Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting information

for

'Sulfonyl-Azide-Free' (SAFE) Aqueous-Phase Diazo Transfer Reaction for Parallel and Diversity-Oriented Synthesis

Dmitry Dar'in, Grigory Kantin, and Mikhail Krasavin*

Table of Contents

I. General Information	S2
II. Preparation of starting materials	S2
III. Preparation of diazo carbonyl compounds 1'-73'	S4
IV. Preparation of compounds 74-78	S17
V. Preparation of compounds 79-83 and 86 from diazo ketoester 11'	S19
VI. Crystallographic data for compound 81	S22
VII. References	S23
VII. Copies of ¹ H and ¹³ C spectra of synthesized compounds	

I. General Information

Substrates for diazo transfer reactions were purchased from commercial sources and used as received or were synthesized according to known procedures. NMR spectroscopic data were recorded with a 400 MHz spectrometer (400.13 MHz for ¹H and 100.61 MHz for ¹³C) in CDCl₃ and in DMSO-*d*₆ and were referenced to residual solvent proton signals ($\delta_{\rm H} = 7.26$ and $\delta_{\rm H} = 2.50$, respectively) and solvent carbon signals ($\delta_{\rm C} = 77.0$ and $\delta_{\rm C} = 39.5$, respectively). All chemical shifts are reported in parts per million (ppm). Abbreviations used in the description of resonances are: s (singlet), d (doublet), t (triplet), q, (quartet), br (broad), m (multiplet). Coupling constants (*J*) are quoted to the nearest 0.1 Hz. Mass spectra were recorded with a HRMS-ESI-qTOF spectrometer (electrospray ionization mode). Melting points were determined with a melting point apparatus Stuart SMP 50 in open capillary tubes. Single crystal X-ray data were obtained using an Agilent Technologies SuperNova Atlas and an Agilent Technologies Xcalibur Eos diffractometers at a temperature of 130 K. Microwave syntheses were performed in Biotage[®] Initiator+ microwave reactor (4th generation) with the use of Biotage Microwave vials with crimp caps. Flash column chromatography was performed by Biotage[®] Isolera Prime chromatograph using silica gel Merk grade 60 (0.040–0.063 mm) 230–400 mesh (isocratic or gradient elution as indicated).

II. Preparation of starting materials

Synthesis of 3-(chlorosulfonyl)benzoic acid

Benzoic acid (36.6 g, 0.3 mol) was added in one portion to chlorosulfonic acid (140 mL) under stirring at room temperature. The mixture was heated at 140 °C for 6 hours. Upon cooling to ambient temperature the resulting viscous solution was slowly poured into finely crushed ice (800 g) maintaining temperature lower then 25 °C. White precipitate was filtered off, washed with cold water (2×150 mL) and dried *in vacuo* (at 40 °C/10 Tor) to afford 58.2 g (88%) of titled compound as white powder. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 11.12 (br.s, 1H), 8.81 (t, *J* = 1.6, 1H), 8.51 (dt, *J* = 7.8, 1.3, 1H), 8.33 (ddd, *J* = 8.0, 2.0, 1.1, 1H), 7.83 (t, *J* = 7.9, 1H). Purity according to ¹H NMR is 95%. Presumably the substance contains about 5% *para*-isomer. The prepared sulfonyl chloride was used in diazo transfer reactions without any further purification.

Synthesis of 2-((3s,5s,7s)-adamantan-1-ylsulfonyl)-1-phenylethanone (34)

To stirred solution of (3s,5s,7s)-adamantane-1-thiol (0.84 g, 5 mmol) and triethylamine (1.39 mL, 10 mmol) in the mixture of 14 mL acetonitrile and 5 mL water was added 2-bromo-1-phenylethanone (1.095 g, 5.5 mmol) in several portions. Reaction mixture was stirred over night at ambient temperature, all volatiles were evaporated *in vacuo*, and the residue was dissolved in mixture of 5 mL chloroform and 5 mL water. Aqueous phase was extracted with 5 mL of chloroform and combined organic phases

were washed with 5 mL of water. After drying over calcium chloride and concentration under reduced pressure semi solid substance was obtained. To a solution of this substance in 20 mL of methanol under ice cooling the solution of Oxone (5.53 g, 9 mmol) in 20 mL of water was added dropwise. The suspension was stirred at room temperature for 4 hours and methanol was removed *in vacuo*. To the residue 50 mL of water were added, undissolved crystals were filtered off and washed with water (2×20 mL). The precipitate was recrystallized from ethanol and dried *in vacuo* (at 40 °C/10 Tor) to afford 0.785 g (49% over two steps) of title compound as white powder, m.p. 165.1–167.7 °C (ethanol). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 8.11 – 8.05 (m, 2H, *o*-Ph), 7.67 – 7.61 (m, 1H, *p*-Ph), 7.56 – 7.49 (m, 2H, *m*-Ph), 4.52 (s, 2H, CH₂), 2.28 – 2.20 (m, 3H), 2.13 (d, *J* = 2.7, 6H), 1.83 – 1.70 (m, 6H). NMR ¹³C (101 MHz, CDCl₃) δ 188.8, 136.4, 134.2, 129.7, 128.7, 63.9, 54.4, 35.7, 34.8, 28.3. HRMS (ESI +ve) Exact mass calculated for C₁₈H₂₂N₂NaO₃S [M+Na]⁺ : 341.1182, found 341.1190.

Synthesis of 1-(indolin-1-yl)-2-(methylsulfonyl)ethanone (36)

To an ice-salt cooled solution of indoline (1.49 g, 12.5 mmol) and DIPEA (2.13 g, 2.87 mL, 16.5 mmol) in DCM (10 mL) was added dropwise the solution of 2-oxopropane-1-sulfonyl chloride¹ (1.75 g, 11.2 mmol) in DCM (2 mL). The mixture was stirred over night at ambient temperature, then washed twice with 10 mL of 3% HCl and twice with 10 mL of water. After drying over sodium sulphate the solvent was removed *in vacuo*. Resulting dark viscous oil was purified by flash column chromatography on silica (eluent – DCM) to afford 2.21 g (82%) as light beige solid, m.p. 69.4–71.5 °C. NMR ¹H (400 MHz, CDCl₃, *J*/Hz): δ 7.40 (d, *J* = 8.0, 1H), 7.27 – 7.18 (m, 2H), 7.07 (td, *J* = 7.5, 1.1, 1H), 4.07 (t, *J* = 8.5, 2H), 4.06 (s, 2H), 3.19 (t, *J* = 8.5, 2H), 2.43 (s, 3H). NMR ¹³C (101 MHz, CDCl₃): δ 196.5, 141.1, 131.7, 127.9, 125.6, 124.3, 113.9, 60.1, 50.7, 31.4, 28.0. Exact mass calculated for C₁₁H₁₃NNaO₃S [M+H]⁺ : 262.0508, found 262.0516.

Synthesis of 2-oxo-*N*-(*p*-tolyl)propane-1-sulfonamide (63)

To an ice-salt cooled solution of *p*-toluidine (1.177 g, 11 mmol) and *N*,*N*-diethylaniline (1.639 g, 1.76 mL, 11 mmol) in DCM (20 mL) was added dropwise the solution of 2-oxopropane-1-sulfonyl chloride¹ (1.56 g, 10 mmol) in DCM (10 mL). The mixture was stirred over night at ambient temperature, then washed twice with 10 mL of 3% HCl and twice with 10 mL of water. After drying over sodium sulphate the solvent was removed *in vacuo*. Resulting dark viscous oil solidified on standing. Recrystallizing from wet methanol and drying *in vacuo* (at 40 °C/10 Tor) afforded 0.914 g (40%), white crystalls, m.p. 88.1–89.1 °C (MeOH–H₂O). NMR ¹H (400 MHz, CDCl₃, *J*/Hz): δ 7.21 (d, *J* = 8.6, 2H), 7.17 (d, *J* = 8.6, 2H), 6.87 (s, 1H), 4.04 (s, 2H), 2.37 (s, 3H), 2.35 (s, 3H). NMR ¹³C (101 MHz, CDCl₃): δ 198.1, 136.5, 133.3, 130.2 123.1, 59.4, 31.6, 20.9. HRMS (ESI +ve) Exact mass calculated for C₁₀H₁₃NNaO₃S [M+Na]⁺ : 250.0508, found 250.0517.

Synthesis of 6,7-dihydropyrido[3,2,1-ij]quinoline-1,3(2H,5H)-dione (40)

To heated up 220 °C solution of triethyl methanetricarboxylate (2.32 g, 10 mmol) in diphenyl ether (5 mL) was added 1,2,3,4-tetrahydroquinoline (1.33 g, 10 mmol) dropwise under stirring. Reaction mixture was held at 220 °C during 45 min, cooled to room temperature and combined with 10% potassium carbonate solution (20 mL). After extraction with ethyl acetate (10 mL) the aqueous phase was acidified with concentrated HCl up to pH 1–2. Orange precipitate was filtered off, washed twice with water (10 mL) and dried in air. The obtained substance was mixed with DMSO (12 mL), water (0.24 mL) and heated to 160 °C (suspension was dissolved and gas began to emit). After an hour the reaction mixture was cooled to room temperature, combined with water (10 mL), the formed precipitated was filtered off, washed with water (10 mL), methanol (4 mL) and ether (4 mL). Drying *in vacuo* (at 40 °C/10 Tor) yielded 1.025 g (50% over two steps) of the title compound as light yellow crystals, m.p. 293.9–295.4 °C. NMR ¹H (400 MHz, 80 °C, DMSO-*d*₆, *J*/Hz) δ 10.90 (s, 1H), 7.75 – 7.71 (m, 1H), 7.37 – 7.32 (m, 1H), 7.10 (dd, *J* = 8.0, 7.3 Hz, 1H), 5.87 (s, 1H), 4.06 – 3.92 (m, 2H), 2.94 (t, *J* = 6.2 Hz, 2H), 2.05 – 1.94 (m, 2H). NMR ¹³C (101 MHz, 80 °C, DMSO-*d*₆) δ 162.6, 161.4, 137.2, 130.6, 125.0, 121.4, 121.9, 116.3, 98.4, 41.6, 27.7, 20.9. Exact mass calculated for C₁₂H₁₁NNaO₂ [M+Na]⁺ : 224.0682, found 224.0689.

