# Supporting Information

# Cu-catalyzed atom transfer radical addition reactions of alkenes with

# *α*-bromoacetonitrile

Weiya Pu, Dani Sun, Wanyue Fan, Wenwen Pan, Qinghui Chai, Xiaoxing Wang and Yunhe Lv\*

<sup>*a*</sup> College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, China. E-mail: <u>luyh086@nenu.edu.cn; lvyunhe0217@163.com</u>

<sup>b</sup> Jilin Provincial Key Laboratory of Organic Functional Molecular Design & Synthesis, Changchun, 130024, China.

# **Table of Contents**

| 1. General Information                                                    |     |
|---------------------------------------------------------------------------|-----|
| 2. General procedure for the preparation of 3                             | S2  |
| 3. General procedure for the preparation of 4                             | S3  |
| 4. Analytical Data of Compounds 3, 4 and 6                                |     |
| 5. Mechanistic Study                                                      |     |
| 6. <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compounds 3, 4 and 6 | S20 |

# 1. General Information

Unless otherwise stated, starting materials were purchased from TCI or Energy-Chemical Limited and used as supplied without further purification. Solvents were used directly without further purification. All deuterated solvents were purchased from Cambridge Isotope Laboratories. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded at 25 °C on a Brüker Advance 400 spectrometer (<sup>1</sup>H: 400 MHz and <sup>13</sup>C:100 MHz). <sup>1</sup>H NMR chemical shifts were determined relative to internal (CH<sub>3</sub>)<sub>4</sub>Si (TMS) at  $\delta$  0.00 ppm or to the signal of the residual protonated solvent: CDCl<sub>3</sub> at  $\delta$  7.26 ppm. <sup>13</sup>C NMR chemical shifts were determined relative to the signal of the solvent: CDCl<sub>3</sub> at  $\delta$  7.26 ppm. <sup>13</sup>C NMR chemical shifts were recorded as follows: chemical shift ( $\delta$ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets), coupling constants (Hz) and integration. Melting points were obtained with a micro melting point XT4A Beijing Keyi electrooptic apparatus and are uncorrected. High-resolution mass data were recorded on a Waters LCT PremierxeTM (USA). All reactions were monitored by thin layer chromatography (TLC) with Taizhou GF254 silica gel coated plates. Flash column chromatography was carried out using 200-300 mesh silica gel at increased pressure.

#### 2. General procedure for the preparation of 3

3a as an example



To a solution of the styrene **1a** (35  $\mu$ L, 0.3 mmol) in CH<sub>3</sub>CN (1.0 ml) was added the  $\alpha$ bromoacetonitrile **2a** (38  $\mu$ L, 0.60 mmol), Phen (10.8 mg, 0.06 mmol), and CuI (5.7 mg, 0.03 mmol) under N<sub>2</sub> in a Schlenck tube. The reaction mixture was stirred at 110 °C for 1.0 h. After the reaction finished, the reaction mixture was cooled to room temperature and quenched by water. The mixture was extracted with EtOAc (3.0 mL×3), the combined organic phases were dried over

anhydrous  $Na_2SO_4$  and the solvent was evaporated under vacuum. The residue was purified by column chromatography (petroleum ether /ethyl acetate = 40:1) to give the corresponding products **3a** (61.1 mg, 91%).

## 3. General procedure for the preparation of 4

4a as an example

$$Ph + NC Br \xrightarrow{Cul (10 mol%)}{Phen (20 mol%)} Ph CN$$
1a 2a  $CH_3CN, 110 °C, N_2$  4a

To a solution of the styrene **1a** (35  $\mu$ L, 0.3 mmol) in CH<sub>3</sub>CN (1.0 ml) was added the  $\alpha$ bromoacetonitrile **2a** (38  $\mu$ L, 0.6 mmol), Phen (10.8 mg, 0.06 mmol), CuI (5.7 mg, 0.03 mmol), and DBU (91  $\mu$ L, 0.60 mmol) under N<sub>2</sub> in a Schlenck tube. The reaction mixture was stirred at 110 °C for 1.0 h. After the reaction finished, the reaction mixture was cooled to room temperature and quenched by water. The mixture was extracted with EtOAc (3.0 mL×3), the combined organic phases were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and the solvent was evaporated under vacuum. The residue was purified by column chromatography (petroleum ether /ethyl acetate = 40:1) to give the corresponding products **4a** (38.7 mg, 90%).

## 4. Analytical Data of Compounds 3, 4 and 6



#### 4-bromo-4-phenylbutanenitrile 3a

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.38-2.62 (m, 4H), 5.04 (dd,  $J_1$  = 5.6 Hz,  $J_2$  = 8.8 Hz, 1H), 7.32-7.42 (s, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 16.3, 35.2, 52.1, 118.2, 127.1, 128.9, 140.0. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>11</sub>BrN, [M+H]<sup>+</sup> *m/z* 224.0075, 226.0054; Found 224.0079, 226.0057.



