5.807674 2.8668264 1.08981753 C 6.43012245 -3.13318956 0.13266619 C 5.83676748 -2.29637662 2.53919023 C 3.47696154 -2.67395817 -2.52088555 C 7.91171185 -3.53760164 -0.2493238 C 8.4000896 -3.493708 1.108284 C 9.9813719 -4.98241336 -0.7975651 C -1.01354897 -1.18401563 0.23098714 C -2.2795372 -6.3802753 0.3539462 C -2.39317952 -5.107758311 0.26940292 C -2.39379764 -1.54635822		С	4.55564737	2.21894551	-2.55722821
C 9.29908516 3.57610967 0.81931949 C 9.21381751 1.09356788 1.24873774 C 9.4970273 1.95940427 -1.07880809 C 3.66789044 -2.48861869 0.01112281 C 4.44550618 -2.54701303 1.18282409 C 5.807674 -2.8648264 1.08981753 C 6.43012245 -3.13318956 -0.13266619 C 5.63647368 -3.04829038 -1.28512999 C 4.27774652 -2.73078303 -1.29953373 C 3.82576748 -2.2637662 2.53915023 C 3.47696154 -2.67395817 -2.52088555 C 7.9117185 -3.3370164 -0.2492938 C 8.6400896 -3.4937608 1.106824 C 7.99813719 -4.98241336 -0.7975651 C -1.01354897 -1.801563 0.3014403 C -2.7795372 -6.38302753 0.3319462 C -2.43708459 -3.665144		с	8.80028808	2.21763918	0.27037798
C 9.21381751 1.09356788 1.24873774 C 9.4970273 1.95940427 -1.07880809 C 3.66789044 -2.48861869 0.01112281 C 4.44550618 -2.54701303 1.18282409 C 5.807674 -2.86468264 1.08981753 C 6.43012245 -3.13318956 -0.13266619 C 5.63647368 -3.04829038 -1.28512999 C 4.27774652 -2.73078303 -1.2395373 C 3.82576748 -2.26937662 2.53915023 C 3.47696154 -2.67395817 -2.52088555 C 7.91171185 -3.53760164 -0.2492938 C 8.64606986 -3.4937608 1.106824 C -1.01354897 -1.801563 0.23098714 C -1.01354897 -1.801563 0.33014403 C -2.795372 -6.3802753 0.35394262 C -2.43708459 -3.665144 0.205518 C -2.43708459 -1.54635822	(С	9.29908516	3.57610967	0.81931949
C 9.4970273 1.95940427 -1.07880809 C 3.66789044 -2.48861869 0.01112281 C 4.44550618 -2.54701303 1.18282409 C 5.807674 -2.86468264 1.08981753 C 6.43012245 -3.1318956 -0.13266619 C 5.63647368 -3.04829038 -1.28512999 C 4.27774652 -2.73078303 -1.2395373 C 3.82576748 -2.29637662 2.53915023 C 3.47696154 -2.67395817 -2.5208855 C 7.91171185 -3.53760164 -0.24393938 C 8.64060896 -3.4937608 1.1068284 C 7.99813719 -4.98241336 -0.7975511 C -1.01354897 -4.18401563 0.23098714 C -2.937932 -5.10775831 0.26940292 C -2.43708459 -3.650148 0.3331966 C -2.95280895 -2.65043807 0.11506381 C -2.055157287 -0.6419091		С	9.21381751	1.09356788	1.24873774
C 3.66789044 -2.48861869 0.01112281 C 4.44550618 -2.54701303 1.18282409 C 5.807674 -2.86468264 1.08981733 C 6.43012245 -3.13318956 -0.13266619 C 5.63647368 -3.04829038 -1.28512999 C 4.27774652 -2.73078303 -1.2395373 C 3.82576748 -2.2657662 2.53915023 C 3.47696154 -2.67395817 -2.52088555 C 7.91171185 -3.53760164 -0.24932938 C 8.6400896 -3.4937608 1.1068284 C 7.99813719 -4.98241336 -0.7975651 C -0.50555301 -5.52536096 0.3101403 C -0.50555301 -5.52536096 0.3101403 C -2.7795372 -6.38302753 0.35394262 C -2.95280895 -2.65043807 0.11506381 C -2.95280895 -2.65043807 0.11506381 C -2.0544569 -1.54635		С	9.4970273	1.95940427	-1.07880809
C 4.44550618 -2.54701303 1.18282409 C 5.807674 -2.86468264 1.08981753 C 6.43012245 -3.13318956 -0.13266619 C 5.63647368 -3.04829038 -1.28512999 C 4.27774652 -2.73078303 -1.2395373 C 3.82576748 -2.20637662 2.53915023 C 3.47696154 -2.67395817 -2.52088555 C 7.9117185 -3.53760164 -0.24932938 C 8.64060896 -3.4937608 1.1068244 C 7.99813719 -4.98241336 -0.7975651 C -1.01354897 -4.18401563 0.23098714 C -0.50553501 -5.52536096 0.31014403 C -2.7995372 -6.38302753 0.35394262 C -2.43708459 -3.9665144 0.2055618 C -2.95280895 -2.65043807 0.11506381 C -0.63704115 -1.76752114 0.09469434 C -0.25157287 -0.66		С	3.66789044	-2.48861869	0.01112281
C 5.807674 -2.86468264 1.08981753 C 6.43012245 -3.13318956 -0.13266619 C 5.63647368 -3.04829038 -1.28512999 C 4.27774652 -2.73078303 -1.2395373 C 3.82576748 -2.2637662 2.53915023 C 3.47696154 -2.67395817 -2.52088555 C 7.91171185 -3.53760164 -0.24932938 C 8.6400586 -3.4937608 1.1068284 C 7.99813719 -4.98241336 -0.7975651 C -1.01354897 -4.18401563 0.23098714 C -0.50553501 -5.52536096 0.31014403 C -2.7997372 -6.38302753 0.35394262 C -2.43708459 -3.9665144 0.2055618 C -2.43708459 -3.9665144 0.2055618 C -0.63704115 -1.76752114 0.0946944 C -0.25157287 -0.66419091 0.03331906 C -2.53841445 -0.21337	(С	4.44550618	-2.54701303	1.18282409
C 6.43012245 -3.13318956 -0.13266619 C 5.63647368 -3.04829038 -1.28512999 C 4.27774652 -2.73078303 -1.2395373 C 3.82576748 -2.29637662 2.53915023 C 3.47696154 -2.67395817 -2.5208855 C 7.91171185 -3.53760164 -0.24932938 C 8.64402151 -2.58277391 -1.22083057 C 8.64060896 -3.4937608 1.1068284 C 7.99813719 -4.98241336 -0.7975651 C -1.01354897 -4.18401563 0.23098714 C -0.50555301 -5.5253606 0.3101403 C -1.3887504 -6.59739448 0.37318064 C -2.7795372 -6.83802753 0.35594262 C -2.43708459 -3.9665144 0.0255618 C -2.95280895 -2.65043807 0.11506381 C -2.95280895 -2.65043807 0.16682567 C -0.63704115 -1.7	(С	5.807674	-2.86468264	1.08981753
C 5.63647368 -3.04829038 -1.28512999 C 4.27774652 -2.73078303 -1.23953373 C 3.82576748 -2.2637662 2.53915023 C 3.47696154 -2.67395817 -2.52088555 C 7.91171185 -3.53760164 -0.24932938 C 8.64402151 -2.58277391 -1.2083057 C 8.64606896 -3.4937608 1.1068284 C 7.99813719 -4.98241336 -0.7975651 C -1.01354897 -4.18401563 0.23098714 C -0.50555301 -5.52536096 0.31014403 C -1.03847504 -6.59739448 0.37318064 C -2.7795372 -6.38302753 0.35394262 C -2.43708459 -3.9665144 0.2055618 C -2.0554869 -1.54635822 0.07609486 C -0.63704115 -1.76752114 0.9469434 C -0.25157287 -0.66419091 0.03331906 C -2.19078972 2.2	(С	6.43012245	-3.13318956	-0.13266619
C 4.27774652 -2.73078303 -1.23953373 C 3.82576748 -2.2637662 2.53915023 C 3.47696154 -2.67395817 -2.52088555 C 7.91171185 -3.53760164 -0.24932938 C 8.64402151 -2.58277391 -1.22083057 C 8.6400896 -3.4937608 1.1068284 C 7.99813719 -4.98241336 -0.7975651 C -1.01354897 -4.18401563 0.23098714 C -0.50555301 -5.52536096 0.31014403 C -1.38877504 -6.59739448 0.37318064 C -2.7795372 -6.38302753 0.35394262 C -2.37917952 -5.10775831 0.26940292 C -2.43708459 -3.9665144 0.2055618 C -2.43708459 -3.966514 0.2055618 C -2.06544569 -1.54635822 0.07609486 C -0.63704115 -1.76752114 0.09469434 C -0.25157287 -0.6	(С	5.63647368	-3.04829038	-1.28512999
C 3.82576748 -2.29637662 2.53915023 C 3.47696154 -2.67395817 -2.52088555 C 7.91171185 -3.53760164 -0.24932938 C 8.64402151 -2.58277391 -1.22083057 C 8.64060896 -3.4937608 1.1068284 C 7.99813719 -4.98241336 -0.7975651 C -1.01354897 -4.18401563 0.23098714 C -0.50555301 -5.52536096 0.31014403 C -1.38877504 -6.59739448 0.37318064 C -2.7795372 -6.38302753 0.35394262 C -2.43708459 -3.9665144 0.2055618 C -2.43708459 -3.665144 0.2055618 C -2.06544569 -1.54635822 0.07609486 C -0.63704115 -1.76752114 0.09469434 C -0.25157287 -0.66419091 0.03331906 C -2.53841445 -0.21337258 0.01700525 C -1.68268355 0.	(С	4.27774652	-2.73078303	-1.23953373