III. Preparation of diazo carbonyl compounds

General procedure for the preparation of diazo compounds in one pot format (Method A)

To a stirred solution of sodium azide (195 mg, 3 mmol) and potassium carbonate (552 mg, 4 mmol) in water (4 mL) 3-(chlorosulfonyl)benzoic acid (441 mg, 2 mmol) and corresponding substrate (1.5 mmol) were added (in some cases MeCN (1–2 mL) was additionally added as indicated). The reaction mixture was vigorously stirred at ambient temperature. Upon completion of diazo transfer reaction the product was extracted with chloroform (2×8 mL), organic phase was dried over calcium chloride and evaporated to dryness to afford diazo carbonyl compound. Usually the purity of thus isolated substance was above 95%. In some cases further purification by means of flash chromatography on silica gel or recrystallization was applied as indicated.

General procedure for the preparation of diazo compounds in 'array' format (Method B)

To a stirred solution of sodium azide (0.98 g, 15 mmol) and potassium carbonate (2.76 g, 20 mmol) in water (20 mL) was added 3-(chlorosulfonyl)benzoic acid (2.21 g, 10 mmol) and the mixture was stirred at ambient temperature for 10 minutes to give clear solution. The resulting aqueous solution of 3-(azidosulfonyl)benzoic acid potassium salt was used for diazo transfer reactions.

To the obtained solution taken in a volume containing 1 mmol of sulfonyl azide (1/10 part of whole volume) was added substrate for diazo transfer (0.75 mmol) under stirring at ambient temperature (acetonitrile (0.5–1 mL) was added additionally if indicated). The mixture was stirred for indicated period of time followed by extraction with chloroform (2×4 mL), organic phase was dried over calcium chloride and evaporated to dryness to afford diazo carbonyl compound.

5-Diazo-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione² (1'). The title compound was synthesized from 1,3-dimethylbarbituric acid (234 mg, 1.5 mmol) according to Method A. Reaction time – 1 hour. Yield 248 mg (91%). White solid; m.p. 160.0–161.9 °C. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 3.34 (s, 6H, 2CH₃). NMR ¹³C (101 MHz, CDCl₃) δ 158.2, 150.5, 71.7 (C=N₂), 28.5 (2CH₃).

Ethyl 2-diazo-3-oxobutanoate³ (2'). The title compound was synthesized from ethyl 3-oxobutanoate (390 mg, 3 mmol) according to Method A. Reaction time – 1.5 hour. Yield 370 mg (79%). Transparent liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 4.30 (q, *J* = 7.1, 2H, C<u>H</u>₂CH₃), 2.48 (s, 3H, 4-CH₃), 1.33 (t, *J* = 7.1, 3H, CH₂C<u>H</u>₃). NMR ¹³C (101 MHz, CDCl₃) δ 190.1(C=O), 161.4 (CO₂), 76.3 (C=N₂), 61.4 (<u>C</u>H₂CH₃), 28.2 (4-CH₃), 14.3 (CH₂CH₃).

3-Diazopentane-2,4-dione⁴ (**3'**). The title compound was synthesized from acetylacetone (1.2 g, N₂ 12 mmol) according to Method A. Reaction time – 1 hour. Yield 1.24 g (82%). Transparent liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 2.42 (s, 6H, 2CH₃). NMR ¹³C (101 MHz, CDCl₃) δ 188.2 (2C=O), 84.5 (C=N₂), 28.4 (2CH₃).

5-Diazo-2,2-dimethyl-1,3-dioxane-4,6-dione⁵ (**4'**). The title compound was synthesized from Meldrum's acid (216 mg, 1.5 mmol) according to Method A. Reaction time – 1 hour. V_{μ} Vield 224 mg (88%). Pale yellow solid; m.p. 95–96 °C. NMR ¹H (400 MHz, CDCl₃, J/Hz) δ 1.80 (c, 6H, 2CH₃). NMR ¹³C (101 MHz, CDCl₃) δ 158.3 (2C=O), 107.1 (<u>C</u>(CH₃)₂), 64.9 (C=N₂), 26.8 (2CH₃).

5-Diazo-1,3-dimethyl-2-thioxodihydropyrimidine-4,6(1*H*,5*H*)-dione (5'). The title compound was synthesized from 2-thio-1,3-dimethylbarbituric acid (258 mg, 1.5 mmol) according to Method A. Reaction time – 1 hour. Yield 241 mg (81%). Light lilac solid; m.p. 112.2–113.0 °C. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 3.72 (s, 6H, 2CH₃). NMR ¹³C (101 MHz, CDCl₃) δ 178.9 (C=S), 156.8 (2C=O), 73.9 (C=N₂), 35.41 (2CH₃). HRMS (ESI +ve) Exact mass calculated for C₆H₆N₄NaO₂S [M+Na]⁺ : 221.0104, found 221.0104.

2-Diazo-5,5-dimethylcyclohexane-1,3-dione⁶ (6'). The title compound was synthesized from dimedone (210 mg, 1.5 mmol) according to Method A. Reaction time – 1 hour. Yield 239 mg (96%). Pale yellow solid; m.p. 105.9–107.0 °C (decomp.). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 2.44 (c, 4H, 2CH₂), 1.12 (c, 6H, 2CH₃). NMR ¹³C (101 MHz, CDCl₃) δ 189.8 (2C=O), 83.6 (C=N₂), 50.5 (2CH₂), 31.1 (<u>C</u>(CH₃)₂), 28.3 (2CH₃).

Diethyl 2-diazomalonate⁴ (7'). The title compound was synthesized from diethyl malonate (960 mg, N₂ 0, 1, 0 EtO OEt OEt OEt OEt (C=N₂), 61.6 (2<u>C</u>H₂CH₃), 14.3 (2CH₂<u>C</u>H₃).

2-Diazo-1-phenylbutane-1,3-dione⁷ (8'). The title compound was synthesized from 1-phenylbutane-N₂ N_2 N_2 N (m, 1H, *p*-Ph), 7.50 (t, J = 7.5 Hz, 2H, *t*-Ph), 2.58 (s, 3H, CH₃). NMR ¹³C (101 MHz, CDCl₃) δ 190.7, 185.0, 137.4, 132.7, 128.9, 127.3, 83.7 (C=N₂), 29.2 (CH₃).

(E)-Dimethyl 4-diazopent-2-enedioate⁸ (9'). The title compound was synthesized from dimethyl glutaconate (E/Z mixture ~ 6:1) (237 mg, 1.5 mmol) according to Method A (with N_2 addition of MeCN (1 mL)). Reaction time – 1.5 hour. Yield 188 mg (68%). CO₂Me Yellow solid; m.p. 68.5–70.5 °C (decomp.). NMR 1 H (400 MHz, CDCl₃, J/Hz) δ ÓMe 7.35 (d, J = 15.7, 1H), 5.74 (d, J = 15.7, 1H), 3.86 (s, 3H), 3.76 (s, 3H). NMR ¹³C (101 MHz, CDCl₃) δ 166.4, 163.5, 131.0, 111.3, 65.2 (C=N₂), 52.6, 51.6.

4-Diazo-2-methylisoquinoline-1,3(2H,4H)-dione⁹ (10'). The title compound was synthesized from Nmethyl homophthalimide (526 mg, 3.0 mmol) according to Method A (with addition N_2 of MeCN (4 mL)). Reaction time – 4 hours. Yield 518 mg (86%). Yellow solid; m.p. 146.0–147.5 °C (MeOH). NMR ¹H (400 MHz, CDCl₃, J/Hz) δ 8.29 (d, J = 7.9, 1H), 7.67 (t, J = 7.9, 1H), 7.34 (t, J = 7.8 1H), 7.13 (d, J = 7.9, 1H), 3.46 (s, 3H, CH₃). Ме NMR ¹³C (101 MHz, CDCl₃) δ 162.9, 162.7, 134.1, 130.1, 126.4, 125.7, 120.8, 118.6,

68.1(C=N₂), 27.4 (CH₃).

tert-Butyl 2-diazo-3-oxobutanoate¹⁰ (11'). The title compound was synthesized from tert-butyl 3oxobutanoate (1.42 g, 9.0 mmol) according to Method A (with addition of MeCN (6 mL)). Reaction time -1.5 hour. Yield 1.52 g (92%). Transparent liquid. NMR ¹H (400 MHz, CDCl₃, J/Hz) δ 2.45 (s, 3H, 4-CH₃), 1.54 (s, 9H, C(CH₃)₃). NMR ¹³C (101 MHz, CDCl₃) δ 190.5 (C=O), 160.6 (CO₂), 83.1 (C(CH₃)₃), 77.1 (C=N₂), 28.3, 28.3.