#### 4-bromo-4-(4-fluorophenyl)butanenitrile 3b

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.36-2.49 (m, 1H), 2.49-2.58 (m, 3H), 5.03 (dd,  $J_I$  = 6.0 Hz,  $J_2$  = 8.4 Hz, 1H), 7.06 (t, J = 8.4 Hz, 2H), 7.39 (dd,  $J_I$  = 5.2 Hz,  $J_2$  = 8.4 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 16.4, 35.4, 51.2, 116.0 (d, J = 22.0 Hz), 118.1, 129.0 (d, J = 8 Hz), 136.1 (d, J = 3.0 Hz), 162.6 (d, J = 247.0 Hz). HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>10</sub>BrFN, [M+H]<sup>+</sup> *m*/z 241.9981, 243.9960; Found 241.9985, 243.9963.



#### 4-bromo-4-(4-chlorophenyl)butanenitrile 3c

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.35-2.42 (m, 1H), 2.48-2.60 (m, 3H), 5.00 (dd,  $J_1$  = 5.6 Hz,  $J_2$  = 8.4 Hz, 1H), 7.34 (s, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 16.3, 35.1, 50.9, 118.1, 128.5, 129.2, 134.7, 138.6. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>10</sub>BrClN, [M+H]<sup>+</sup> *m/z* 257.9685, 259.9665; Found 257.9687, 259.9668.



#### 4-bromo-4-(4-bromophenyl)butanenitrile 3d

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.34-2.39 (m, 1H), 2.48-2.58 (m, 3H), 4.98 (dd,  $J_1$  = 5.6 Hz,  $J_2$  = 8.4 Hz, 1H), 7.28 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 16.3, 35.1, 50.9, 118.1, 122.9, 128.8, 132.1, 139.2. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>10</sub>Br<sub>2</sub>N, [M+H]<sup>+</sup> *m/z* 303.9160; Found 303.9165.



#### 4-bromo-4-(4-nitrophenyl)butanenitrile 3e

Yellow solid. mp: 76-78 °C. Petroleum ether/ethyl acetate = 20/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.38-2.44 (m, 1H), 2.51-2.69 (m, 3H), 5.08 (dd,  $J_1$  = 5.6 Hz,  $J_2$  = 9.6 Hz, 1H), 7.60 (d, J = 8.4 Hz, 2H), 8.25 (d, J = 8.8 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 16.4, 34.9, 49.6, 117.8, 124.3, 128.3, 147.0, 148.0. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>10</sub>BrN<sub>2</sub>O<sub>2</sub>, [M+H]<sup>+</sup> *m/z* 268.9926, 270.9905; Found 268.9929, 270.9907.



#### 4-bromo-4-(p-tolyl)butanenitrile 3f

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.36 (s, 3H), 2.39-2.58 (m, 4H), 5.02-5.05 (m, 1H), 7.18 (d, *J* = 7.6 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 16.4, 21.1, 35.3, 52.3, 118.3, 127.0, 129.6, 137.1, 139.0. HRMS(ESI-TOF) Calcd for C<sub>11</sub>H<sub>13</sub>BrN, [M+H]<sup>+</sup> *m/z* 238.0231, 240.0211; Found 238.0237, 240.0215.



#### 4-bromo-4-(4-(tert-butyl)phenyl)butanenitrile 3g

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 1.33 (s, 9H), 2.40-2.59 (m, 4H), 5.04-5.08 (m, 1H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 16.3, 31.1, 34.6, 35.2, 52.3, 118.3, 125.8, 126.8, 137.0, 152.0. HRMS(ESI-TOF) Calcd for C<sub>14</sub>H<sub>19</sub>BrN, [M+H]<sup>+</sup> *m/z* 280.0701, 282.0680; Found 280.0704, 282.0685.



#### 4-bromo-4-(3-fluorophenyl)butanenitrile 3h

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.37-2.44 (m, 1H), 2.49-2.60 (m, 3H), 4.99-5.02 (m, 1H), 7.03 (t, *J* = 8.4 Hz, 1H), 7.12 (d, *J* = 9.6 Hz, 1H), 7.18 (d, *J* = 8.0 Hz, 1H), 7.35 (dd, *J*<sub>1</sub> = 7.6 Hz, *J*<sub>2</sub> = 14.0 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 16.3, 35.2, 50.8, 114.3 (d, *J* = 23.0 Hz), 116.0 (d, *J* = 21.0 Hz), 118.1, 122.8 (d, *J* = 3.0 Hz), 130.6 (d, *J* = 9.0 Hz), 142.5 (d, *J* = 8.0 Hz), 162.8 (d, *J* = 246.0 Hz). HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>10</sub>BrFN, [M+H]<sup>+</sup> *m/z* 241.9981, 243.9960; Found 241.9983, 243.9958.