C 3.47696154 -2.67395817 -2.52088555 C 7.91171185 -3.53760164 -0.24932938 C 8.64402151 -2.58277391 -1.22083057 C 8.64060896 -3.4937608 1.1068284 C 7.99813719 -4.98241336 -0.7975651 C -1.01354897 -4.18401563 0.23098714 C -0.50555301 -5.52536096 0.31014403 C -1.38877504 -6.59739448 0.37318064 C -2.7795372 -6.38302753 0.35394262 C -2.43708459 -3.9665144 0.2059618 C -2.43708459 -3.665144 0.2055618 C -2.06544569 -1.54635822 0.07609486 C -0.63704115 -1.76752114 0.09469434 C -0.25157287 -0.66419091 0.0331906 C -0.25157287 -0.66419091 0.033100885 C -1.31072193 3.30696995 -0.16166916 C -1.31072193 3	(С	3.82576748	-2.29637662	2.53915023
C 7.91171185 -3.53760164 -0.24932938 C 8.64402151 -2.58277391 -1.22083057 C 8.64060896 -3.4937608 1.1068284 C 7.99813719 -4.98241336 -0.7975651 C -1.01354897 -4.18401563 0.23098714 C -0.50555301 -5.52536096 0.31014403 C -1.38877504 -6.59739448 0.37318064 C -2.7795372 -6.38302753 0.35394262 C -2.43708459 -3.9665144 0.2055618 C -2.95280895 -2.65043807 0.11506381 C -2.95280895 -2.65043807 0.11506381 C -2.95280895 -2.65043807 0.11506381 C -0.21517287 -0.66419091 0.03331906 C -0.215157287 -0.66419091 0.03331906 C -2.53841445 -0.21337258 0.01770525 C -1.1827952 4.6726712 -0.23882541 C -1.31072193 <th< td=""><th></th><td>С</td><td>3.47696154</td><td>-2.67395817</td><td>-2.52088555</td></th<>		С	3.47696154	-2.67395817	-2.52088555
C 8.64402151 -2.58277391 -1.22083057 C 8.64060896 -3.4937608 1.1068284 C 7.99813719 -4.98241336 -0.7975651 C -1.01354897 -4.18401563 0.23098714 C -0.50555301 -5.52536096 0.31014403 C -0.50555301 -5.52536096 0.31318064 C -1.38877504 -6.59739448 0.37318064 C -2.7795372 -6.38302753 0.35394262 C -2.43708459 -3.9665144 0.2055618 C -2.43708459 -3.9665144 0.2055618 C -2.06544569 -1.54635822 0.07609486 C -0.63704115 -1.76752114 0.09469434 C -0.25157287 -0.66419091 0.03331906 C -2.53841445 -0.21337258 0.0170525 C -1.68268355 0.88627493 -0.03100885 C -1.31072193 3.30696995 -0.16166916 C -1.31072193 3	(С	7.91171185	-3.53760164	-0.24932938
C 8.64060896 -3.4937608 1.1068284 C 7.99813719 -4.98241336 -0.7975651 C -1.01354897 -4.18401563 0.23098714 C -0.50555301 -5.52536096 0.31014403 C -1.38877504 -6.59739448 0.37318064 C -2.7795372 -6.38302753 0.35394262 C -2.795372 -5.10775831 0.26940292 C -2.43708459 -3.9665144 0.2055618 C -2.95280895 -2.65043807 0.11506381 C -2.05544569 -1.5435822 0.07609486 C -0.21380814 -3.08794659 0.16682567 C -0.25157287 -0.66419091 0.03331906 C -2.53841445 -0.21337258 0.01770525 C -1.31072193 3.30696995 -0.16166916 C -1.31072193 3.30696995 -0.16166916 C -0.92229157 5.7179942 -0.31453028 C -0.3003836 -2.	(С	8.64402151	-2.58277391	-1.22083057
C 7.99813719 -4.98241336 -0.7975651 C -1.01354897 -4.18401563 0.23098714 C -0.50555301 -5.5253096 0.31014403 C -1.38877504 -6.59739448 0.37318064 C -2.7795372 -6.38302753 0.35394262 C -3.29317952 -5.10775831 0.26940292 C -2.43708459 -3.9665144 0.2055618 C -2.95280895 -2.65043807 0.11506381 C -2.06544569 -1.54635822 0.07609486 C -0.21180814 -3.08794659 0.16682567 C -0.25157287 -0.66419091 0.03331906 C -2.53841445 -0.21337258 0.01770525 C -1.68268355 0.88627493 -0.03100885 C -2.19078972 2.23300783 -0.07996429 C -1.31072193 3.30696995 -0.16166916 C -1.78127952 4.6726712 0.23882541 C -0.92229157 <t< td=""><th></th><td>с</td><td>8.64060896</td><td>-3.4937608</td><td>1.1068284</td></t<>		с	8.64060896	-3.4937608	1.1068284
C -1.01354897 -4.18401563 0.23098714 C -0.50555301 -5.52536096 0.31014403 C -1.38877504 -6.59739448 0.37318064 C -2.7795372 -6.38302753 0.35394262 C -3.29317952 -5.10775831 0.26940292 C -2.43708459 -3.9665144 0.2055618 C -2.95280895 -2.65043807 0.11506381 C -2.06544569 -1.54635822 0.07609486 C -0.63704115 -1.76752114 0.09469434 C -0.63704115 -1.76752114 0.09469434 C -0.25157287 -0.66419091 0.03331906 C -2.53841445 -0.21337258 0.01770525 C -1.68268355 0.88627493 -0.03100885 C -1.31072193 3.30696995 -0.16166916 C -1.31072193 3.30696995 -0.16166916 C -1.78127952 4.6726712 -0.2382541 C -0.92229157 5.71799942 -0.31453028 C -5.08003836 -2.4		с	7.99813719	-4.98241336	-0.7975651
C -0.50555301 -5.52536096 0.31014403 C -1.38877504 -6.59739448 0.37318064 C -2.7795372 -6.38302753 0.35394262 C -3.29317952 -5.10775831 0.26940292 C -2.43708459 -3.9665144 0.2055618 C -2.95280895 -2.65043807 0.11506381 C -2.06544569 -1.54635822 0.07609486 C -0.63704115 -1.76752114 0.09469434 C -0.63704115 -1.76752114 0.09469434 C -0.25157287 -0.66419091 0.03331906 C -2.53841445 -0.21337258 0.01770525 C -1.68268355 0.88627493 -0.03100885 C -1.68268355 0.88627493 -0.03100885 C -1.131072193 3.30696995 -0.16166916 C -1.78127952 4.6726712 -0.23882541 C -0.92229157 5.71799942 -0.31453028 C -5.08003836 -2.5096614 -1.22583635 C -6.47165328 -2		С	-1.01354897	-4.18401563	0.23098714
C -1.38877504 -6.59739448 0.37318064 C -2.7795372 -6.38302753 0.35394262 C -3.29317952 -5.10775831 0.26940292 C -2.43708459 -3.9665144 0.2055618 C -2.95280895 -2.65043807 0.11506381 C -2.06544569 -1.54635822 0.07609486 C -0.63704115 -1.76752114 0.09469434 C -0.63704115 -1.76752114 0.09469434 C -0.12180814 -3.08794659 0.16682567 C 0.25157287 -0.66419091 0.03331906 C -2.53841445 -0.21337258 0.01770525 C -2.19078972 2.23300783 -0.07996429 C -1.31072193 3.30696995 -0.16166916 C -1.31072193 3.30696995 -0.16166916 C -0.92229157 5.71799942 -0.31453028 C -4.43751364 -2.45512777 0.03089205 C -6.60392273 -2.18704125 1.08890595 C -6.47165328 -2.		с	-0.50555301	-5.52536096	0.31014403
C -2.7795372 -6.38302753 0.35394262 C -3.29317952 -5.10775831 0.26940292 C -2.43708459 -3.9665144 0.2055618 C -2.95280895 -2.65043807 0.11506381 C -2.06544569 -1.54635822 0.07609486 C -0.63704115 -1.76752114 0.09469434 C -0.63704115 -1.76752114 0.09469434 C -0.12180814 -3.08794659 0.16682567 C 0.25157287 -0.66419091 0.03331906 C -2.53841445 -0.21337258 0.01770525 C -1.68268355 0.88627493 -0.03100885 C -2.19078972 2.23300783 -0.07996429 C -1.31072193 3.30696995 -0.16166916 C -1.78127952 4.6726712 -0.23882541 C -0.92229157 5.7179942 -0.31453028 C -6.4735328 -2.5096614 -1.22583635 C -5.08003836 -2.5096614 -1.22583635 C -6.60392273 -2.187		с	-1.38877504	-6.59739448	0.37318064
C -3.29317952 -5.10775831 0.26940292 C -2.43708459 -3.9665144 0.2055618 C -2.95280895 -2.65043807 0.11506381 C -2.06544569 -1.54635822 0.07609486 C -0.63704115 -1.76752114 0.09469434 C -0.12180814 -3.08794659 0.16682567 C -0.25157287 -0.66419091 0.03331906 C -2.53841445 -0.21337258 0.01770525 C -2.19078972 2.23300783 -0.03100885 C -1.31072193 3.30696995 -0.16166916 C -1.78127952 4.6726712 -0.23882541 C -0.92229157 5.7179942 -0.31453028 C -4.43751364 -2.45512777 0.03089205 C -5.08003836 -2.5096614 -1.22583635 C -6.47165328 -2.4150028 -1.28463683 C -7.26624245 -2.26273361 -0.13973043 C -6.60392273 -2.18704125 1.08890595 C -5.20940404 -2		с	-2.7795372	-6.38302753	0.35394262