1-Diazo-1-tosylpropan-2-one¹¹ (12'). The title compound was synthesized from (ptolylsulfonyl)acetone¹² (318 mg, 1.5 mmol) according to Method A (with addition of N_2 MeCN (2 mL)). Reaction time - 1 hour. Yield 328 mg (92%). Yellow solid; m.p. 108.3-109.5 °C. NMR ¹H (400 MHz, CDCl₃, J/Hz) δ 7.87 (d, J = 8.4, 2H), 7.40 (d, J = 8.1, Me 2H), 2.49 (s, 3H), 2.31 (s, 3H). NMR ¹³C (101 MHz, CDCl₃) δ 185.9 (C=O), 145.5, 139.2, 130.1, 127.3, 86.1 (C=N₂), 27.0, 21.7. Me

1.3-Diphenvl-5-diazopvrimidine-2.4.6(1H,3H,5H)-trione (13'). The title compound was synthesized from 1,3-diphenylbarbituric acid¹³ (420 mg, 1.5 mmol) according to Method A (with N_2 addition of MeCN (2 mL)). Reaction time - 1 hour. The obtained substance was purified by flash column chromatography on SiO₂ eluting with DCM. Yield 304 mg (66%). White solid; m.p. 103.4–105.6 °C (decomp.). NMR ¹H (400 MHz, CDCl₃) δ 7.57 – 7.43 Ρh (m, 3H), 7.34 - 7.29 (m, 2H). NMR ¹³C (101 MHz, CDCl₃) δ 157.9 (4,6-C), 150.0 (2-

C), 133.5, 129.4, 129.4, 128.6, 72.7 (C=N₂). HRMS (ESI +ve) Exact mass calculated for C₁₆H₁₀N₄NaO₃ [M+Na]⁺: 329.0645, found 329.0657.

Ethyl 2-diazo-3-oxo-3-(pyrrolidin-1-yl)propanoate¹⁴ (14'). The title compound was synthesized from

ethyl 3-oxo-3-(pyrrolidin-1-yl)propanoate (278 mg, 1.5 mmol) according to Method A. Reaction time – 30 hours. Yield 266 mg (84%). Yellow liquid. NMR ¹H (400 MHz, CDCl₃, J/Hz) δ 4.25 (q, J = 7.1, 2H, CH₂CH₃), 3.52 (t, J = 6.8, 4H, 2NCH₂), 1.94 – 1.83 (m, 4H, 2NCH₂CH₂), 1.30 (t, J = 7.1 Hz, 3H, CH₂CH₃). NMR ¹³C (101 MHz, CDCl₃) δ 162.1, 159.6, 66.8 (C=N₂), 61.2 (CH₂CH₃), 47.8 (br.s, 2NCH₂), 24.8 (br.s, 2NCH₂CH₂), 14.4 (CH₂CH₃).

2-Diazo-5-phenylcyclohexane-1,3-dione¹⁵ (15'). The title compound was synthesized from 5phenylcyclohexane-1,3-dione (282 mg, 1.5 mmol) according to Method A (with addition of MeCN (2 mL)). Reaction time – 2 hours. Yield 282 mg (88%). Pale yellow solid; m.p. 122.0–122.6 °C (decomp.). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.39 (t, *J* = 7.4, 2H, *m*-Ph), 7.34 – 7.27 (m, 1H, *p*-Ph), 7.26 – 7.20 (m, 2H, *o*-Ph), 3.44 (tt, *J* = 11.6, 4.2, 1H, C<u>H</u>Ph), 2.90 (dd, *J* = 17.2, 4.2, 2H, 2C<u>H</u>H), 2.79 (dd, *J* = 17.2, 11.7, 2H, 2CH<u>H</u>). NMR ¹³C (101 MHz, CDCl₃) δ 189.2 (2C=O), 141.1, 129.1, 127.5, 126.5, 84.8 (C=N₂), 44.2 (2CH₂), 36.5 (CHPh).

2-Diazo-1*H***-indene-1,3(2***H***)-dione¹⁶ (16'). The title compound was synthesized from 1***H***-indene-N₂ 1,3(2***H***)-dione (220 mg, 1.5 mmol) according to Method A. Reaction time – 1 hour. Vield 208 mg (81%). Yellow solid; m.p. 144.9–146.5 °C. NMR ¹H (400 MHz, CDCl₃, J/Hz) \delta 7.89 – 7.81 (m, 2H), 7.80 – 7.70 (m, 2H). NMR ¹³C (101 MHz, CDCl₃) \delta 182.1 (2C=O), 137.1, 134.8, 122.7, 70.13 (C=N₂).**

2-Diazo-1,3-diphenylpropane-1,3-dione¹⁷ (**17'**). The title compound was synthesized from 1,3diphenylpropane-1,3-dione (336 mg, 1.5 mmol) according to Method A (with addition of MeCN (2 mL)). Reaction time – 1.5 hours. Yield 322 mg (86%). Pale yellow solid; m.p. 107.8–108.2 °C (decomp.). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.62 – 7.57 (m, 4H, *o*-Ph), 7.49 – 7.43 (m, 2H, *p*-Ph), 7.37 – 7.31 (m, 4H, *m*-Ph). NMR ¹³C (101 MHz, CDCl₃) δ 186.4 (2C=O), 137.0, 132.6, 128.4, 128.3, 84.4 (C=N₂).

Ethyl 2-diazo-4,4-dimethyl-3-oxopentanoate¹⁸ (18'). The title compound was synthesized from ethyl N_2 4,4-dimethyl-3-oxopentanoate (1.03 g, 6.0 mmol) according to Method A (with addition of MeCN (6 mL)). Reaction time – 2 hours. Yield 1.02 g (86%). Transparent liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 4.28 (q, *J* = 7.1, 2H, CH₂CH₃), 1.33 (t, *J* = 7.1, 3H, CH₂CH₃), 1.30 (s, 9H, C(CH₃)₃). NMR ¹³C (101 MHz, CDCl₃) δ 197.3 (C=O), 160.9 (CO₂), 77.5 (C=N₂), 61.3(<u>C</u>H₂CH₃), 44.3 (<u>C</u>(CH₃)₃), 25.8 (C(<u>C</u>H₃)₃), 14.3 (CH₂<u>C</u>H₃).

Ethyl 2-diazo-3-oxo-3-phenylpropanoate¹⁹ (19'). The title compound was synthesized from ethyl 3oxo-3-phenylpropanoate (576 mg, 3.0 mmol) according to Method A (with addition of MeCN (1 mL)). Reaction time – 2 hours. Yield 602 mg (92%). Transparent liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.72 – 7.60 (m, 2H, *o*-Ph), 7.55 (t, *J* = 7.4, 1H, *p*-Ph), 7.44 (t, *J* = 7.6, 2H, *m*-Ph), 4.27 (q, *J* = 7.1, 2H, CH₂CH₃), 1.27 (t, *J* = 7.1, 3H, CH₂CH₃). NMR ¹³C (101 MHz, CDCl₃) δ 186.9 (C=O), 161.0 (CO₂), 137.1, 132.2, 128.3, 127.9, 76.2 (C=N₂), 61.6 (<u>C</u>H₂CH₃), 14.20 (CH₂<u>C</u>H₃).

Ethyl 2-diazo-3-oxo-3-(pyridin-3-yl)propanoate (20'). The title compound was synthesized from N₂ ethyl 3-oxo-3-(pyridin-3-yl)propanoate (290 mg, 1.5 mmol) according to Method A. N Reaction time – 2 hours. Yield 292 mg (89%). Transparent viscous liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 8.84 (d, *J* = 2.2, 1H, 2'-H), 8.74 (dd, *J* = 4.9, 1.6, 1H, 6'-H), 7.93 (dt, *J* = 7.9, 2.0, 1H, 4'-H), 7.38 (dd, *J* = 7.9, 4.9, 1H, 5'-H), 4.26 (q, *J* = 7.1, 2H, CH₂CH₃), 1.27 (t, *J* = 7.1, 3H, CH₂CH₃). NMR ¹³C (101 MHz, CDCl₃) δ 185.1 (C=O), 160.6 (CO₂), 152.5, 149.2, 135.8, 132.9, 122.6, 77.0 (C=N₂), 61.9 (CH₂CH₃), 14.2 (CH₂CH₃). HRMS

160.6 (CO₂), 152.5, 149.2, 135.8, 132.9, 122.6, 77.0 (C=N₂), 61.9 (<u>C</u>H₂CH₃), 14.2 (CH₂<u>C</u>H₃). HRMS (ESI +ve) Exact mass calculated for $C_{10}H_9N_3NaO_3$ [M+Na]⁺ : 242.0536, found 242.0538.

2-Diazo-3-oxo-3-phenylpropanenitrile²⁰ (21'). The title compound was synthesized from 3-oxo-3-phenylpropanenitrile (218 mg, 1.5 mmol) according to Method A. Reaction time – 1 hour. N₂ N₂ N₁ N₂ N₁ N₂ N₁ N₁ N₁ N₂ N₁ N₁ N₁ N₁ N₁ N₂ N₁ N₁

2-Diazo-4,4-dimethyl-3-oxopentanenitrile²¹ (**22'**). The title compound was synthesized from 4,4-N₂ N_2 dimethyl-3-oxopentanenitrile (187 mg, 1.5 mmol) according to Method A. Reaction time – 1.5 hour. Yield 177 mg (78%). Yellow liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 1.33 (s, 9H). NMR ¹³C (101 MHz, CDCl₃) δ 195.3 (C=O), 109.4 (C=N), 57.03 (C=N₂), 44.7 (<u>C</u>(CH₃)₃), 26.2 (C(<u>C</u>H₃)₃). HRMS (ESI +ve) Exact mass calculated for C₇H₉N₃NaO [M+Na]⁺: 174.0638, found 174.0634.

2-Diazo-3-(3-methoxyphenyl)-3-oxopropanenitrile (23'). The title compound was synthesized from N₂ 3-(3-methoxyphenyl)-3-oxopropanenitrile²² (262 mg, 1.5 mmol) according to Method A. Reaction time – 2 hours. Yield 206 mg (68%). Pale orange viscous liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.52 – 7.48 (m, 1H), 7.42 (t, *J* = 8.0, 1H), 7.39 – 7.38 (m, 1H), 7.17 (ddd, *J* = 8.2, 2.6, 0.9, 1H), 3.87 (s, 3H, OCH₃). NMR ¹³C (101 MHz, CDCl₃) δ 182.7 (C=O), 159.8 (3'-C), 135.7, 129.9, 120.5, 120.4, 112.5, 109.1 (C=N), 59.1 (C=N₂), 55.5 (OCH₃). HRMS (ESI +ve) Exact mass calculated for C₁₀H₇N₃NaO₂ [M+Na]⁺ : 224.0430, found 224.0433.