#### 4-bromo-4-(3-chlorophenyl)butanenitrile 3i

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.35-2.44 (m, 1H), 2.49-2.60 (m, 3H), 4.96-4.99 (m, 1H), 7.28-7.32 (m, 3H), 7.40 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 16.4, 35.2, 50.8, 118.0, 125.4, 127.4, 129.2, 130.3, 134.9, 142.1. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>10</sub>BrClN, [M+H]<sup>+</sup> *m/z* 257.9685, 259.9665; Found 257.9687, 259.9669.



#### 4-bromo-4-(3-bromophenyl)butanenitrile 3j

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.36-2.40 (m, 1H), 2.48-2.58 (m, 3H), 4.94-4.97 (m, 1H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.46 (dd, *J*<sub>1</sub> = 1.2 Hz, *J*<sub>2</sub> = 8.0 Hz, 1H), 7.55 (d, *J* = 1.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 16.3, 35.1, 50.6, 118.0, 122.8, 125.8, 130.2, 130.5, 132.0, 142.3. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>10</sub>Br<sub>2</sub>N, [M+H]<sup>+</sup> *m/z* 303.9160; Found 303.9165.



#### 4-bromo-4-(2-chlorophenyl)butanenitrile 3k

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.42-2.47 (m, 1H), 2.54-2.63 (m, 3H), 5.52 (dd,  $J_1$  = 5.2 Hz,  $J_2$  = 9.2 Hz, 1H), 7.27-7.33 (m, 2H), 7.39 (dd,  $J_1$  = 1.6 Hz,  $J_2$  = 8.0 Hz, 1H), 7.57 (dd,  $J_1$  = 1.6 Hz,  $J_2$  = 8.0 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 16.3, 34.6, 47.6, 118.1, 127.7, 128.8, 130.0, 132.7, 137.4. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>10</sub>BrClN, [M+H]<sup>+</sup> *m/z* 257.9685, 259.9665; Found 257.9688, 259.9669.



#### 4-bromo-4-(2-bromophenyl)butanenitrile 31

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.40-2.47 (m, 1H), 2.51-2.62 (m, 3H), 5.50 (dd,  $J_1$  = 5.2 Hz,  $J_2$  = 8.8 Hz, 1H), 7.16-7.20 (m, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.56-7.59 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 16.2, 34.7, 50.5, 118.1, 123.0, 128.3, 128.9, 130.2, 133.2, 139.0. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>10</sub>Br<sub>2</sub>N, [M+H]<sup>+</sup> *m/z* 303.9160; Found 303.9165.



#### 4-(pyridin-2-yl)butanenitrile 3m

Colorless oil. Petroleum ether/ethyl acetate = 20/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.60-2.72 (m, 4H), 5.16 (dd,  $J_I$  = 5.2 Hz,  $J_2$  = 8.4 Hz, 1H), 7.28 (dd,  $J_I$  = 2.4 Hz,  $J_2$  = 4.0 Hz, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.72-7.76 (m, 1H), 8.63 (d, J = 4.4 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 16.1, 32.9, 51.6, 118.4, 122.8, 123.6, 137.2, 149.7, 158.1. HRMS(ESI-TOF) Calcd for C<sub>9</sub>H<sub>10</sub>BrN<sub>2</sub>, [M+H]<sup>+</sup> *m/z* 225.0027, 227.0007; Found 225.0024,

#### 4-bromo-5-(3,4-dimethoxyphenyl)pentanenitrile 3n

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 1.97-2.23 (m, 2H), 2.58-2.61 (m, 2H), 3.05-3.25 (m, 2H), 3.86 (s, 3H), 3.87 (s, 3H), 4.18-4.25 (m, 1H), 6.71-6.82 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 16.1, 33.3, 44.9, 54.2, 55.8, 55.8, 111.1, 112.1, 118.6, 121.2, 129.7, 148.1, 148.9. HRMS(ESI-TOF) Calcd for C<sub>13</sub>H<sub>17</sub>BrNO<sub>2</sub>, [M+H]<sup>+</sup> *m/z* 298.0443, 300.0422; Found 298.0446, 300.0425.



#### 3-bromo-5-cyanopentyl benzoate 30

Colorless oil. Petroleum ether/ethyl acetate = 30/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.15-2.37 (m, 4H), 2.63-2.68 (m, 2H), 4.22-4.29 (m, 1H), 4.45-4.61 (m, 2H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.57 (t, *J* = 7.6 Hz, 1H), 8.02-8.04 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 16.0, 34.6, 37.8, 50.3, 62.3, 118.4, 128.4, 129.6, 129.8, 133.2, 166.3. HRMS(ESI-TOF) Calcd for C<sub>13</sub>H<sub>15</sub>BrNO<sub>2</sub>, [M+H]<sup>+</sup> *m/z* 296.0286, 298.0266; Found 296.0291, 298.0273.