C -2.43708459 -3.9665144 0.2055618 C -2.95280895 -2.65043807 0.11506381 C -2.06544569 -1.54635822 0.07609486 C -0.63704115 -1.76752114 0.09469434 C -0.63704115 -1.76752114 0.09469434 C -0.12180814 -3.08794659 0.16682567 C 0.25157287 -0.66419091 0.03331906 C -2.53841445 -0.21337258 0.0170525 C -2.19078972 2.2300783 -0.03100885 C -2.19078972 2.23300783 -0.07996429 C -1.31072193 3.30696995 -0.16166916 C -1.78127952 4.6726712 -0.23882541 C -0.92229157 5.7179942 -0.31453028 C -0.92229157 5.7179942 -0.31453028 C -5.08003836 -2.5096614 -1.22583635 C -5.08003836 -2.26273361 -0.13973043 C -5.60392273 -2.18704125 1.08890595 C -5.20940404 -2.282		с	-3.29317952	-5.10775831	0.26940292
C-2.95280895-2.650438070.11506381C-2.06544569-1.546358220.07609486C-0.63704115-1.767521140.09469434C-0.12180814-3.087946590.16682567C0.25157287-0.664190910.03331906C-2.53841445-0.213372580.01770525C-1.682683550.88627493-0.03100885C-1.682683550.88627493-0.03100885C-1.310721933.30696995-0.16166916C-1.310721933.30696995-0.16166916C-0.922291575.7179942-0.31453028C-4.43751364-2.455127770.03089205C-5.08003836-2.5096614-1.22583635C-6.47165328-2.4150028-1.28463683C-7.26624245-2.26273361-0.13973043C-6.60392273-2.187041251.08890595C-5.20940404-2.282412921.19522015		С	-2.43708459	-3.9665144	0.2055618
C-2.06544569-1.546358220.07609486C-0.63704115-1.767521140.09469434C-0.12180814-3.087946590.16682567C0.25157287-0.664190910.03331906C-2.53841445-0.213372580.01770525C-1.682683550.88627493-0.03100885C-2.190789722.23300783-0.07996429C-1.310721933.30696995-0.16166916C-1.781279524.6726712-0.23882541C-0.922291575.7179942-0.31453028C-4.43751364-2.455127770.03089205C-5.08003836-2.5096614-1.22583635C-6.47165328-2.4150028-1.28463683C-7.26624245-2.26273361-0.13973043C-6.60392273-2.187041251.08890595C-5.20940404-2.282412921.19522015	(С	-2.95280895	-2.65043807	0.11506381
C-0.63704115-1.767521140.09469434C-0.12180814-3.087946590.16682567C0.25157287-0.664190910.03331906C-2.53841445-0.213372580.01770525C-1.682683550.88627493-0.03100885C-1.310721933.30696995-0.16166916C-1.781279524.6726712-0.23882541C-0.922291575.7179942-0.31453028C-4.43751364-2.455127770.03089205C-5.08003836-2.5096614-1.22583635C-6.47165328-2.4150028-1.28463683C-6.60392273-2.187041251.08890595C-5.20940404-2.282412921.19522015	(С	-2.06544569	-1.54635822	0.07609486
C-0.12180814-3.087946590.16682567C0.25157287-0.664190910.03331906C-2.53841445-0.213372580.01770525C-1.682683550.88627493-0.03100885C-2.190789722.23300783-0.07996429C-1.310721933.30696995-0.16166916C-1.781279524.6726712-0.23882541C-0.922291575.71799942-0.31453028C-4.43751364-2.455127770.03089205C-5.08003836-2.5096614-1.22583635C-6.47165328-2.4150028-1.28463683C-7.26624245-2.26273361-0.13973043C-6.60392273-2.187041251.08890595C-5.20940404-2.282412921.19522015		С	-0.63704115	-1.76752114	0.09469434
C0.25157287-0.664190910.03331906C-2.53841445-0.213372580.01770525C-1.682683550.88627493-0.03100885C-2.190789722.23300783-0.07996429C-1.310721933.30696995-0.16166916C-1.781279524.6726712-0.23882541C-0.922291575.71799942-0.31453028C-4.43751364-2.455127770.03089205C-5.08003836-2.5096614-1.22583635C-6.47165328-2.4150028-1.28463683C-7.26624245-2.26273361-0.13973043C-6.60392273-2.187041251.08890595C-5.20940404-2.282412921.19522015		С	-0.12180814	-3.08794659	0.16682567
C-2.53841445-0.213372580.01770525C-1.682683550.88627493-0.03100885C-2.190789722.23300783-0.07996429C-1.310721933.30696995-0.16166916C-1.781279524.6726712-0.23882541C-0.922291575.71799942-0.31453028C-4.43751364-2.455127770.03089205C-5.08003836-2.5096614-1.22583635C-6.47165328-2.4150028-1.28463683C-7.26624245-2.26273361-0.13973043C-6.60392273-2.187041251.08890595C-5.20940404-2.282412921.19522015	(С	0.25157287	-0.66419091	0.03331906
C-1.682683550.88627493-0.03100885C-2.190789722.23300783-0.07996429C-1.310721933.30696995-0.16166916C-1.781279524.6726712-0.23882541C-0.922291575.71799942-0.31453028C-4.43751364-2.455127770.03089205C-5.08003836-2.5096614-1.22583635C-6.47165328-2.4150028-1.28463683C-7.26624245-2.26273361-0.13973043C-6.60392273-2.187041251.08890595C-5.20940404-2.282412921.19522015	(С	-2.53841445	-0.21337258	0.01770525
C-2.190789722.23300783-0.07996429C-1.310721933.30696995-0.16166916C-1.781279524.6726712-0.23882541C-0.922291575.71799942-0.31453028C-4.43751364-2.455127770.03089205C-5.08003836-2.5096614-1.22583635C-6.47165328-2.4150028-1.28463683C-7.26624245-2.26273361-0.13973043C-6.60392273-2.187041251.08890595C-5.20940404-2.282412921.19522015	(С	-1.68268355	0.88627493	-0.03100885
C-1.310721933.30696995-0.16166916C-1.781279524.6726712-0.23882541C-0.922291575.71799942-0.31453028C-4.43751364-2.455127770.03089205C-5.08003836-2.5096614-1.22583635C-6.47165328-2.4150028-1.28463683C-7.26624245-2.26273361-0.13973043C-6.60392273-2.187041251.08890595C-5.20940404-2.282412921.19522015		С	-2.19078972	2.23300783	-0.07996429
C-1.781279524.6726712-0.23882541C-0.922291575.71799942-0.31453028C-4.43751364-2.455127770.03089205C-5.08003836-2.5096614-1.22583635C-6.47165328-2.4150028-1.28463683C-7.26624245-2.26273361-0.13973043C-6.60392273-2.187041251.08890595C-5.20940404-2.282412921.19522015	(С	-1.31072193	3.30696995	-0.16166916
C-0.922291575.71799942-0.31453028C-4.43751364-2.455127770.03089205C-5.08003836-2.5096614-1.22583635C-6.47165328-2.4150028-1.28463683C-7.26624245-2.26273361-0.13973043C-6.60392273-2.187041251.08890595C-5.20940404-2.282412921.19522015		С	-1.78127952	4.6726712	-0.23882541
C-4.43751364-2.455127770.03089205C-5.08003836-2.5096614-1.22583635C-6.47165328-2.4150028-1.28463683C-7.26624245-2.26273361-0.13973043C-6.60392273-2.187041251.08890595C-5.20940404-2.282412921.19522015	(С	-0.92229157	5.71799942	-0.31453028
C-5.08003836-2.5096614-1.22583635C-6.47165328-2.4150028-1.28463683C-7.26624245-2.26273361-0.13973043C-6.60392273-2.187041251.08890595C-5.20940404-2.282412921.19522015	(С	-4.43751364	-2.45512777	0.03089205
C-6.47165328-2.4150028-1.28463683C-7.26624245-2.26273361-0.13973043C-6.60392273-2.187041251.08890595C-5.20940404-2.282412921.19522015		С	-5.08003836	-2.5096614	-1.22583635
C-7.26624245-2.26273361-0.13973043C-6.60392273-2.187041251.08890595C-5.20940404-2.282412921.19522015	(С	-6.47165328	-2.4150028	-1.28463683
C-6.60392273-2.187041251.08890595C-5.20940404-2.282412921.19522015	(С	-7.26624245	-2.26273361	-0.13973043
C -5.20940404 -2.28241292 1.19522015		С	-6.60392273	-2.18704125	1.08890595
		С	-5.20940404	-2.28241292	1.19522015