3-((3r,5r,7r)-Adamantan-1-yl)-2-diazo-3-oxopropanenitrile (24'). The title compound was 3-((3r,5r,7r)-adamantan-1-yl)-3-oxopropanenitrile²² synthesized from (304 mg, N_2 1.75 mmol) according to Method A. Reaction time - 20 hours. Yield 330 mg (96%). 0 CN Orange solid; m.p. 70.6–71.7 °C (decomp.) (MeOH). NMR ¹H (400 MHz, CDCl₃, J/Hz) $\delta 2.17 - 2.07$ (m, 3H), 2.01 (d, J = 2.8, 6H), 1.82 - 1.70 (m, 6H). NMR ¹³C (101 MHz, CDCl₃) § 194.4 (C=O), 109.6 (C=N), 57.1 (C=N₂), 47.4, 37.7, 36.2, 28.0. HRMS (ESI +ve) Exact mass calculated for $C_{13}H_{15}N_3NaO [M+Na]^+$: 252.1107, found 252.1107.

tert-Butyl 2-cyano-2-diazoacetate²³ (25'). The title compound was synthesized from *tert*-butyl 2-cyanoacetate (212 mg, 1.5 mmol) according to Method A (double amount sulfonyl chloride, sodium azide and potassium carbonate were used). Reaction time – 1 hour. Yield 178 mg (71%). Orange viscous liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 1.54 (s, 9H). NMR ¹³C (101 MHz, CDCl₃) δ 160.1 (C=O), 107.7 (C=N), 85.6 (<u>C</u>(CH₃)₃), 51.2 (C=N₂), 28.1 (C(<u>C</u>H₃)₃).

Ethyl 2-cyano-2-diazoacetate²⁴ (26'). The title compound was synthesized from ethyl 2-cyanoacetate (170 mg, 1.5 mmol) according to Method A (double amount sulfonyl chloride, sodium azide and potassium carbonate were used). Reaction time – 1 hour. Yield 92 mg (44%). Light orange viscous liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 4.31 (q, *J* = 7.1, 2H, C<u>H</u>₂CH₃), 1.32 (t, *J* = 7.1, 3H, CH₂C<u>H</u>₃). NMR ¹³C (101 MHz, CDCl₃) δ 161.2 (C=O), 107.3 (C=N), 63.4 (<u>C</u>H₂CH₃), 51.1 (C=N₂), 14.2 (CH₂<u>C</u>H₃). HRMS (ESI +ve) Exact mass calculated for C₅H₅N₃NaO₂ [M+Na]⁺ : 162.0274, found 162.0273.

1-Diazonaphthalen-2(1*H***)-one²⁵ (27')**. The title compound was synthesized from naphthalen-2-ol (216 mg, 1.5 mmol) according to Method A (double amount sulfonyl chloride, sodium azide and potassium carbonate were used). Reaction time – 2 hours. The obtained substance was purified by flash column chromatography on SiO₂ eluting with DCM. Yield 163 mg (64%). Light brown solid; m.p. 80.8–81.6 °C (decomp.). NMR ¹H (400

MHz, CDCl₃, *J*/Hz) δ 7.64 (d, *J* = 9.8, 1H), 7.62 – 7.57 (m, 1H), 7.55 – 7.49 (m, 1H), 7.32 – 7.24 (m, 2H), 6.67 (d, *J* = 9.8, 1H). NMR ¹³C (101 MHz, CDCl₃) δ 180.2 (C=O), 140.3, 130.0, 129.8, 127.2, 125.9, 125.6, 124.7, 119.7, 77.2 (C=N₂).

2-Diazonaphthalen-1(2*H*)-one²⁶ (28'). The title compound was synthesized from naphthalen-1-ol (216 mg, 1.5 mmol) according to Method A (double amount sulfonyl chloride, sodium azide and potassium carbonate were used). Reaction time – 1.5 hour. The obtained substance was purified by flash column chromatography on SiO₂ eluting with DCM. Yield 104 mg (41%). Light brown solid; m.p. 74.9–76.3 °C (decomp.). NMR ¹H (400

MHz, CDCl₃, *J*/Hz) δ 8.38 – 8.33 (m, 1H), 7.63 (ddd, *J* = 8.0, 7.2, 1.4, 1H), 7.52 – 7.44 (m, 2H), 6.90 (d, *J* = 9.4, 1H), 6.58 (d, *J* = 9.3, 1H). NMR ¹³C (101 MHz, CDCl₃) δ 180.1 (C=O), 137.5, 132.7, 129.6, 128.2, 127.2, 125.4, 117.3, 116.2, 77.2 (C=N₂).

Methyl 2-diazo-2-(4-nitrophenyl)acetate²⁷ (29'). The title compound was synthesized from methyl 2-N₂ (4-nitrophenyl)acetate (296 mg, 1.5 mmol) according to Method A (with addition of MeCN (2 mL)). Reaction time – 30 hours. Yield 202 mg (61%). Yellow solid; m.p. 143.5–144.0 °C (decomp.) (MeOH). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 8.25 (d, *J* = 9.1, 2H), 7.68 (d, *J* = 9.1, 2H), 3.93 (s, 3H, CO₂CH₃). NMR ¹³C (101 MHz, CDCl₃) δ 164.1 (CO₂), 145.1, 133.8, 124.3, 123.1, 64.7 (C=N₂), 52.4 (OCH₃).

2-Diazo-1-(2,4-dimethylphenyl)-2-(4-nitrophenyl)ethanone (30'). The title compound was synthesized from 1-(2,4-dimethylphenyl)-2-(4-nitrophenyl)ethanone (404 mg, N_2 1.5 mmol) according to Method A (with addition of MeCN (2 mL)). Reaction Ο time - 2 hours. Yield 372 mg (84%). Yellow solid; m.p. 108.9-109.7 °C Me NO_2 (decomp.) (MeOH). NMR ¹H (400 MHz, CDCl₃, J/Hz) δ 8.27 (d, J = 9.1, 2H), 7.77 (d, J = 9.1, 2H), 7.30 (d, J = 7.8, 1H), 7.13 (s, 1H), 7.09 (d, J = 7.8, 1H), Мe 2.41 (s, 3H), 2.39 (s, 3H). NMR ¹³C (101 MHz, CDCl₃) δ 189.3 (C=O), 145.6, 141.3, 135.8, 134.7, 133.9, 132.2, 126.7, 126.6, 124.5, 124.2, 75.1 (C=N₂), 21.4, 19.0. HRMS (ESI +ve)

141.3, 135.8, 134.7, 133.9, 132.2, 126.7, 126.6, 124.5, 124.2, 75.1 (C=N₂), 21.4, 19.0. HRMS (ESI +ve) Exact mass calculated for $C_{16}H_{13}N_3NaO_3 [M+Na]^+$: 318.0849, found 318.0859.

Diethyl (1-diazo-2-oxopropyl)phosphonate²⁸ (**31'**). The title compound was synthesized from diethyl N₂ (2-oxopropyl)phosphonate (291 mg, 1.5 mmol) according to Method A. Reaction time – 2 hours. Yield 300 mg (91%). Transparent liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 4.32 – 4.10 (m, 4H, P(O)(OCH₂CH₃)₂), 2.28 (s, 3H, CH₃C=O), 1.38 (td, *J* = 7.1, 0.6, 6H, P(O)(OCH₂CH₃)₂), 1.31 (t, *J* = 7.1, 3H, CO₂CH₂CH₃). NMR ¹³C (101 MHz, CDCl₃, *J*/Hz) δ 190.0 (d, *J* = 13.3, C=O), 64.4 (d, *J* = 218.4, C=N₂), 63.4 (d, *J* = 5.6, , P(O)(OCH₂CH₃)₂), 27.13 (d, *J* = 1.5, <u>C</u>H₃C=O), 16.1 (d, *J* = 6.8, P(O)(OCH₂CH₃)₂).

Ethyl 2-diazo-2-(diethoxyphosphoryl)acetate²⁹ (32'). The title compound was synthesized from ethyl 2-(diethoxyphosphoryl)acetate (336 mg, 1.5 mmol) according to Method A. Reaction time – 50 hours. Yield 304 mg (81%). Transparent liquid. NMR ¹H (400 MHz, CDCl₃, J/Hz) δ 4.27 (q, J = 7.1, 2H, CO₂CH₂CH₃), 4.27 – 4.12 (m, 4H, P(O)(OCH₂CH₃)₂), 1.37 (td, J = 7.1, 0.6, 6H, P(O)(OCH₂CH₃)₂), 1.31 (t, J = 7.1, 3H, CO₂CH₂CH₃). NMR ¹³C

(101 MHz, CDCl₃, J/Hz) δ 163.4 (d, J = 12.2, CO₂), 63.6 (d, J = 5.8, P(O)(O<u>C</u>H₂CH₃)₂), 61.7 $(CO_2CH_2CH_3)$, 53.7 (d, J = 227.4, $C=N_2$), 16.1 (d, J = 6.9, $P(O)(OCH_2CH_3)_2$), 14.3 $(CO_2CH_2CH_3)$.

Methyl 2-((3s,5s,7s)-adamantan-1-ylsulfonyl)-2-diazoacetate (33'). The title compound was synthesized from methyl 2-((3s,5s,7s)-adamantan-1-ylsulfonyl)acetate³⁰ (408 mg, N_2 1.5 mmol) according to Method A (with addition of MeCN (2 mL)). Reaction time - 6 hours. Yield 388 mg (87%). White solid; m.p. 103.0-105.1 °C (MeOH). NMR ¹H (400 ÓМе MHz, CDCl₃, J/Hz) δ 3.87 (c, 3H, OCH₃), 2.25 – 2.20 (m, 3H), 2.08 (d, J = 2.9, 6H), 1.81 - 1.69 (m, 6H). NMR ¹³C (101 MHz, CDCl₃) δ 160.8 (CO₂), 68.9 (C=N₂), 66.6, 52.9, 35.7, 35.2, 28.3. HRMS (ESI +ve) Exact mass calculated for $C_{13}H_{18}N_2NaO_4S$ [M+Na]⁺ : 321.0879, found 321.0882.