#### 4,6-dibromohexanenitrile 3p

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.12-2.59 (m, 4H), 2.61-2.70 (m, 2H), 3.57-3.60 (m, 2H), 4.22-4.29 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 15.9, 30.2, 34.3, 41.1, 52.0, 118.4. HRMS(ESI-TOF) Calcd for C<sub>6</sub>H<sub>10</sub>Br<sub>2</sub>N, [M+H]<sup>+</sup> *m/z* 255.9160; Found 255.9165.



## 4-iodo-4-phenylbutanenitrile 3q

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.30-2.68 (m, 4H), 5.15-5.19 (m, 1H), 7.28-7.41 (m, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 18.0, 29.1, 36.8, 118.1, 127.0, 128.6, 129.1, 141.9. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>11</sub>IN, [M+H]<sup>+</sup> *m/z* 271.9936; Found 271.9939.



#### 4-(4-chlorophenyl)-4-iodobutanenitrile 3r

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.25-2.61 (m, 4H), 5.13 (dd,  $J_1$  = 6.4 Hz,  $J_2$  = 8.8 Hz, 1H), 7.29-7.35 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 17.9, 27.6, 36.4, 117.8, 128.3, 129.1, 134.0, 140.5. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>10</sub>ClIN, [M+H]<sup>+</sup> *m/z* 305.9546; Found 305.9548.



#### 4-(2-chlorophenyl)-4-iodobutanenitrile 3s

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.33-2.72 (m, 4H), 5.57 (dd,  $J_1$  = 6.0 Hz,  $J_2$  = 8.8 Hz, 1H), 7.22-7.37 (m, 3H), 7.53-7.55 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 17.8, 24.0, 35.7, 117.9, 127.8, 128.4, 129.6, 130.3, 132.2, 139.1. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>10</sub>ClIN, [M+H]<sup>+</sup> *m/z* 305.9546; Found 305.9543.



(E)-4-phenylbut-3-enenitrile 4a

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 3.30 (dd,  $J_1$  = 1.6 Hz,  $J_2$  = 5.6 Hz, 2H), 6.06 (dt,  $J_1$  = 15.6,  $J_2$  = 5.6 Hz, 1H), 6.75 (d, J = 15.6 Hz, 1H), 7.27-7.39 (m, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 20.8, 116.7, 117.3, 126.5, 128.3, 128.7, 134.7, 135.6. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>10</sub>N, [M+H]<sup>+</sup> *m/z* 144.0813; Found 144.0811.



#### (E)-4-(4-fluorophenyl)but-3-enenitrile 4b

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 3.29 (dd,  $J_1$  = 1.2 Hz,  $J_2$  = 5.6 Hz, 2H), 5.98 (dt,  $J_1$  = 15.6,  $J_2$  = 5.6 Hz, 1H), 6.71 (d, J = 15.6 Hz, 1H), 7.03 (t, J = 8.8 Hz, 2H), 7.34 (dd,  $J_1$  = 5.6,  $J_2$  = 8.4 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 20.7, 115.7 (d, J = 22.0 Hz), 116.5 (d, J = 2.0 Hz), 117.2, 128.1 (d, J = 8.0 Hz), 131.8 (d, J = 3.0 Hz), 133.5, 162.7 (d, J = 246.0 Hz). HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>9</sub>FN, [M+H]<sup>+</sup> *m/z* 162.0719; Found 162.0725.



#### (E)-4-(4-chlorophenyl)but-3-enenitrile 4c

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 3.29 (dd,  $J_1$  = 1.6 Hz,  $J_2$  = 5.6 Hz, 2H), 6.04 (dt,  $J_1$  = 16.0,  $J_2$  = 5.6 Hz, 1H), 6.70 (dt,  $J_1$  = 15.6,  $J_2$  = 1.6 Hz, 1H), 7.27-7.34 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 20.7, 117.0, 117.4, 127.7, 128.9, 133.4, 134.0, 134.1. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>9</sub>ClN, [M+H]<sup>+</sup> *m/z* 178.0424; Found 178.0427.



## (E)-4-(4-bromophenyl)but-3-enenitrile 4d

White solid. mp: 62-64 °C. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 3.29 (dd,  $J_1$  = 1.6 Hz,  $J_2$  = 5.6 Hz, 2H), 6.05

(dt,  $J_1 = 15.6$ ,  $J_2 = 5.6$  Hz, 1H), 6.68 (d, J = 16.0, 1H), 7.23 (d, J = 8.4, 2H), 7.46 (d, J = 8.4, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 20.8$ , 117.0, 117.5, 122.2, 127.9, 131.8, 133.4, 134.5. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>9</sub>BrN, [M+H]<sup>+</sup> *m*/*z* 221.9918, 223.9898; Found 221.9923, 223.9901.