_

С	-4.28508758	-2.68881677	-2.49945267
С	-4.55571315	-2.21897147	2.55723984
С	-8.80027523	-2.21761133	-0.27048351
С	-9.29908368	-3.57600181	-0.81961175
С	-9.2137385	-1.09340781	-1.24872087
С	-9.49705736	-1.95953707	1.07871099
С	-3.66789399	2.48861226	-0.01109511
С	-4.44550939	2.54688457	-1.1828061
С	-5.80767919	2.86455223	-1.08983088
С	-6.43012763	3.13317704	0.13262704
С	-5.63648294	3.04839211	1.28510081
С	-4.27775299	2.73089186	1.23953587
С	-3.82578126	2.29607011	-2.53910334
С	-3.47695853	2.67422292	2.52088896
С	-7.91171847	3.53757665	0.24924524
С	-8.64402188	2.58279812	1.22080295
С	-8.64058117	3.49363517	-1.10692967
С	-7.99818476	4.98242187	0.79738373
Н	0.99429625	7.60798888	-0.43466749
Н	3.45367883	7.2331776	-0.40413816
Н	4.36584409	4.95430865	-0.25230748
Н	3.60880516	0.04475494	-0.01272064
Н	2.85124781	-4.84545775	0.23941628
Н	1.30110437	-6.73486557	0.37654623
Н	6.94306877	2.47367113	2.26179642
Н	7.17053662	2.0603852	-2.00475964
Н	4.93950133	2.66044599	3.37478362
Н	3.52981785	1.90443432	2.61507344
Н	3.7511209	3.64530566	2.50804789
Н	5.30222612	2.07828162	-3.34328468
Н	4.00044921	3.13713276	-2.77820823
Н	3.83886886	1.39324342	-2.62026015
Н	10.38960109	3.56808597	0.92940084
Н	8.86500318	3.79977871	1.79830568
Н	9.03199199	4.39336307	0.14136221
Н	10.30493125	1.05125095	1.34046
Н	8.86401108	0.11846709	0.89533884
Н	8.80361735	1.25077053	2.25027285
Н	10.58144833	1.9221165	-0.93294586
Н	9.29054922	2.75369242	-1.80329323
Н	9.18889173	1.00616129	-1.52066873
Н	6.37816211	-2.90752324	2.01098789

Н	6.07924877	-3.24377889	-2.25790765
Н	4.58147606	-2.33683348	3.32801008
Н	3.05545957	-3.04020376	2.77125733
Н	3.34133751	-1.31533812	2.58383613
Н	4.12464102	-2.80749529	-3.39143316
Н	2.95765133	-1.7159187	-2.62763672
Н	2.70885108	-3.45469303	-2.54960329
Н	9.70117192	-2.85954427	-1.30188256
Н	8.58902476	-1.54793411	-0.86851137
Н	8.21580647	-2.61435708	-2.22665623
Н	9.69001718	-3.77476733	0.97106618
Н	8.20427554	-4.19294755	1.82736811
Н	8.61998724	-2.49200564	1.54831332
Н	9.04467891	-5.29235554	-0.89788876
Н	7.49827879	-5.68647993	-0.12430039
Н	-0.99430375	-7.60797951	0.43479959
Н	-3.45368568	-7.23316565	0.40428322
Н	-4.36584952	-4.95429444	0.25241852
Н	-3.60880338	-0.04475232	0.01273623
Н	-2.85125275	4.84545637	-0.23937511
Н	-1.30110869	6.73487123	-0.37645453
Н	-6.94300734	-2.4736355	-2.26185247
Н	-7.17058932	-2.06043741	2.00470531
Н	-4.93939908	-2.66039947	-3.37479105
Н	-3.52970473	-1.90446994	-2.6150181
Н	-3.75110062	-3.64533248	-2.5080264
Н	-5.30232053	-2.07836432	3.34327898
Н	-4.00047427	-3.13713544	2.77821185
Н	-3.83897653	-1.39323536	2.620313
Н	-10.38959554	-3.56793603	-0.92972611
Н	-8.86498127	-3.79956363	-1.79861265
Н	-9.03203274	-4.39334558	-0.14174741
Н	-10.30484711	-1.05104519	-1.34048398
Н	-8.86391615	-0.11835813	-0.89519096
Н	-8.80349305	-1.25050052	-2.25025608
Н	-10.58147505	-1.9222591	0.93282052
Н	-9.29057694	-2.75390009	1.80311401
Н	-9.18896025	-1.00633417	1.52068112
Н	-6.37817026	2.90730538	-2.01100377
Н	-6.07926248	3.24396557	2.25786036
Н	-4.58144265	2.33673754	-3.32799711
Н	-3.05524117	3.03966265	-2.77117976

_

Н	-3.34163863	1.3148852	-2.58376011
Н	-4.12464122	2.80779002	3.39142983
Н	-2.95758111	1.71623002	2.62771664
Н	-2.70890239	3.45501664	2.54953589
Н	-9.70117134	2.85957268	1.30184929
Н	-8.58903068	1.5479383	0.86854182
Н	-8.21578826	2.61443992	2.22661949
Н	-9.68999739	3.77463202	-0.97120901
Н	-8.20423638	4.19278277	-1.82750153
Н	-8.61993215	2.4918536	-1.54834761
Н	-9.04473633	5.29237459	0.89759474
Н	-7.52713536	5.06999224	1.78089984
Н	-7.49825514	5.68644791	0.12413179
Н	7.52700846	-5.06992073	-1.78102716

Fig. S11. Frontier molecular orbital profiles and energy diagram of TT-Ar obtained by B3LYP/6-31G(d,p) level calculation.