2-((3s,5s,7s)-Adamantan-1-ylsulfonyl)-2-diazo-1-phenylethanone (34'). The title compound was synthesized from 2-((3s,5s,7s)-adamantan-1-ylsulfonyl)-1-phenylethanone (478 mg, 1.5 mmol) according to Method A (with addition of MeCN (2 mL)). Reaction time - 3 hours. Yield 460 mg (89%). White solid; m.p. 145.3-146.2 °C (decomp.) (MeOH). Ρh NMR ¹H (400 MHz, CDCl₃, J/Hz) δ 7.73 – 7.67 (m, 2H, *o*-Ph), 7.63 – 7.57 (m, 1H, *p*-Ph), 7.50 (t, J = 7.5, 2H, t-Ph), 2.25 - 2.20 (m, 3H), 2.10 (d, J = 2.9, 6H), 1.80 - 1.69 (m, 6H). NMR ¹³C (101 MHz, CDCl₃) δ 183.5 (C=O), 136.4, 132.9, 128.8, 127.7, 67.7, 35.7, 35.4, 28.4. HRMS (ESI +ve) Exact mass calculated for $C_{18}H_{20}N_2NaO_3S$ [M+Na]⁺ : 367.1087, found 367.1089.

2-Diazo-4-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one 1,1-dioxide (35'). The title compound was synthesized from 4-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one 1,1-dioxide (316 mg, N_2 1.5 mmol) according to Method A (with addition of MeCN (1 mL)). Reaction time - 2 0= hours. Yield 246 mg (69%). Pale orange solid; m.p. 153.3–155.0 °C (decomp.) Me (MeOH). NMR ¹H (400 MHz, CDCl₃, J/Hz) δ 7.98 – 7.95 (m, 1H), 7.70 (ddd, J = 8.5, 7.4, 1.6, 1H), 7.39 – 7.35 (m, 1H), 7.33 (dd, *J* = 8.4, 0.8, 1H), 3.54 (s, 3H, CH₃). NMR ¹³C (101 MHz, CDCl₃, *J*/Hz) δ 158.8 (C=O), 137.0, 134.5, 128.4, 123.9, 122.1, 117.1, 73.7 (C=N₂), 32.2 (CH₃). HRMS (ESI +ve) Exact mass calculated for $C_9H_7N_3NaO_3S$ [M+Na]⁺ : 260.0100, found

260.0104.

2-Diazo-1-(indolin-1-yl)-2-(methylsulfonyl)ethanone (36'). The title compound was synthesized from 1-(indolin-1-yl)-2-(methylsulfonyl)ethanone (358 mg, 1.5 mmol) according to Method A (with addition of MeCN (2 mL)). Reaction time - 2 hours. Yield 322 mg (81%). Yellow solid; m.p. 115.4–116.6 °C (decomp.) (MeOH). NMR ¹H (400 MHz, $CDCl_3$, J/Hz): 7.33 (d, J = 7.9, 1H), 7.28 – 7.18 (m, 2H), 7.09 (td, J = 7.5, 0.9, 1H), 4.31 (t, J = 8.4, 2H), 3.18 (t, J = 8.4, 2H), 2.23 (s, 3H). NMR ¹³C (101 MHz, CDCl₃): 185.9 (C=O), 140.6, 132.3, 127.8, 125.7, 124.7, 114.5, 81.6 (C=N₂), 51.1 (CH₃), 28.0, 26.8. HRMS

(ESI +ve) Exact mass calculated for $C_{11}H_{12}N_3O_3S [M+H]^+$: 266.0594, found 266.0598.

3-Diazo-1-methyl-1H-benzo[c][1,2]thiazin-4(3H)-one 2,2-dioxide (37'). The title compound was synthesized from 1-methyl-1*H*-benzo[*c*][1,2]thiazin-4(3*H*)-one 2,2-dioxide³¹ (316 mg, N_2 1.5 mmol) according to Method A. Reaction time – 4 hours. Yield 296 mg (83%). Pale yellow solid; m.p. 114.7-115.5 °C (decomp.) (MeOH). NMR ¹H (400 MHz, CDCl₃, J/Hz): 8.13 (dd, J = 7.9, 1.7 Hz, 1H), 7.69 (ddd, J = 8.1, 7.5, 1.7 Hz, 1H), 7.48 - 7.42 Me (m, 1H), 7.37 (dd, J = 8.1, 0.7 Hz, 1H), 3.37 (s, 3H, CH₃). NMR ¹³C (101 MHz, CDCl₃): 176.3 (C=O), 142.4, 135.4, 128.5, 127.0, 125.9, 123.7, 79.34 (C=N₂), 39.0 (CH₃). HRMS (ESI +ve) Exact mass calculated for $C_9H_7N_3NaO_3S[M+Na]^+$: 260.0100, found 260.0093.

2-Diazobenzo[*b*]thiophen-3(2*H*)-one 1,1-dioxide³² (38'). The title compound was synthesized from benzo[*b*]thiophen-3(2*H*)-one 1,1-dioxide (273 mg, 1.5 mmol) according to Method A. O = OO

3-Diazo-1-phenylquinoline-2,4(1*H***,3***H***)-dione (39'). The title compound was synthesized from 4hydroxy-1-phenylquinolin-2(1***H***)-one (356 mg, 1.5 mmol) according to Method A (with addition of MeCN (1 mL)). Reaction time – 1.5 hour. Yield 332 mg (84%). Beige solid; m.p. 215.1–217.5 °C (decomp.) (MeOH). NMR ¹H (400 MHz, CDCl₃,** *J***/Hz) \delta 8.23 (dd,** *J* **= 7.9, 1.4, 1H), 7.67 – 7.60 (m, 2H,** *t***-Ph), 7.59 – 7.54 (m, 1H,** *p***-Ph), 7.45 (ddd,** *J* **= 8.6, 7.2, 1.7, 1H), 7.35 – 7.30 (m, 2H,** *o***-Ph), 7.24 (td,** *J* **= 7.6, 0.9, 1H), 6.60 (d,** *J* **= 8.1, 1H). NMR ¹³C (101 MHz, CDCl₃) \delta 175.6 (4-C), 159.1 (2-C), 142.5, 136.2, 134.8,**

130.4, 129.4, 129.3, 126.4, 123.2, 120.3, 117.0, 79.9 (C=N₂). HRMS (ESI +ve) Exact mass calculated for $C_{15}H_9N_3NaO_2 [M+Na]^+$: 286.0587, found 286.0594.

2-Diazo-6,7-dihydropyrido[**3**,**2**,**1**-*ij*]**quinoline-1,3**(**2***H*,**5***H*)-**dione** (**40**'). The title compound was synthesized from 1-hydroxy-6,7-dihydropyrido[**3**,**2**,1-*ij*]**quinolin-3**(*5H*)-one (**3**02 mg, 1.5 mmol) according to Method A (with addition of MeCN (2 mL)). Reaction time – 2.5 hours. Yield 232 mg (68%). Pale pink solid; m.p. 163.1–164.8 °C (decomp.) (MeOH). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 8.02 (ddt, *J* = 7.9, 1.5, 0.6 Hz, 1H), 7.41 (ddt, *J* = 7.4, 1.9, 1.0 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 4.14 – 4.06 (m, 2H), 3.00 – 2.92 (m, 2H), 2.13 – 2.02 (m, 2H). NMR ¹³C (101 MHz, CDCl₃) δ 175.7 (1-C), 158.7 (3-C), 137.9, 135.2, 125.8, 124.7, 122.5, 120.5, 79.3 (C=N₂), 42.1 (5-C), 28.0 (7-C), 20.3 (6-C). HRMS (ESI +ve) Exact mass calculated for C₁₂H₉N₃NaO₂ [M+Na]⁺ : 250.0587, found 250.0598.

4-Diazo-2-(dimethylamino)isoquinoline-1,3(2H,4H)-dione⁹ (**41'**). The title compound was synthesized from *N*-(dimethylamino)homophthalimide⁹ (306 mg, 1.5 mmol) according to Method A. Reaction time – 20 hours. Yield 310 mg (90%). Pale orange solid; m.p. 130.0–132.1 °C. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 8.28 (ddd, *J* = 8.0, 1.3, 0.5, 1H), 7.66 (ddd, *J* = 7.9, 7.4, 1.4, 1H), 7.36 – 7.32 (m, 1H), 7.09 (ddd, *J* = 7.9, 1.0, 0.6, 1H), 3.04 (s, 6H, N(CH₃)₂). NMR ¹³C (101 MHz, CDCl₃) δ 162.8, 162.4, 134.2, 130.3, 126.2, 125.7, 121.3, 118.4, 68.5 (C=N₂), 43.7 (N(CH₃)₂).

4-Diazoisoquinoline-1,3(2*H*,4*H*)-dione (42'). The title compound was synthesized from homophthalimide³³ (242 mg, 1.5 mmol) according to Method A. Reaction time – 18 hours. After completion of reaction the precipitated product was filtered, washed with water and recrystallized from *i*PrOH–DMF (1:1). Yield 208 mg (74%). Yellow solid; m.p. 237.8–239.5 °C (decomp.) (*i*PrOH–DMF). NMR ¹H (400 MHz, DMSO-*d*₆, *J*/Hz) δ 11.65 (s, 1H), 8.07 (dd, *J* = 7.9, 0.7 Hz, 1H), 7.79 – 7.69 (m, 1H), 7.47 (d, *J* = 7.9 Hz,

1H), 7.41 – 7.31 (m, 1H). NMR ¹³C (101 MHz, DMSO- d_6) δ 163.4, 163.3, 134.6, 128.9, 128.5, 125.7, 121.0, 120.9, 67.9 (C=N₂). HRMS (ESI +ve) Exact mass calculated for C₉H₅N₃NaO₂ [M+Na]⁺ : 210.0274, found 210.0272.