### (E)-4-(4-nitrophenyl)but-3-enenitrile 4e

White solid. mp: 50-51 °C. Petroleum ether/ethyl acetate = 20/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 3.38 (dd,  $J_1$  = 1.6 Hz,  $J_2$  = 5.2 Hz, 2H), 6.26 (dt,  $J_1$  = 16.0,  $J_2$  = 5.6 Hz, 1H), 6.83 (d, J = 16.0, 1H), 7.51 (d, J = 8.4, 2H), 8.20 (d, J = 8.8, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 20.9, 116.5, 121.7, 124.1, 127.1, 132.5, 141.8, 147.3. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>9</sub>N<sub>2</sub>O<sub>2</sub>, [M+H]<sup>+</sup> *m/z* 189.0664; Found 189.0667.



#### (E)-4-(p-tolyl)but-3-enenitrile 4f

White solid. mp: 50-52 °C. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.43 (s, 3H), 3.27-3.28 (m, 2H), 5.99 (dt,  $J_I$  = 16.0,  $J_2$  = 5.6 Hz, 1H), 6.69 (d, J = 15.6, 1H), 7.14 (d, J = 8.0, 2H), 7.26 (d, J = 8.0, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 20.7, 21.2, 115.6, 117.4, 126.3, 129.4, 132.8, 134.5, 138.2. HRMS(ESI-TOF) Calcd for C<sub>11</sub>H<sub>12</sub>N, [M+H]<sup>+</sup> *m/z* 158.0970; Found 158.0965.



#### (E)-4-(4-(tert-butyl)phenyl)but-3-enenitrile 4g

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 1.33 (s, 9H), 3.29 (dd,  $J_1$  = 1.6 Hz,  $J_2$  = 5.6 Hz, 2H), 6.02 (dt,  $J_1$  = 15.6,  $J_2$  = 5.6 Hz, 1H), 6.72 (d, J = 15.6, 1H), 7.32 (d, J = 8.4, 2H), 7.37 (d, J = 8.4, 2H); <sup>13</sup>C NMR (100

MHz, CDCl<sub>3</sub>):  $\delta$  = 20.8, 31.2, 34.6, 115.8, 117.4, 125.6, 126.2, 132.9, 134.4, 151.5. HRMS(ESI-TOF) Calcd for C<sub>14</sub>H<sub>18</sub>N, [M+H]<sup>+</sup> *m/z* 200.1439; Found 200.1435.



#### (*E*)-4-([1,1'-biphenyl]-4-yl)but-3-enenitrile 4h

White solid. mp: 86-88 °C. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 3.32 (d, *J* = 4.2, 2H), 6.10 (dt, *J*<sub>1</sub> = 15.6, *J*<sub>2</sub> = 5.6 Hz, 1H), 6.79 (d, *J* = 16.0, 1H), 7.37 (t, *J* = 7.2, 1H), 7.44-7.48 (m, 4H), 7.60 (t, *J* = 8.0, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 20.8, 116.7, 117.3, 126.9, 126.9, 127.4, 127.5, 128.8, 134.2, 134.6, 140.4, 141.0. HRMS(ESI-TOF) Calcd for C<sub>16</sub>H<sub>14</sub>N, [M+H]<sup>+</sup> *m/z* 220.1126; Found 220.1123.



#### (E)-4-(3-cyanoprop-1-en-1-yl)phenyl acetate 4i

Colorless oil. Petroleum ether/ethyl acetate = 30/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.30 (s, 3H), 3.29 (dd,  $J_1$  = 1.2 Hz,  $J_2$  = 5.6 Hz, 2H), 6.01 (dt,  $J_1$  = 16.0,  $J_2$  = 5.6 Hz, 1H), 6.72 (d, J = 15.6 Hz 1H), 7.06 (d, J = 8.8 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 20.7, 21.1, 117.0, 117.2, 121.9, 127.4, 133.4, 133.6, 150.5, 169.3. HRMS(ESI-TOF) Calcd for C<sub>12</sub>H<sub>12</sub>NO<sub>2</sub>, [M+H]<sup>+</sup> *m/z* 202.0868; Found 202.0868.