Table S4. Selected TD-DFT (B3LYP/6-31G (d,p)) calculated wavelength, oscillator strength and c	compositions of major transitions of TT-AI
---	---	--

Wavelength	Osc.	
(nm)	Strength	Major contributions
620.5	0.5278	HOMO->LUMO (99%)
464.2	0.0008	H-1->LUMO (62%), HOMO->L+1 (38%)
438.7	0.0026	H-1->LUMO (36%), HOMO->L+1 (60%)
417.4	0.0013	H-2->LUMO (52%), HOMO->L+2 (47%)
385.6	0.0001	H-4->LUMO (10%), H-3->LUMO (88%)
368.4	0.0013	H-5->LUMO (97%)
367.3	0.0015	H-6->LUMO (97%)

348.8	1.1336	H-2->LUMO (40%), HOMO->L+2 (45%)
340.7	0.0717	H-7->LUMO (53%), HOMO->L+3 (40%)
327.5	0.0095	H-8->LUMO (62%), HOMO->L+4 (28%)
316.4	0.0648	H-7->LUMO (33%), HOMO->L+3 (44%), HOMO->L+4 (15%)
314.4	0.2146	H-8->LUMO (27%), H-1->L+1 (17%), HOMO->L+4 (38%)
310.2	0.0089	HOMO->L+5 (12%), HOMO->L+6 (83%)
309.3	0.0041	HOMO->L+5 (87%), HOMO->L+6 (10%)
302.2	0.001	H-9->LUMO (35%), H-2->L+1 (18%), H-1->L+2 (34%
299.3	0.5776	H-1->L+1 (68%), HOMO->L+4 (13%)
290.9	0.0275	H-9->LUMO (28%), H-2->L+1 (22%), H-1->L+2 (13%), HOMO->L+7 (17%)
287.9	0.0011	HOMO->L+8 (85%)

 $\label{eq:Fig.S12.Calculated (B3LYP/6-31G (d,p)) absorption spectrum of \ensuremath{ TT-Ar}\xspace{1.5mm} along with the experimental spectrum.$

Table S5 Selected TD-DET (UB3I $VP/6-31G(dn)$) calculated wavelength	oscillator strength and c	ompositions of ma	ior transitions of TT-Ar+
Table 55. Selected TD-DFT ((u,p)) calculated wavelength.	, oscillator suchgin and c	ompositions of ma	joi transitions of 11-AL

Wavelength	Osc.	
(nm)	Strength	Major contributions
947.2	0.2365	HOMO(A)->LUMO(A) (91%)
820.2	0.1888	HOMO(B)->LUMO(B) (95%)
484.4	0.2405	H-6(B)->LUMO(B) (72%)
459.6	0.0487	H-5(A)->LUMO(A) (10%), H-4(A)->LUMO(A) (45%), H-8(B)->LUMO(B) (16%), H-5(B)-
		>L+1(B) (10%)
406.0	0.1554	H-4(A)->LUMO(A) (10%)
398.9	0.0368	H-7(A)->LUMO(A) (14%), H-1(A)->LUMO(A) (19%), HOMO(B)->L+1(B) (22%)
380.0	0.1455	H-8(B)->LUMO(B) (32%), HOMO(B)->L+2(B) (10%)

 $\label{eq:Figure S13.} Figure \ S13. \ Calculated \ (UB3LYP/6-31G \ (d,p)) \ absorption \ spectrum \ of \ TT-Ar^{+} \ along \ with \ the \ experimental \ spectrum.$

Table S6. Selected TD-DFT (UB3LYP/6-31G (d,p)) calculated wa	avelength, oscillator strength and	1 compositions of major transitions of TT-A	۲ ^۰ .
--	------------------------------------	---	------------------

Wavelength	Osc.	
(nm)	Strength	Major contributions
1006.6	0.2545	HOMO(B)->LUMO(B) (92%)
786.7	0.1668	HOMO(A)->LUMO(A) (96%)
485.0	0.1966	HOMO(A)->L+2(A) (77%)
445.0	0.1234	HOMO(B)->L+2(B) (61%)
407.1	0.0206	HOMO(A)->L+5(A) (10%), H-1(B)->LUMO(B) (17%), HOMO(B)->L+1(B) (18%), HOMO(B)-
		>L+5(B) (17%)
402.5	0.1311	H-2(B)->LUMO(B) (11%), H-1(B)->L+1(B) (11%), HOMO(B)->L+2(B) (14%)
370.2	0.097	H-1(A)->L+1(A) (14%), HOMO(A)->L+8(A) (12%), HOMO(A)->L+9(A) (16%), H-2(B)-
		>LUMO(B) (15%)
369.5	0.0121	HOMO(A)->L+4(A) (72%)
334.2	0.0156	HOMO(A)->L+6(A) (38%), HOMO(A)->L+7(A) (24%)
333.1	0.0625	HOMO(A)->L+6(A) (10%), HOMO(A)->L+7(A) (12%), H-2(B)->LUMO(B) (18%),
		HOMO(B)->L+8(B) (11%)
328.0	0.0533	HOMO(A)->L+5(A) (11%), HOMO(A)->L+6(A) (39%), HOMO(A)->L+7(A) (34%)

Figure S13. Calculated (UB3LYP/6-31G (d,p)) absorption spectrum of TT-Ar⁻ along with the experimental spectrum.

Fig. S14. Frontier molecular orbital profiles and energy diagram of PP-Ar obtained by B3LYP/6-31G(d,p) level calculation.

fable S7. Selected TD-DFT (B3LYP/6-31G (d,p)	calculated wavelength, oscillat	or strength and compositions	of major transitions of PP-Ar
--	---------------------------------	------------------------------	-------------------------------

Wavelength	Osc.	
(nm)	Strength	Major contributions
815.7	0.4808	HOMO->LUMO (99%)
444.9	0.001	H-4->LUMO (22%), H-2->LUMO (21%), HOMO->L+2 (50%)
421.0	0.001	H-6->LUMO (15%), H-4->LUMO (26%), H-2->LUMO (57%)
414.5	0.0013	H-6->LUMO (74%), H-4->LUMO (21%)
402.3	0.002	H-11->LUMO (14%), H-9->LUMO (15%), H-8->LUMO (66%)
401.0	0.0091	H-11->LUMO (50%), H-8->LUMO (25%)
396.7	0.0006	H-11->LUMO (15%), H-9->LUMO (78%)
388.6	0.3453	H-1->L+1 (49%), HOMO->L+2 (14%), HOMO->L+4 (17%)

373.1	0.6408	H-4->LUMO (14%), HOMO->L+2 (21%), HOMO->L+4 (52%)
358.9	1.6036	H-11->LUMO (11%), H-1->L+1 (48%), HOMO->L+2 (12%), HOMO->L+4 (16%)
324.7	0.0024	HOMO->L+6 (99%)

Fig. S15. Calculated (B3LYP/6-31G (d,p)) absorption spectrum of PP-Ar along with the experimental spectrum.

 $\label{eq:second} \textbf{Table S8.} Selected \ \textbf{TD-DFT} \ (\textbf{UB3LYP/6-31G} \ (d,p)) calculated wavelength, oscillator strength and compositions of major transitions of \ \textbf{PP-Ar^+}.$

Wavelength	Osc.	
(nm)	Strength	Major contributions
1528.0	0.2899	HOMO(A)->LUMO(A) (95%)
945.3	0.2353	HOMO(B)->LUMO(B) (95%)
538.6	0.0116	H-11(A)->LUMO(A) (13%), H-1(A)->L+1(A) (17%), H-10(B)->LUMO(B) (15%), HOMO(B)-
		>L+2(B) (24%)
476.0	0.0816	H-8(A)->LUMO(A) (44%), H-10(B)->LUMO(B) (17%)
450.9	0.0945	H-6(B)->LUMO(B) (15%), H-4(B)->LUMO(B) (37%)
445.6	0.2045	H-11(A)->LUMO(A) (11%), H-10(B)->LUMO(B) (37%), H-4(B)->LUMO(B) (10%)
419.0	0.0002	H-1(B)->LUMO(B) (82%)
409.3	0.0033	H-8(B)->LUMO(B) (63%), H-4(B)->LUMO(B) (20%)
400.3	0.1834	H-11(A)->LUMO(A) (14%), H-10(B)->LUMO(B) (12%), HOMO(B)->L+2(B) (19%)
389.8	0.003	H-8(B)->LUMO(B) (12%), H-6(B)->LUMO(B) (60%), H-4(B)->LUMO(B) (12%)

 $\label{eq:Figure S16. Calculated (UB3LYP/6-31G (d,p)) absorption spectrum of \ensuremath{PP-Ar^{+}}\xspace along with the experimental spectrum.$

Wavelength	Osc.	
(nm)	Strength	Major contributions
1097.1	0.2623	HOMO->LUMO (99%)
962.2	0.002	H-1->LUMO (94%)
924.7	0.0053	H-6->LUMO (51%), H-3->LUMO (39%)
909.5	0.0048	H-6->LUMO (31%), H-3->LUMO (56%)
877.1	0.0029	H-8->LUMO (82%), H-6->LUMO (14%)
551.9	0.0011	H-2->L+1 (94%)
537.8	0.0012	H-4->L+1 (93%)
531.7	0.0025	H-5->L+1 (89%)
529.4	0.3869	H-11->LUMO (91%)
517.9	0.0003	H-7->L+1 (91%)

Table S9. Selected TD-DFT (B3LYP/6-31G (d,p)) calculated wavelength, oscillator strength and compositions of major transitions of PP-Ar²⁺.