3-Diazochroman-2,4-dione³⁴ (**43'**). The title compound was synthesized from 4-hydroxy-2*H*-chromen-2-one (243 mg, 1.5 mmol) according to Method A. Reaction time – 1.5 hour. Yield N₂ 175 mg (62%). Beige solid; m.p. 157.6–158.9 °C (decomp.). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 8.06 (dd, *J* = 7.9, 1.5, 1H), 7.73 – 7.64 (m, 1H), 7.37 (t, *J* = 7.6, 1H), 7.31 (d, *J* = 8.3, 1H). NMR ¹³C (101 MHz, CDCl₃) δ 174.0 (4-C), 158.0 (2-C), 153.8 (8a-C), 136.1, 125.9, 125.3, 119.0, 117.9, 76.3 (C=N₂).

2-Diazo-1-(4-fluorophenyl)butane-1,3-dione³⁵ (**44'**). The title compound was synthesized from 1-(4-N₂ fluorophenyl)butane-1,3-dione (270 mg, 1.5 mmol) according to Method A (with addition of MeCN (2 mL)). Reaction time – 2 hours. Yield 300 mg (93%). Yellowish viscous liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.73 – 7.65 (m, 2H), 7.19 (t, *J* = 8.6, 2H), 2.57 (s, 3H, CH₃). NMR ¹³C (101 MHz, CDCl₃, *J*/Hz) δ 190.4, 183.6, 165.2 (d, *J* = 254.7), 133.5 (d, *J* = 3.3), 130.04 (d, *J* = 9.2), 116.1 (d, *J* = 22.2), 83.4 (C=N₂), 29.1 (CH₃).

2-Diazo-1-(4-fluorophenyl)-3-(4-methoxyphenyl)propane-1,3-dione (45'). The title compound was synthesized from 1-(4-fluorophenyl)-3-(4-methoxyphenyl)propane-1,3-dione (408 mg, 1.5 mmol) according to Method A (with addition of MeCN (2 mL)). Reaction time – 2 hours. Yield 430 mg (96%). Pale yellow solid; m.p. 66.5–67.6 °C (MeOH). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.63 (dd, *J* = 8.7, 5.3, 2H), 7.60 (d, *J* = 8.8, 2H), 7.03 (t, *J* = 8.6, 2H), 6.85 (d, *J* = 8.9, 2H), 3.84 (s, 3H, OCH₃). NMR ¹³C (101 MHz, CDCl₃, *J*/Hz) δ 185.4, 184.6, 165.2 (d, *J* = 254.5), 163.4, 133.3 (d, *J* = 3.1), 131.1 (d, *J* = 9.2), 130.8, 129.3, 115.5 (d, *J* = 22.1), 113.8, 83.5 (C=N₂), 55.5 (OCH₃). HRMS (ESI +ve) Exact mass calculated for C₁₆H₁₁FN₂NaO₃ [M+Na]⁺ : 321.0646, found 321.0660.

2-Diazo-1,3-bis(4-fluorophenyl)propane-1,3-dione³⁵ (**46'**). The title compound was synthesized from 1-(4-fluorophenyl)-3-(4-methoxyphenyl)propane-1,3-dione (390 mg, 1.5 mmol) according to Method A (with addition of MeCN (2 mL)). Reaction time – 2 hours. Yield 398 mg (93%). Pale beige solid; m.p. 101.1–102.1 °C (MeOH). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.62 (dd, *J* = 8.8, 5.3, 4H), 7.04 (t, *J* = 8.6, 4H). NMR ¹³C (101 MHz, CDCl₃, *J*/Hz) δ 184.7 (2C=O), 165.3 (d, *J* = 255.2), 133.1 (d, *J* = 3.2), 131.0 (d, *J* = 9.3), 115.7 (d, *J* = 22.2), 84.3 (C=N₂).

Benzyl 2-diazo-3-oxobutanoate³⁶ (47'). The title compound was synthesized from benzyl 3-N₂ oxobutanoate (288 mg, 1.5 mmol) according to Method A (with addition of MeCN (1 mL)). Reaction time – 2 hours. Yield 298 mg (91%). Pale yellow solid; m.p. 41.3– 43.1 °C. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.43 – 7.36 (m, 5H, Ph(H)), 5.29 (s, 2H, CH₂), 2.51 (s, 3H, CH₃). NMR ¹³C (101 MHz, CDCl₃) δ 190.0 (C=O), 161.3 (CO₂), 135.2, 128.8, 128.7, 128.4, 76.4 (C=N₂), 67.0 (CH₂), 28.3 (CH₃).

Methyl 2-diazo-3-(4-fluorophenyl)-3-oxopropanoate³⁷ (48'). The title compound was synthesized N_2 from methyl 3-(4-fluorophenyl)-3-oxopropanoate (294 mg, 1.5 mmol) according to Method A (with addition of MeCN (1 mL)). Reaction time – 2 hours. Yield 306 mg (92%). Transparent yellowish liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.76 – 7.64 (m, 2H), 7.12 (t, *J* = 8.6, 2H), 3.82 (s, 3H, CO₂CH₃). NMR ¹³C (101 MHz, CDCl₃, *J*/Hz) δ 185.3 (C=O), 165.25 (d, *J* = 253.7), 161.4 (CO₂), 133.0 (d, *J* = 3.1), 131.2 (d, *J* = 9.2), 115.1 (d, *J* = 22.1), 76.2 (C=N₂), 52.4 (OCH₃). Methyl 2-diazo-3-(2-methoxyphenyl)-3-oxopropanoate (49'). The title compound was synthesized from methyl 3-(2-methoxyphenyl)-3-oxopropanoate (312 mg, 1.5 mmol) according to Method A (with addition of MeCN (1 mL)). Reaction time – 2 hours. Yield 340 mg (97%). Transparent yellowish liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.45 (ddd, *J* = 8.4, 7.5, 1.8, 1H), 7.34 (dd, *J* = 7.5, 1.7, 1H), 7.03 (td, *J* = 7.5, 0.8, 1H), 6.94 (d, *J* = 8.4, 1H), 3.84 (s, 3H), 3.77 (s, 3H). NMR ¹³C (101 MHz, CDCl₃) δ 185.9 (C=O), 161.4 (CO₂), 156.8, 132.5, 128.7, 127.8, 120.7, 110.9, 77.0 (C=N₂), 55.6, 52.2. HRMS

(ESI +ve) Exact mass calculated for $C_{11}H_{10}N_2NaO_4 [M+Na]^+$: 257.0533, found 257.0541.

2,6-Bis(diazo)cyclohex-4-ene-1,3-dione³⁴ (**50'**). The title compound was synthesized from resorcinol (165 mg, 1.5 mmol) according to Method A (double amounts of sulfonyl chloride, sodium azide and potassium carbonate were used). Reaction time – 2 hours. Yield 109 mg (45%). Brown solid; m.p. 77.0–79.3 °C (decomp.). NMR ¹H (400 MHz, CDCl₃, J/Hz) δ 7.27 (d, J = 10.3, 1H), 5.90 (d, J = 10.2, 1H). NMR ¹³C (101 MHz, CDCl₃) δ 177.8, 174.0, 129.8, 117.9, 85.5 (C=N₂), 73.8 (C=N₂).

Dimethyl 2,4-bis(diazo)-3-oxopentanedioate³⁸ (51'). The title compound was synthesized from dimethyl 3-oxopentanedioate (260 mg, 1.5 mmol) according to Method A (double amounts of sulfonyl chloride, sodium azide and potassium carbonate were used). Reaction time – 2 hours. Yield 288 mg (85%). Transparent liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 3.84 (s, 6H, 2×OCH₃). NMR ¹³C (101 MHz, CDCl₃) δ 174.3 (C=O), 161.2 (2×CO₂), 74.0 (2×C=N₂), 52.6 (2×OCH₃).

Dimethyl 2-diazosuccinate (52'). The title compound was synthesized from dimethyl 2-acetylsuccinate (282 mg, 1.5 mmol) according to Method A. Reaction time – 2 hours. Yield 183 mg (71%). Yellow liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 3.79 (s, 3H), 3.75 (s, 3H), 3.34 (s, 2H). NMR ¹³C (101 MHz, CDCl₃) δ 170.0, 167.0, 52.4, 52.2, 28.7 (CH₂). HRMS (ESI +ve) Exact mass calculated for C₆H₈N₂NaO₄ [M+Na]⁺ : 195.0376, found 195.0381.

2-Diazo-6-fluoro-2,3-dihydro-1*H***-inden-1-one** (53'). The title compound was synthesized from methyl 2-(6-fluoro-1-oxo-2,3-dihydro-1*H***-inden-2-yl)-2-oxoacetate**³⁹ (354 mg, 1.5 mmol) according to Method A (with addition of MeCN (2 mL)). Reaction time – 2 hours. Yield 218 mg (83%). Pale beige solid; m.p. 95.9–97.2 °C (decomp.). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.46 (dd, *J* = 7.7, 2.5, 1H), 7.42 (dd, *J* = 8.4, 4.5, 1H), 7.29 (td, *J* = 8.6, 2.5, 1H), 4.05 (s, 2H, CH₂). NMR ¹³C (101 MHz, CDCl₃, *J*/Hz) δ 187.2 (d, *J*

= 3.1, C=O), 162.9 (d, J = 248.3), 139.51 (d, J = 7.9), 138.5 (d, J = 2.4), 126.8 (d, J = 8.1), 120.5 (d, J = 23.7), 109.3 (d, J = 22.9), 61.6 (C=N₂), 28.2 (CH₂). HRMS (ESI +ve) Exact mass calculated for C₉H₅FN₂NaO [M+Na]⁺ : 199.0278, found 199.0269.