#### (E)-4-(4-methoxyphenyl)but-3-enenitrile 4j

White solid. mp: 78-79 °C. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 3.26 (dd,  $J_1$  = 1.6 Hz,  $J_2$  = 5.6 Hz, 2H), 3.81 (s, 3H), 5.90 (dt,  $J_1$  = 15.6,  $J_2$  = 5.6 Hz, 1H), 6.66 (d, J = 16.0 Hz 1H), 6.87 (d, J = 8.8 Hz, 2H), 7.30 (d, J = 8.8 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 20.7, 55.2, 114.0, 114.3, 117.5, 127.6, 128.4, 134.0, 159.6. HRMS(ESI-TOF) Calcd for C<sub>11</sub>H<sub>12</sub>NO, [M+H]<sup>+</sup> *m/z* 174.0919; Found

#### (E)-4-(4-ethoxyphenyl)but-3-enenitrile 4k

White solid. mp: 81-82 °C. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 1.42 (t *J* = 6.8 Hz 3H), 3.26 (d, *J* = 5.2 Hz, 2H), 4.04 (q, *J* = 6.8 Hz, 2H), 5.90 (dt, *J*<sub>1</sub> = 15.2, *J*<sub>2</sub> = 5.6 Hz, 1H), 6.66 (d, *J* = 15.6 Hz, 1H), 6.86 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 14.8, 20.8, 63.5, 114.2, 114.7, 117.5, 127.7, 128.3, 134.2, 159.1. HRMS(ESI-TOF) Calcd for C<sub>12</sub>H<sub>14</sub>NO, [M+H]<sup>+</sup> *m/z* 188.1075; Found 188.1077.



#### (E)-4-(3-fluorophenyl)but-3-enenitrile 4l

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 3.31 (dd,  $J_1$  = 1.6 Hz,  $J_2$  = 5.6 Hz, 2H), 6.07 (dt,  $J_1$  = 16.0,  $J_2$  = 5.6 Hz, 1H), 6.72 (d, J = 15.6 Hz, 1H), 6.98 (dt,  $J_1$  = 8.4 Hz,  $J_2$  = 2.0 Hz, 1H), 7.07 (d, J = 9.6 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 7.28-7.33 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 20.7, 112.9 (d, J = 22.0 Hz), 115.1 (d, J = 21.0 Hz), 117.0, 118.2, 122.4 (d, J = 3.0 Hz), 130.2 (d, J = 8.0 Hz), 133.5 (d, J = 2.0 Hz), 137.9 (d, J = 8.0 Hz), 163.0 (d, J = 245.0 Hz). HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>9</sub>FN, [M+H]<sup>+</sup> *m/z* 162.0719; Found 162.0722.



#### (E)-4-(3-chlorophenyl)but-3-enenitrile 4m

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 3.30 (dd,  $J_1$  = 1.6 Hz,  $J_2$  = 5.6 Hz, 2H), 6.07 (dt,  $J_1$  = 15.6,  $J_2$  = 5.6 Hz,

1H), 6.69 (d, J = 16.0, 1H), 7.23-7.30 (m, 3H), 7.36 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 20.7, 116.9, 118.3, 124.7, 126.3, 128.2, 129.9, 133.3, 134.6, 137.4.$  HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>9</sub>ClN, [M+H]<sup>+</sup> m/z 178.0424; Found 178.0427.



#### (E)-4-(3-bromophenyl)but-3-enenitrile 4n

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 3.30 (dd,  $J_1$  = 1.6 Hz,  $J_2$  = 5.6 Hz, 2H), 6.07 (dt,  $J_1$  = 16.0,  $J_2$  = 5.6 Hz, 1H), 6.68 (d, J = 16.0, 1H), 7.21 (t, J = 8.0, 1H), 7.28 (d, J = 8.0, 1H), 7.41 (d, J = 8.0, 1H), 7.52 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 20.7, 116.9, 118.3, 122.8, 125.2, 129.3, 130.2, 131.2, 133.2, 137.7. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>9</sub>BrN, [M+H]<sup>+</sup> *m/z* 221.9918, 223.9898; Found 221.9923, 223.9896.



### (E)-4-(2-fluorophenyl)but-3-enenitrile 40

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 3.32 (dd,  $J_1$  = 1.6 Hz,  $J_2$  = 5.6 Hz, 2H), 6.18 (dt,  $J_1$  = 16.0,  $J_2$  = 5.6 Hz, 1H), 6.85 (d, J = 16.0 Hz, 1H), 7.04-7.14 (m, 2H), 7.23-7.29 (m, 1H), 7.40 (dt,  $J_1$  = 7.6 Hz,  $J_2$  = 1.2 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 21.2, 115.9 (d, J = 22.0 Hz), 117.1, 119.7 (d, J = 6.0 Hz), 123.4 (d, J = 13.0 Hz), 124.2 (d, J = 4.0 Hz), 127.7 (d, J = 3.0 Hz), 127.9 (d, J = 3.0 Hz), 129.6 (d, J = 9.0 Hz), 160.3 (d, J = 249.0 Hz). HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>9</sub>FN, [M+H]<sup>+</sup> *m*/z 162.0719; Found 162.0715.