 $\label{eq:Figure S17. Calculated (B3LYP/6-31G (d,p)) absorption spectrum of \ensuremath{PP-Ar^{2^+}}\ along with the experimental spectrum.$

Wavelength	Osc.	
(nm)	Strength	Major contributions
865.8	0.2467	HOMO(A)->LUMO(A) (95%)
529.5	0.0195	H-2(A)->LUMO(A) (26%), HOMO(A)->L+2(A) (14%), H-1(B)->L+1(B) (20%)
482.1	0.0465	HOMO(A)->L+2(A) (27%), HOMO(B)->L+2(B) (56%)
447.0	0.3413	HOMO(A)->L+2(A) (39%), HOMO(B)->L+2(B) (28%)
391.7	0.1871	H-2(A)->LUMO(A) (13%), H-1(A)->L+1(A) (14%), HOMO(A)->L+2(A) (11%), HOMO(A)-
		>L+13(A) (11%), H-2(B)->LUMO(B) (11%)
374.6	0.1115	H-2(B)->LUMO(B) (14%), HOMO(B)->L+4(B) (26%)
356.9	0.0005	$H-6(A)->L+6(A) \ (14\%), \ H-5(A)->L+7(A) \ (10\%), \ H-6(B)->L+8(B) \ (13\%), \ H-5(B)->L+7(B)$
		(14%)
356.3	0.0002	$H-8(A)->L+5(A) \ (13\%), \ H-7(A)->L+4(A) \ (12\%), \ H-8(B)->L+6(B) \ (13\%), \ H-7(B)->L+5(B)$
		(14%)
348.0	0.0731	H-1(A)->L+3(A) (10%), HOMO(A)->L+10(A) (11%), HOMO(A)->L+12(A) (28%)
345.5	0.4112	H-3(B)->LUMO(B) (13%), H-2(B)->LUMO(B) (14%), HOMO(B)->L+4(B) (10%)

Table S10. Selected TD-DFT (UB3LYP/6-31G (d,p)) calculated wavelength, oscillator strength and compositions of major transitions of PP-Ar^.

 $\label{eq:Figure S18. Calculated (UB3LYP/6-31G (d,p)) absorption spectrum of PP-Ar^{-} along with the experimental spectrum.$

6. Appendix I: X-ray crystallographic data

Table S11. Sample and crystal data for TT-Ar.

Formula weight	896.84	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 12.2300(4) Å	a= 76.3090(10)°.
	b = 12.6110(4) Å	b= 83.0330(10)°.
	c = 16.0096(5) Å	g = 87.2420(10)°.
Volume	2380.85(13) Å3	
Z	2	
Density (calculated)	1.251 Mg/m3	
Absorption coefficient	2.538 mm-1	
F(000)	948	
Crystal size	0.480 x 0.478 x 0.234 mm3	
Theta range for data collection	2.859 to 66.572°.	
	S28	

Index ranges	-14<=h<=14, -14<=k<=14, -19<=l<=19
Reflections collected	28278
Independent reflections	8240 [R(int) = 0.0368]
Completeness to theta = 66.572°	98.0 %
Absorption correction	None
Max. and min. transmission	0.7533 and 0.5786
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	8240 / 122 / 660
Goodness-of-fit on F2	1.005
Final R indices [I>2sigma(I)]	R1 = 0.0883, $wR2 = 0.2578$
R indices (all data)	R1 = 0.0905, wR2 = 0.2602
Extinction coefficient	n/a
Largest diff. peak and hole	0.837 and -1.195 e.Å-3

Table S12. Crystal data and structure refinement for PP-Ar.

Formula weight	1249.72	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 13.8073(9) Å	a= 90°.
	b = 15.3067(11) Å	b= 97.551(4)°.
	c = 17.2865(12) Å	$g = 90^{\circ}$.
Volume	3621.7(4) Å3	
Z	2	
Density (calculated)	1.146 Mg/m3	
Absorption coefficient	0.480 mm-1	
F(000)	1344	
Crystal size	0.352 x 0.268 x 0.080 mm3	
Theta range for data collection	3.229 to 66.595°.	
Index ranges	-16<=h<=16, -16<=k<=18, -20<=l<=19	
Reflections collected	25252	
Independent reflections	6289 [R(int) = 0.0810]	
Completeness to theta = 66.595°	98.1 %	
Absorption correction	Semi-empirical from equivalents	

Max. and min. transmission	0.7533 and 0.4002
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	6289 / 30 / 475
Goodness-of-fit on F2	1.056
Final R indices [I>2sigma(I)]	R1 = 0.0925, wR2 = 0.2383
R indices (all data)	R1 = 0.1149, wR2 = 0.2693
Extinction coefficient	n/a
Largest diff. peak and hole	0.603 and -0.537 e.Å-3

7. Appendix II: ¹H NMR, ¹³C NMR and Mass spectra of all new compounds

Fig. S19. ¹H NMR spectrum of compound 1 (500 MHz, Chloroform-*d*).

Fig. S20. ¹³C NMR spectrum of compound 1 (126 MHz, Chloroform-*d*).

Analysis Info							Acquisition Date	5/21/2018 4:45:	16 PM	
Analysis Name	D:\Data	a\Chem\201	8 Samples\∕	201805	5\0521\F	Z1-1.d				
Method	YCH-50	0-500.m					Operator	default user	ault user	
Sample Name	ample Name FZ1-1						Instrument / Ser#	micrOTOF-Q II 10269		
Comment	A/P Wu	u Jishan								
Acquisition P	arameter									
Source Type	APC		lon Pe	olarity		Positive	Set Nebulizer	r 3.0 Bar		
Focus	Not	active	Set C	apillary		4500 V	Set Dry Heat	er 200 °C		
Scan Begin	50 n	n/z	Set E	nd Plat	e Offset	-500 V	Set Dry Gas	4.0 l/mii	ı	
Scan End	100	0 m/z	Set C	ollision	Cell RF	100.0 Vpp	Set Divert Va	lve Waste		
Meas.m/z #	Formula	m/z	err [ppm]	rdb	e ⁻ Con	f N-Rule				
273.1645 1	C 21 H 21	273.1638	-2.7	11.5	even	ok				

Fig. S21. HR APCI mass spectrum of compound $[1+H]^+$

Mass Spectrum SmartFormula Report

Fig. S23. ¹³C NMR spectrum of compound 2 (126 MHz, Methylene Chloride-*d*₂).

Analysis Info				Acquisition Date	5/21/2018 4:52:48 PM		
Analysis Name	D:\Data\Chem\2018	Samples\201805\0521\F	Z1-2.d				
Method YCH-50-500 m Sample Name FZ1-2				Operator	default user		
				Instrument / Ser#	micrOTOF-Q II 10269		
Comment	A/P Wu Jishan						
Acquisition Pa	irameter						
Source Type	APCI	lon Polarity	Positive	Set Nebulizer	3.0 Bar		
Focus	Not active	Set Capillary	4500 V	Set Dry Heate	er 200 °C		
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min		
Scan End	1000 m/z	Set Collision Cell RF	100.0 Vpp	Set Divert Va	lve Waste		
vleas.m/z #	Formula m/	z err [ppm] rdb e C	onf N-Rule				
351.0735 1	C 21 H 20 Br 351.074	3 2.3 11.5 even	ok				

Fig. S24. HR APCI mass spectrum of compound [2+H]⁺

Fig. S26. ¹³C NMR spectrum of compound 3 (126 MHz, Methylene Chloride-*d*₂).

			Ivias	s ope	Jun						
Analysis Info	nalysis Info							Acquisition Date	5/21/2018 5:01:06 PM		
Analysis Nam	пe	D:\Data	\Chem\201	8 Samples\	201805	5\0521\F	Z1-3.d				
Method YCH-50-500.m)-500.m					Operator	default user			
Sample Name FZ1-3							Instrument / Ser#	micrO	TOF-Q II 10269		
Comment		A/P Wu	Jishan								
Acquisition I	Pa	rameter									
Source Type		APC	1	lon P	olarity		Positive	Set Nebulizer		3.0 Bar	
Focus		Not a	active	Set C	apillary		4500 V	Set Dry Heater		200 °C	
Scan Begin		50 m	ı/z	Set E	nd Plate	e Offset	-500 V	Set Dry Gas		4.0 l/min	
Scan End		1000) m/z	Set C	ollision	Cell RF	100.0 Vpp	Set Divert Va	lve	Waste	
/leas.m/z #		Formula	m/z	err [ppm]	rdb	e ⁻ Col	nf N-Rule				
413.2260 1		C 32 H 29	413.2264	1.0	18.5	even	ok				

Mass Spectrum SmartFormula Report

Fig. S27. HR APCI mass spectrum of compound $[3+H]^+$

Fig. S29. ¹³C NMR spectrum of compound 4 (126 MHz, Methylene Chloride-*d*₂).