1,3-Dicyclohexyl-5-diazopyrimidine-2,4,6(1H,3H,5H)-trione (54'). The title compound was

synthesized from 1,3-dicyclohexylbarbituric acid⁴⁰ (219 mg, 0.75 mmol) according to Method B (with addition of MeCN (1 mL)). Reaction time – 1.5 hour. Yield 232 mg (97%). Yellow solid; m.p. 111.6–112.9 °C (MeOH). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 4.68 (tt, *J* = 12.2, 3.8, 2H), 2.31 (qd, *J* = 12.4, 3.5, 4H), 1.89 – 1.82 (m, 4H), 1.75 – 1.60 (m, 6H), 1.44 – 1.30 (m, 4H), 1.29 – 1.16

(m, 2H). NMR ¹³C (101 MHz, CDCl₃) δ 158.5 (4,6-C), 149.8 (2-C), 72.2 (C=N₂), 55.6, 29.2, 26.4, 25.1. HRMS (ESI +ve) Exact mass calculated for C₁₆H₂₂N₄NaO₃ [M+Na]⁺ : 341.1584, found 341.1585.

Dimethyl 2-diazomalonate⁴¹ (55'). The title compound was synthesized from diethyl malonate (99 mg, 0.75 mmol) according to Method B. Reaction time - 2 hours. Yield 98 mg (83%). N_2 Transparent liquid. NMR ¹H (400 MHz, CDCl₃, J/Hz) δ 3.85 (s, 6H, 2CH₃). NMR ¹³C 0. (101 MHz, CDCl₃) δ 161.4 (2CO₂), 65.7 (C=N₂), 52.5 (2CH₃). ÓМе MeÒ

2-Diazocyclohexane-1,3-dione⁶ (56'). The title compound was synthesized from cyclohexane-1,3dione (84 mg, 0.75 mmol) according to Method B. Reaction time – 1.5 hour. Yield 89 mg N_2 (86%). Pale yellow solid; m.p. 47.0–48.6 °C. NMR ¹H (400 MHz, CDCl₃) δ 2.72 – 2.42 0 (m, 4H, 2CH₂), 2.11 – 1.95 (m, 2H, 5-CH₂). NMR 13 C (101 MHz, CDCl₃) δ 190.3 (2C=O), 84.9 (C=N₂), 36.8 (2CH₂), 18.6 (5-CH₂).

Methyl 2-diazo-3-oxobutanoate⁴² (57'). The title compound was synthesized from methyl 3oxobutanoate (87 mg, 0.75 mmol) according to Method B. Reaction time - 1.5 hour. N_2 Yield 88 mg (83%). Transparent liquid. NMR ¹H (400 MHz, CDCl₃, J/Hz) δ 3.84 (s, 3H, OCH₃), 2.48 (s, 3H, 4-CH₃). NMR ¹³C (101 MHz, CDCl₃) δ 190.0 (C=O), 161.8 (CO₂), ÓMe Me 76.2 (C=N₂), 52.2 (OCH₃), 28.14 (4-CH₃).

Ethyl 2-diazo-3-oxo-3-(thiophen-2-yl)propanoate⁴³ (58'). The title compound was synthesized from ethyl 3-oxo-3-(thiophen-2-yl)propanoate (149 mg, 0.75 mmol) according to Method B N_2 (with addition of MeCN (1 mL)). Reaction time - 2 hours. Yield 160 mg (95%). ÓEt 1H), 7.68 (dd, J = 5.0, 1.1, 1H), 7.13 (dd, J = 5.0, 3.9, 1H), 4.35 (q, J = 7.1, 2H, CH₂CH₃), 1.36 (t, J = 7.1, 3H, CH₂CH₃). NMR ¹³C (101 MHz, CDCl₃) δ 176.7 (C=O), 160.9 (CO₂), 141.5, 133.9, 133.8, 127.7, 77.1 (C=N₂), 61.7 (CH₂CH₃), 14.3 (CH₂CH₃).

2-Diazo-3-oxo-3-(thiophen-2-yl)propanenitrile (59'). The title compound was synthesized from 3oxo-3-(thiophen-2-yl)propanenitrile²² (113 mg, 0.75 mmol) according to Method B. N_2 Reaction time - 1.5 hour. Yield 100 mg (75%). Yellow solid; m.p. 94.8-96.0 °C (MeOH). CN NMR ¹H (400 MHz, CDCl₃, J/Hz) δ 8.04 (dd, J = 4.0, 1.0, 1H), 7.78 (dd, J = 5.0, 1.0, 1H) 1H), 7.20 (dd, J = 5.0, 4.0, 1H). NMR ¹³C (101 MHz, CDCl₃) δ 173.7 (C=O), 139.8, 135.2, 133.0, 128.7, 109.2 (C=N), 58.6 (C=N₂). HRMS (ESI +ve) Exact mass calculated

for C₇H₃N₃NaOS [M+Na]⁺ : 199.9889, found 199.9889.

2-Diazo-3-(3-fluorophenyl)-3-oxopropanenitrile (60'). The title compound was synthesized from 3-(3-fluorophenyl)-3-oxopropanenitrile²² (122 mg, 0.75 mmol) according to Method B. N_2 Reaction time – 1 hour. Yield 85 mg (60%). Orange viscous liquid. NMR ¹H (400 MHz, 0 CN $CDCl_3$, J/Hz) δ 7.71 (ddd, J = 7.8, 1.6, 1.0, 1H), 7.59 (ddd, J = 9.0, 2.4, 1.9, 1H), 7.51 (td, J = 8.0, 5.4, 1H), 7.34 (tdd, J = 8.3, 2.6, 0.9, 1H). NMR ¹³C (101 MHz, CDCl₃, J/Hz) δ 181.6 (d, J = 2.6, C=O), 162.6 (d, J = 249.5, 3'-C), 136.3 (d, J = 7.0), 130.7 (d, J = 7.9), 123.8 (d, J = 3.2), 120.9 (d, J = 21.3), 115.2 (d, J = 23.4), 108.8 (C=N), 59.52 (C=N₂). HRMS (ESI +ve) Exact mass calculated for $C_9H_4FN_3NaO[M+Na]^+$: 212.0231, found 212.0231.

Methyl 2-diazo-2-(phenylsulfonyl)acetate⁴⁴ (61'). The title compound was synthesized from methyl 2-(phenylsulfonyl)acetate⁴⁵ (161 mg, 0.75 mmol) according to Method B (with addition of N_2 MeCN (1 mL)). Reaction time – 6 hours. Yield 137 mg (76%). Pale yellow solid; m.p. 67.8-69.9 °C. NMR ¹H (400 MHz, CDCl₃, J/Hz) δ 8.08 - 8.02 (m, 2H, o-Ph), 7.71 -ÓМе Ρh 7.66 (m, 1H, p-Ph), 7.59 (t, J = 7.7, 2H, t-Ph), 3.79 (s, 3H, OCH₃). NMR ¹³C (101 MHz, CDCl₃) § 160.0 (CO₂), 141.6, 134.1, 129.2, 127.8, 75.8 (C=N₂), 52.9 (OCH₃).

2-Diazo-1-phenyl-2-tosylethanone⁴⁶ (62'). The title compound was synthesized from 1-phenyl-2-tosylethanone⁴⁷ (206 mg, 0.75 mmol) according to Method B (with addition of MeCN (1 mL)). Reaction time – 1.5 hour. Yield 218 mg (97%). Yellow solid; m.p. 96.8–97.6 °C (decomp.). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.95 (d, *J* = 8.4 Hz, 2H), 7.61 – 7.54 (m, 3H), 7.48 – 7.42 (m, 2H), 7.39 – 7.34 (m, 2H), 2.47 (s, 3H, CH₃). NMR ¹³C (101 MHz, CDCl₃) δ 182.7 (C=O), 145.4, 138.6, 135.9, 133.0, 129.7, 128.8, 128.2, 127.5, 83.45 (C=N₂), 21.72 (CH₃).

1-Diazo-2-oxo-*N*-(*p*-tolyl)**propane-1-sulfonamide** (63'). The title compound was synthesized from 2- N_2 oxo-*N*-(*p*-tolyl)**p**ropane-1-sulfonamide (170 mg, 0.75 mmol) according to Method B (with addition of MeCN (0.5 mL)). Reaction time – 2 hours. Yield 165 mg (87%). Yellow solid; m.p. 123.4–124.2 °C (decomp.) (MeOH). NMR ¹H (400 MHz, CDCl₃, *J*/Hz): 7.18 (d, *J* = 8.4 Hz, 2H), 7.15 (br.s, 1H), 7.09 (d, *J* = 8.4 Hz, 2H), 2.37 (s, 3H), 2.27 (s, 3H). NMR ¹³C (101 MHz, CDCl₃): 186.1 (C=O), 137.1, 132.6, 130.3, 123.0, 80.1 (C=N₂), 26.4, 20.9. HRMS (ESI +ve) Exact mass calculated for

 $C_{10}H_{11}N_3NaO_3S[M+Na]^+$: 276.0413, found 276.0416.

3-Diazo-1-methylquinoline-2,4(1*H*,3*H*)-dione⁴⁸ (64'). The title compound was synthesized from 4hydroxy-1-methylquinolin-2(1*H*)-one (131 mg, 0.75 mmol) according to Method B. Reaction time – 1.5 hour. Yield 140 mg (93%). White solid; m.p. 164.2–165.8 °C. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 8.20 (dd, *J* = 8.0, 1.7, 1H), 7.68 (ddd, *J* = 8.7, 7.3, 1.7, 1H), 7.32 – 7.23 (m, 2H), 3.59 (s, 3H, CH₃). NMR ¹³C (101 MHz, CDCl₃) δ 175.5 (4-C), 159.2 (2-C), 141.5, 135.2, 126.6, 123.0, 120.7, 115.0, 79.8 (C=N₂), 29.3 (CH₃).