(E)-4-(2-chlorophenyl)but-3-enenitrile 4p

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 3.34 (dd,  $J_1$  = 1.6 Hz,  $J_2$  = 5.6 Hz, 2H), 6.05 (dt,  $J_1$  = 15.6,  $J_2$  = 6.0 Hz, 1H), 7.11 (d, J = 15.6, 1H), 7.21-7.25 (m, 2H), 7.36-7.38 (m, 1H), 7.46-7.49 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 21.0, 117.0, 119.7, 127.0, 127.0, 129.3, 129.8, 131.3, 133.1, 133.9. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>9</sub>CIN, [M+H]<sup>+</sup> *m/z* 178.0424; Found 178.0421.



#### (E)-4-(2-bromophenyl)but-3-enenitrile 4q

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 3.30 (dd,  $J_1$  = 1.6 Hz,  $J_2$  = 5.6 Hz, 2H), 6.07 (dt,  $J_1$  = 15.6,  $J_2$  = 5.6 Hz, 1H), 6.69 (d, J = 15.6, 1H), 7.22-7.29 (m, 3H), 7.36 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 20.7, 116.9, 118.3, 124.7, 126.4, 128.2, 129.9, 133.3, 134.7, 137.4. HRMS(ESI-TOF) Calcd for C<sub>10</sub>H<sub>9</sub>BrN, [M+H]<sup>+</sup> *m/z* 221.9918, 223.9898; Found 221.9913, 223.9895.



#### (E)-4-(2,5-dimethylphenyl)but-3-enenitrile 4r

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.32 (s, 6H), 3.31 (dd,  $J_1$  = 1.2 Hz,  $J_2$  = 5.6 Hz, 2H), 5.93 (dt,  $J_1$  = 15.6,  $J_2$  = 5.6 Hz, 1H), 6.93 (d, J = 15.6, 1H), 7.02 (d, J = 8.0, 1H), 7.06 (d, J = 7.6, 1H), 7.21 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 19.2, 20.9, 21.0, 117.4, 117.7, 126.4, 128.9, 130.3, 132.5, 132.8, 134.6, 135.6. HRMS(ESI-TOF) Calcd for C<sub>12</sub>H<sub>14</sub>N, [M+H]<sup>+</sup> *m/z* 172.1126; Found 172.1123.



#### 4,4-diphenylbut-3-enenitrile 4s

White solid. mp: 76-78 °C. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 3.16 (d, *J* = 7.6, 2H), 6.05 (t, *J* = 7.6, 1H), 7.18-7.46 (m, 10H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 18.3, 115.4, 118.1, 127.4, 128.1, 128.2, 128.3, 128.8, 129.3, 137.9, 140.6, 147.5. HRMS(ESI-TOF) Calcd for C<sub>16</sub>H<sub>14</sub>N, [M+H]<sup>+</sup> *m/z* 220.1126; Found 220.1125.



#### 2-(1H-inden-3-yl)acetonitrile 4t

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 3.43 (s, 2H), 3.57 (s, 2H), 6.87 (s, 1H), 7.21 (t, *J* = 7.2 Hz, 1H), 7.29 (t, *J* = 7.2 Hz, 1H), 7.36 (d, *J* = 7.2 Hz, 1H), 7.43 (d, *J* = 7.2 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 19.9, 40.7, 117.1, 121.0, 123.6, 125.1, 126.7, 130.9, 136.1, 142.8, 143.7. HRMS(ESI-TOF) Calcd for C<sub>11</sub>H<sub>10</sub>N, [M+H]<sup>+</sup> *m/z* 156.0813; Found 156.0811.



#### (E)-4-(9H-carbazol-9-yl)but-3-enenitrile 4u

White solid. mp: 88-89 °C. Petroleum ether/ethyl acetate = 20/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 3.39 (dd,  $J_1$  = 1.6 Hz,  $J_2$  = 6.0 Hz, 2H), 5.94 (dt,  $J_1$  = 14.0,  $J_2$  = 6.0 Hz, 1H), 7.30-7.34 (m, 3H), 7.47-7.51 (m, 2H), 7.58 (t, J = 8.0 Hz, 2H), 8.07 (d, J = 8.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 19.0, 106.0, 110.2, 117.3, 120.3, 121.0, 124.1, 126.4, 127.7, 139.1. HRMS(ESI-TOF) Calcd for C<sub>16</sub>H<sub>13</sub>N<sub>2</sub>, [M+H]<sup>+</sup> *m/z* 233.1079; Found 233.1076.