Analysis Info	,							Acqu	isition Date	5/21/2	018 5:06:11 PM	
Analysis Name D:\Data\Chem\2018 Samples\2018						21\F2	Z1-4.d					
Method YCH-50-500.m		m					Oper	ator	default	user		
Sample Name	Sample Name FZ1-4							Instru	Instrument / Ser#		micrOTOF-Q II 10269	
Comment		A/P Wu Jish	an									
Acquisition P	Para	ameter										
Source Type		APCI		lon Polarit	y		Positive		Set Nebulizer	r	3.0 Bar	
Focus		Not active		Set Capilla	iry		4500 V	Set Dry Heater		er	200 °C	
Scan Begin		50 m/z		Set End P	ate Off	set	-500 V		Set Dry Gas		4.0 l/min	
Scan End		1000 m/z		Set Collisio	on Cell	RF	100.0 Vpp		Set Divert Va	lve	Waste	
vleas.m/z #	F	ormula	m/z	err [ppm]	rdb	e ⁻	Conf N-Rule	Э				
569.0461 1	С	32 H 27 Br 2	569.0474	2.3	18.5	eve	n oł	k				

Fig. S30. HR APCI mass spectrum of compound [4+H]⁺

Fig. S32. ¹³C NMR spectrum of compound 5 (126 MHz, Methylene Chloride-d₂).

Analysis Info									Acquisition Date		5/21/2018 5:12:07 PM		
Analysis Name	D:\E)ata\Ch	em\2018 Sa	mples\20	805\05	21\F2	Z1-5.d						
Method YCH-50-500.m Sample Name FZ1-5								Operator		default user			
									Instrument / Ser#		micrOTOF-Q II 10269		
Comment	A/P	Wu Jisł	nan										
Acquisition P	aramete	er											
Source Type	,	APCI		lon Pola	rity		Positive		Set Nebulizer			3.0 Bar	
Focus	1	Not active	e	Set Capi	llary		4500 V		Set Dry Heater		r	200 °C	
Scan Begin		50 m/z		Set End	Plate Off	set	-500 V		Set Dry Gas			4.0 l/min	
Scan End		1000 m/z		Set Colli	sion Cell	RF	100.0 Vp	c	Set Dive	rt Valv	ve	Waste	
Meas.m/z #	Formu	a	m/z	err [ppm]	rdb	e_(Conf N-F	Rule					
528.2305 1	C 36 H	32 0 4	528.2295	-1.8	21.0	odd		ok					

Mass Spectrum SmartFormula Report

Fig. S33. HR APCI mass spectrum of compound [5+H]⁺

Fig. S35. ¹³C NMR spectrum of compound 6 (126 MHz, DMSO-*d*₆).

		Mass	Spectri	um (Sma	rtForm	ula Report		
Analysis Info							Acquisition Date	5/30/2	2018 10:37:03 AM
Analysis Name	D:\Data\Che	em\2018 Sa	mples\2018	05\053	30\FZ2	d			
Method	YCH-50-200)0.m					Operator	defau	llt user
Sample Name	FZ2						Instrument / Ser#	micrC	DTOF-Q II 10269
Comment	Prof Wu Jisł	nan							
Acquisition Pa	rameter								
Source Type	APCI		Ion Polarity	/	Р	ositive	Set Nebulizer	r	3.0 Bar
Focus	Not active	2	Set Capilla	ry	4	500 V	Set Dry Heater		200 °C
Scan Begin	50 m/z		Set End PI	ate Offs	set -5	500 V	Set Dry Gas		4.0 l/min
Scan End	1200 m/z		Set Collisio	on Cell	RF 2	50.0 Vpp	Set Divert Va	lve	Waste
vleas.m/z #	Formula	m/z	err [ppm]	rdb	e [–] Coi	nf N-Rule			
444.2073 1	C 32 H 28 O 2	444.2084	2.4	19.0	odd	ok			

Fig. S36. HR APCI mass spectrum of compound [6+H]⁺

Fig. S38. ¹³C NMR spectrum of compound 7 (126 MHz, Methylene Chloride-d₂).

	Mass	Spectrum SmartFor	mula Report		
Analysis Info			Acquisition Date	10/30/2017 3:14:39 PM	
Analysis Name D:\Data\Chem\201 Method YCH-150-1800.m Sample Name FZ4-6 Comment Prof Wu Jishan		amples\201710\1030\FZ4-6.d	Operator Instrument / Ser#	default user micrOTOF-Q II 10269	
Acquisition Par Source Type Focus Scan Begin Scan End	ameter APCI Not active 50 m/z 1000 m/z	lon Polarity Positive Set Capillary 4500 V Set End Plate Offset -500 V Set Collision Cell RF 300.0 Vpp	Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Va	ar 3.0 Bar ar 200 °C 4.0 l/min Ive Waste	
vleas.m/z # F 443.1267 1 C	Formula m/z C 30 H 19 O 4 443.1278	err [ppm] rdb e Conf N-Ru 2.5 21.5 even	ule ok		

Fig. S39. HR APCI mass spectrum of compound $[7+H]^+$

Fig. S40. ¹H NMR spectrum of compound TT-Ar (500 MHz, THF-d₈).

Fig. S41. 2D ROESY NMR spectrum of compound TT-Ar (500 MHz, THF-d₈).

Fig. S42. 2D ROESY NMR spectrum of compound TT-Ar (500 MHz, THF- d_8).

		Mas	s Spe	ctru	m Sm	nartForn	nula Report		
Analysis Info							Acquisition Date	5/21/2	2018 5:34:05 PM
Analysis Name	D:\Data	\Chem\201	8 Samples\	20180	5\0521\FZ	1-8.d			
Method	YCH-50	-500.m					Operator	defau	lt user
Sample Name	FZ1-8						Instrument / Ser#	micrC	TOF-Q II 10269
Comment	A/P Wu	Jishan							
Acquisition Pa	rameter								
Source Type	APCI	I	lon P	olarity		Positive	Set Nebulizer	r	3.0 Bar
Focus	Not a	active	Set C	apillary		4500 V	Set Dry Heat	er	200 °C
Scan Begin	50 m	/z	Set E	nd Plat	e Offset	-500 V	Set Dry Gas		4.0 l/min
Scan End	1000	m/z	Set C	ollision	Cell RF	100.0 Vpp	Set Divert Va	lve	Waste
√leas.m/z #	Formula	m/z	err [ppm]	rdb	e ⁻ Cont	N-Rule			
727.4313 1	C 56 H 55	727.4298	-2.1	29.5	even	ok			

Fig. S43. HR APCI mass spectrum of compound [TT-Ar+H]⁺.

Fig. S45. ¹³C NMR spectrum of compound 10 (75 MHz, Methylene Chloride-*d*₂).

	Ма	ss Spectrum SmartFor	mula Report	
Analysis Info			Acquisition Date	5/21/2018 5:59:35 PM
Analysis Name	D:\Data\Chem\20	18 Samples\201805\0521\FZ2-1.d		
Method	YCH-50-500.m		Operator	default user
Sample Name	FZ2-1		Instrument / Ser# 1	micrOTOF-Q II 10269
Comment	A/P Wu Jishan			
Acquisition Pa	rameter			
Source Type	APCI	lon Polarity Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary 4500 V	Set Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate Offset -500 V	Set Dry Gas	4.0 l/min
Scan End	1000 m/z	Set Collision Cell RF 100.0 Vpp	Set Divert Valv	e Waste
Meas.m/z #	Formula m/z	err [ppm] rdb e [—] Conf N-Rule		
437.2259 1	C 34 H 29 437.2264	1.1 20.5 even ok		

Fig. S46. HR APCI mass spectrum of compound $[10+H]^+$

Fig. S48. ¹³C NMR spectrum of compound 11 (126 MHz, Methylene Chloride-d₂).