**4-(4-chlorophenyl)pent-4-enenitrile 4v and (E)-4-(4-chlorophenyl)pent-3-enenitrile 4v' (3:2)** Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.07 (s, 3H), 2.47 (t, *J* = 7.2 Hz, 2H), 2.83 (t, *J* = 7.2 Hz, 2H), 3.25 (d, *J* = 6.8 Hz, 2H), 5.23 (s, 1H), 5.41 (s, 1H), 5.70 (dt, *J*<sub>1</sub> = 7.2 Hz, *J*<sub>2</sub> = 1.2 Hz, 1H), 7.29-7.35 (m, 8H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 16.3, 16.4, 16.9, 31.1, 115.1, 115.4, 117.8, 118.8, 127.1, 127.4, 128.6, 128.8, 133.7, 134.0, 137.7, 140.3, 143.6. HRMS(ESI-TOF) Calcd for C<sub>11</sub>H<sub>11</sub>ClN, [M+H]<sup>+</sup> *m/z* 192.0580; Found 192.0575.



#### 7-bromo-4-phenylhept-4-enenitrile 6

Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  = 2.35 (t, *J* = 7.2 Hz, 2H), 2.83-2.91 (m, 4H), 3.51 (t, *J* = 6.8 Hz, 2H), 5.78 (t, *J* = 7.2 Hz, 1H), 7.29-7.40 (m, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 16.2, 25.9, 31.8, 32.2, 119.0, 126.5, 127.7, 128.2, 128.6, 139.0, 140.3. HRMS(ESI-TOF) Calcd for C<sub>13</sub>H<sub>15</sub>BrN, [M+H]<sup>+</sup> *m/z* 264.0388, 266.0367; Found 264.0385, 266.0363.

# 5. Mechanistic Study

# 5.1 Radical Inhibition Experiments

| Ph → NC Br<br>1a 2a | Cul (10 mol%)<br>Phen (20 mol%)<br>CH <sub>3</sub> CN, 110 °C, N <sub>2</sub><br>NC<br>Br<br>Ph<br>Br<br>Ph<br>3a |
|---------------------|-------------------------------------------------------------------------------------------------------------------|
| Additive            | <b>3a</b> , yield (%)                                                                                             |
| none                | 91                                                                                                                |
| BHT (2 equiv)       | 10                                                                                                                |
| TEMPO (2 equiv)     | 0                                                                                                                 |

Reactions were carried out with 1a (0.3 mmol), 2a (0.60 mmol), CuI (10 mol %), and Phen (20 mol %) in CH<sub>3</sub>CN

(1 mL) under  $N_2$  atmosphere at 110 °C for 1.0 h. Yield of the isolated product.

| Ph + NC Br -<br>1a 2a | Cul (10 mol%)         Phen (20 mol%)         DBU (2.0 equiv)         CH <sub>3</sub> CN, 110 °C         w or w/o additive |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------|
| Additive              | <b>4a</b> , yield (%)                                                                                                     |
| none                  | 90                                                                                                                        |
| BHT (2 equiv)         | 16                                                                                                                        |
| TEMPO (2 equiv)       | 0                                                                                                                         |

Reactions were carried out with 1a (0.3 mmol), 2a (0.6 mmol), CuI (10 mol %), Phen (20 mol %) and DBU (2.0

equiv) in CH<sub>3</sub>CN (1 mL) under N<sub>2</sub> atmosphere at 110 °C for 1.0 h. Yield of the isolated product.

#### 5.2 Radical Clock Experiment



To a solution of the styrene **5** (43.3 mg, 0.3 mmol) in CH<sub>3</sub>CN (1.0 ml) was added the  $\alpha$ bromoacetonitrile **2a** (38 µL, 0.60 mmol), Phen (10.8 mg, 0.06 mmol), and CuI (5.7 mg, 0.03 mmol) under N<sub>2</sub> in a Schlenck tube. The reaction mixture was stirred at 110 °C for 1.0 h. After the reaction finished, the reaction mixture was cooled to room temperature and quenched by water. The mixture was extracted with EtOAc (3.0 mL×3), the combined organic phases were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and the solvent was evaporated under vacuum. The residue was purified by column chromatography (petroleum ether /ethyl acetate = 40:1) to give the corresponding products **6** and **7** (59.6 mg, total yield 83%).

# 6. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of Compounds 3, 4 and 6

Product 3a

























# **Product 3k**

| 84<br>86<br>86<br>86<br>86<br>86<br>86<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83 | 5.517 | 6 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |
|----------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------|
|                                                                                                                      |       |                                           |



# Product 31

| 887<br>571<br>558<br>558<br>558<br>558<br>558<br>558<br>558<br>558<br>558<br>55 | 515<br>502<br>493<br>481 | 802<br>802<br>803<br>805<br>805<br>805<br>805<br>805<br>805<br>805<br>805 |
|---------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------|
| 666666666666666                                                                 | 5.5.5.5                  | 2222222222222222222                                                       |
|                                                                                 |                          |                                                                           |











210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10





**S36** 



# **Product 3s**





















S45











# Product 41





# Product 4n



# **Product 4o**





# Product 4p











 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90



S58