		Mass	Spectr	um (Sma	rtForm	ula Report		
Analysis Info							Acquisition Date	5/30/	2018 10:25:39 AM
Analysis Name	D:\Data\Che	m\2018 Sa	mples\2018	05\053	0\FZ1.0	ł			
Method	YCH-50-200	0.m					Operator	defau	ult user
Sample Name	FZ1						Instrument / Ser#	micrO	DTOF-Q II 10269
Comment	Prof Wu Jish	ian							
Acquisition Pa	arameter								
Source Type	APCI		Ion Polarit	/	Р	ositive	Set Nebulize	r	3.0 Bar
Focus	Not active		Set Capilla	ry	4	500 V	Set Dry Heat	er	200 °C
Scan Begin	50 m/z		Set End Pl	ate Offs	et -5	00 V	Set Dry Gas		4.0 l/min
Scan End	1200 m/z		Set Collisio	on Cell I	RF 2	50.0 Vpp	Set Divert Va	alve	Waste
Meas.m/z #	Formula	m/z	err [ppm]	rdb	e ⁻ Co	nf N-Rule			
747.8586 1	C 34 H 24 Br 4	747.8606	2.7	21.0	odd	ok			

Fig. S49. HR APCI mass spectrum of compound $[11+H]^+$

Fig. S51. ¹³C NMR spectrum of compound 11-a (75 MHz, Methylene Chloride-d₂).

			101035	opeou	ann		nunt	VIIII			
Analysis In	fo								Acquisition Date	5/24/	2018 10:19:56 AM
Analysis Na	me	D:\Data\Che	em\2018 Sa	mples\2018							
Method YCH-150		YCH-150-18	300.m	-					Operator	defau	ult user
Sample Nar	ne	FZ2-3							Instrument / Ser#	micr	DTOF-Q II 10269
Comment		Prof Wu Jis	han								
Acquisition	P	arameter									
Source Type		APCI		lon Polarit	y		Posit	ve	Set Nebulizer	r	3.0 Bar
Focus		Not active	9	Set Capilla	ary		4500	V	Set Dry Heat	er	200 °C
Scan Begin		50 m/z		Set End P	late Of	fset	-500	V	Set Dry Gas		4.0 l/min
Scan End		1800 m/z		Set Collisi	on Cell	RF	100.0	Vpp	Set Divert Va	lve	Waste
vleas. m/z	#	Formula	m/z	err [ppm]	rdb	e ⁻	Conf	N-Rule			
668.2417	1	C 42 H 36 O 8	668.2405	-1.8	25.0	odd	1	ok			

Fig. S52. HR APCI mass spectrum of compound $[11-a+H]^+$

Fig. S54. ¹³C NMR spectrum of compound 11-b (75 MHz, DMSO-*d*₆).

Analysis Info								Acquisition Date	5/24/20)18 10:35:22 AM	
Analysis Name	D:\Data\Chem\	2018 Sampl	mples\201805\0524\FZ2-4.d								
Method	YCH-150-1800).m						Operator	default	user	
Sample Name	FZ2-4							Instrument / Ser#	micrOT	OF-Q II 10269	
Comment	Prof Wu Jishan	ı									
Acquisition Par	ameter										
Source Type	APCI	lc	n Polarity			Positi	ve 🛛	Set Nebulizer		3.0 Bar	
Focus	Not active	S	et Capillar	y		4500	V	Set Dry Heat	er	200 °C	
Scan Begin	50 m/z	S	et End Pla	te Off	set	-500	/	Set Dry Gas		4.0 l/min	
Scan End	1800 m/z	S	et Collisio	n Cell	RF	100.0	Vpp	Set Divert Va	lve	Waste	
/leas.m/z # F	ormula	m/z err	[ppm]	rdb	e ⁻ C	Conf	N-Rule				
500.1981 1 0	C 34 H 28 O 4 50	0.1982	0.2	21.0	odd		ok				

Mass Spectrum SmartFormula Report

500.8887

501.0

printed:

500.3642

500.5

500.0

501.3813

501.5

5/24/2018 10:46:06 AM

502.0

502.3687502.5982

M~

502.5

Page 1 of 1

m/z

Fig. S55. HR APCI mass spectrum of compound $[11-b+H]^+$

Bruker Compass DataAnalysis 4.0

1000

500

0 499.5

Fig. S57. ¹³C NMR spectrum of compound 12 (126 MHz, Methylene Chloride-d₂).

	Ν	lass S	pectr	um	Sm	artForm	nula Report		
Analysis Info							Acquisition Date	5/24	1/2018 10:49:46 AM
Analysis Name	D:\Data\Chem	12018 Sam	oles\2018	805\052	24\FZ2	-5.d			
Method	YCH-150-180	0.m '					Operator	defa	ault user
Sample Name	FZ2-5						Instrument / Ser#	micr	OTOF-Q II 10269
Comment	Prof Wu Jisha	n							
Acquisition Pa	rameter								
Source Type	APCI	1	on Polarit	y		Positive	Set Nebulize	r	3.0 Bar
Focus	Not active	-	Set Capilla	ary		4500 V	Set Dry Hea	ter	200 °C
Scan Begin	50 m/z	4	Set End P	late Off	set	-500 V	Set Dry Gas		4.0 l/min
Scan End	1800 m/z	:	Set Collisi	on Cell	RF	200.0 Vpp	Set Divert Va	alve	Waste
vleas.m/z #	Formula	m/z e	rr [ppm]	rdb	e ⁻ Co	onf N-Rule			
493.1436 1	C 34 H 21 O 4 4	93.1434	-0.3	24.5	even	ok			

Bruker Compass DataAnalysis 4.0 printed: 5/24/2018 10:52:47 AM Page 1 of 1

Fig. S58. HR APCI mass spectrum of compound $[12+H]^+$.

Fig. S59. ¹H NMR spectrum of compound PP-Ar (500 MHz, THF-d₈).

Fig. S60. 2D ROESY NMR spectrum of compound PP-Ar (500 MHz, THF-d₈).

Fig. S61. ¹³C NMR spectrum of compound PP-Ar (126 MHz, THF-d₈).

		Mas	s Spec	trur	n Sm	nartForm	nula Report		
Analysis Info							Acquisition Date	5/24/2	2018 10:55:08 AM
Analysis Name	D:\Data\0	Chem\2018	Samples\2	01805	0524\FZ	2-6.d			
Method	YCH-150	-1800.m					Operator	defau	lt user
Sample Name	FZ2-6						Instrument / Ser#	micrO	TOF-Q II 10269
Comment	Prof Wu	Jishan							
Acquisition Pa	rameter								
Source Type	APCI		lon Pol	arity		Positive	Set Nebulizer	r	3.0 Bar
Focus	Not ac	tive	Set Ca	pillary		4500 V	Set Dry Heat	er	200 °C
Scan Begin	50 m/z	z	Set En	d Plate	Offset	-500 V	Set Dry Gas		4.0 l/min
Scan End	1800 r	m/z	Set Co	llision (ell RF	200.0 Vpp	Set Divert Va	lve	Waste
√leas.m/z #	Formula	m/z	err [ppm]	rdb	e ⁻ Cor	nf N-Rule			
1065.6335 1	C 82 H 81	1065.6333	-0.2	42.5	even	ok			

Fig. S62. HR APCI mass spectrum of compound [PP-Ar+H]⁺

Fig. S63. ¹H NMR spectrum of compound PP-Ar²⁺ (500 MHz, Methylene Chloride-d₂, 298K, containing 10% CD₃CN).

Fig. S64. 2D ROESY NMR spectrum of compound PP-Ar²⁺ (500 MHz, Methylene Chloride-d₂, 298K, containing 10% CD₃CN).

Fig. S65. 2D ROESY NMR spectrum of compound PP-Ar²⁺ (500 MHz, Methylene Chloride-d₂, 298K, containing 10% CD₃CN).

8. References

[1] Gaussian 09; Revision D.01; M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2009**.

[2] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648. (b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter 1988, 37, 785. (c) T. Yanai, D. Tew and N. Handy, Chem. Phys. Lett. 2004, 393, 51. (d) R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys. 1971, 54, 724. (e) W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys. 1972, 56, 2257. (f) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 1973, 28, 213.

[3] (a) S. Yamanaka, M. Okumura, M. Nakano and K. Yamaguchi, J. Mol. Struct. 1994, 310, 205. (b) K. Kamada, K. Ohta, A. Shimizu, T. Kubo, R. Kishi, H. Takahashi, E. Botek, B. Champagne and M. Nakano, J. Phys. Chem. Lett. 2010, 1, 937.

[4] D. Geuenich, K. Hess, F. Köhler and R. Herges, Chem. Rev. 2005, 105, 3758.