5-Diazo-1*H***-pyrrolo[3,2,1-***ij***]quinoline-4,6**(2*H*,5*H*)-**dione** (65'). The title compound was synthesized from 6-hydroxy-1*H*-pyrrolo[3,2,1-*ij*]**quinolin-4**(2*H*)-one⁴⁹ (140 mg, 0.75 mmol) according to Method B (with addition of MeCN (1 mL)). Reaction time – 2 hours. Yield 125 mg (78%). Pale yellow solid; m.p. 168.7–171.1 °C (decomp.) (MeOH). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.76 (dq, *J* = 8.0, 1.0 Hz, 1H), 7.45 (dq, *J* = 7.3, 1.2 Hz, 1H), 7.14 (dd, *J* = 8.0, 7.3 Hz, 1H), 4.32 – 4.23 (m, 2H), 3.37 (ddt, *J* = 9.5, 7.6, 1.1 Hz, 2H). NMR ¹³C (101 MHz, CDCl₃) δ 176.7 (6-C), 157.4 (4-C), 144.0, 131.1, 130.3, 123.6, 122.8, 117.3, 80.3 (C=N₂), 46.1 (2-C), 27.3 (1-C). HRMS (ESI +ve) Exact mass calculated for C₁₁H₈N₃O₂

 $[M+H]^+$: 214.0611, found 214.0612.

4-Diazo-2-(2-morpholinoethyl)isoquinoline-1,3(2*H***,4***H***)-dione⁹ (66'). The title compound was synthesized from** *N***-(2-morpholinoethyl)homophthalimide⁹ (206 mg, 0.75 mmol) according to Method B. Reaction time – 20 hours. Yield 198 mg (88%). Pale orange solid; m.p. 151.1–153.1 °C (decomp.). NMR ¹H (400 MHz, CDCl₃,** *J***/Hz) \delta 8.29 (ddd,** *J* **= 8.0, 1.3, 0.4, 1H), 7.68 (ddd,** *J* **= 7.9, 7.4, 1.4, 1H), 7.43 – 7.31 (m, 1H), 7.19 – 7.09 (m, 1H), 4.28 – 4.22 (m, 2H), 3.70**

- 3.66 (m, 4H), 2.68 - 2.61 (m, 2H), 2.60 - 2.55 (m, 4H). NMR ^{13}C (101 MHz, CDCl₃) δ 162.7, 162.6, 134.1, 130.2, 126.6, 125.7, 120.9, 118.6, 68.1 (C=N_2), 67.0, 56.0, 53.8, 37.6.

4-Diazo-2-phenylisoquinoline-1,3(2*H*,4*H*)-dione⁹ (67'). The title compound was synthesized from *N*phenylhomophthalimide⁹ (178 mg, 0.75 mmol) according to Method B (with addition of MeCN (1 mL)). Reaction time – 3 hours. Yield 183 mg (93%). Yellow solid; m.p. 184.5–185.3 °C (decomp.). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 8.34 (ddd, *J* = 8.0, 1.4, 0.5, 1H), 7.74 (ddd, *J* = 7.9, 7.4, 1.4, 1H), 7.58 – 7.52 (m, 2H), 7.51 – 7.46 (m, 1H), 7.39 (ddd, J = 8.0, 7.4, 1.1, 1H), 7.30 – 7.25 (m, 2H), 7.21 (ddd, J = 8.0, 1.0, 0.6, 1H). NMR ¹³C (101 MHz, CDCl₃) δ 162.9 (C=O), 162.6 (C=O), 134.8, 134.5, 130.6, 129.4, 128.9, 128.6, 126.8, 125.8, 121.2, 118.7, 68.6 (C=N₂).

1-(4-Chlorophenyl)-2-diazobutane-1,3-dione⁵⁰ (68'). The title compound was synthesized from 1-(4-chlorophenyl)butane-1,3-dione (147 mg, 0.75 mmol) according to Method B (with addition of MeCN (1 mL)). Reaction time – 2 hours. Yield 150 mg (90%). Pale yellow solid; m.p. 57.1–58.4 °C. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.61 (d, *J* = 8.6, 2H), 7.49 (d, *J* = 8.6, 2H), 2.58 (s, 3H, CH₃). NMR ¹³C (101 MHz, CDCl₃) δ 190.3, 183.8, 139.1, 135.6, 129.3, 128.9, 83.6 (C=N₂), 29.1 (CH₃).

2-Diazo-4-methyl-1-phenylpentane-1,3-dione (69'). The title compound was synthesized from 4-N₂ methyl-1-phenylpentane-1,3-dione (143 mg, 0.75 mmol) according to Method B (with addition of MeCN (1 mL)). Reaction time – 2 hours. Yield 141 mg (87%). Transparent liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.68 – 7.63 (m, 2H), 7.61 – 7.55 (m, 1H), 7.50 (t, *J* = 7.4 Hz, 2H), 3.66 (hept, *J* = 6.8 Hz, 1H, CH(CH₃)₂), 1.21 (d, *J* = 6.8 Hz, 6H, CH(CH₃)₂). NMR ¹³C (101 MHz, CDCl₃) δ 197.5, 184.9, 137.7, 132.5, 128.9, 127.3, 82.4 (C=N₂), 37.8 (CH(CH₃)₂), 18.6 (CH(CH₃)₂). HRMS (ESI +ve) Exact mass calculated for C₁₂H₁₂N₂NaO₂ [M+Na]⁺:

239.0791, found 239.0802.

2-Diazo-1-(4-methoxyphenyl)-3-phenylpropane-1,3-dione (70'). The title compound was synthesized from 1-(4-methoxyphenyl)-3-phenylpropane-1,3-dione (191 mg, 0.75 mmol) according to Method B (with addition of MeCN (1 mL)). Reaction time – 4 hours. Yield 195 mg (93%). Pale yellow solid; m.p. 86.4–87.6 °C (decomp.) (MeOH). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.65 – 7.58 (m, 4H), 7.51 – 7.44 (m, 1H, *p*-Ph), 7.35 (t, *J* = 7.7, 2H, *t*-Ph), 6.83 (d, *J* = 8.9, 2H), 3.83 (s, 3H, OCH₃). NMR ¹³C (101 MHz, CDCl₃) δ 186.7, 184.9, 163.3, 137.1, 132.5, 130.9, 129.4, 128.4, 128.3, 113.6, 83.5 (C=N₂), 55.5 (OCH₃). HRMS (ESI +ve) Exact mass calculated for C₁₆H₁₂N₂NaO₃ [M+Na]⁺ : 303.0740, found 303.0739.

Ethyl 2-diazo-4-methyl-3-oxopentanoate⁵¹ (71'). The title compound was synthesized from ethyl 4- N_2 methyl-3-oxopentanoate (119 mg, 0.75 mmol) according to Method B (with addition of MeCN (0.5 mL)). Reaction time – 2 hours. Yield 117 mg (85%). Transparent liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 4.30 (q, *J* = 7.1, 2H, CH₂CH₃), 3.58 (hept, *J* = 6.8, 1H, CH(CH₃)₂), 1.30 (t, *J* = 7.1, 3H, CH₂CH₃), 1.13 (d, *J* = 6.8, 6H, CH(CH₃)₂). NMR ¹³C (101 MHz, CDCl₃) δ 197.0 (C=O), 161.1 (CO₂), 75.2 (C=N₂), 61.3 (CH₂CH₃), 36.7 (CH(CH₃)₂), 18.5 (CH(CH₃)₂), 14.3 (CH₂CH₃).

Isopropyl 2-diazo-3-oxobutanoate² (72'). The title compound was synthesized from isopropyl 3oxobutanoate (108 mg, 0.75 mmol) according to Method B (with addition of MeCN (0.5 mL)). Reaction time – 2 hours. Yield 107 mg (84%). Transparent liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 5.16 (hept, *J* = 6.3, 1H, C<u>H</u>(CH₃)₂), 2.48 (s, 3H, CH₃CO), 1.32 (d, *J* = 6.3, 6H, CH(C<u>H</u>₃)₂). NMR ¹³C (101 MHz, CDCl₃) δ 190.3 (C=O), 161.0 (CO₂), 76.6 (C=N₂), 69.4 (<u>C</u>H(CH₃)₂), 28.2 (<u>C</u>H₃CO), 21.9 (CH(<u>C</u>H₃)₂). Ethyl 2-diazo-3-(4-methoxyphenyl)-3-oxopropanoate⁵² (73'). The title compound was synthesized N_2 from ethyl 3-(4-methoxyphenyl)-3-oxopropanoate (167 mg, 0.75 mmol) according to Method B (with addition of MeCN (0.5 mL)). Reaction time – 2 hours. Yield 182 mg (98%). Transparent yellow liquid. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.69 (d, *J* = 8.8, 2H), 6.93 (d, *J* = 8.8, 2H), 4.28 (q, *J* = 7.1, 2H, CH₂CH₃), 3.88 (s, 3H, OCH₃), 1.30 (t, *J* = 7.1, 3H, CH₂CH₃). NMR ¹³C (101 MHz, CDCl₃) δ 185.3 (C=O), 163.2, 161.2, 131.0, 129.4, 113.1, 75.6 (C=N₂), 61.5 (CH₂CH₃), 55.4 (OCH₃), 14.3 (CH₂CH₃).

IV. General procedure for the preparation of compounds 74-78

To a stirred solution of sodium azide (0.49 g, 7.5 mmol) and potassium carbonate (1.38 g, 10 mmol) in water (10 mL) was added 3-(chlorosulfonyl)benzoic acid (1.11 g, 5 mmol) and the mixture was stirred at ambient temperature for 10 minutes. The resulting aqueous solution was divided into 5 equal portions. To each portion under stirring the corresponding substrate for diazo transfer and MeCN (1 mL) were added and the mixtures were stirred at ambient temperature for 2 hours. After extraction with DCE (2+1 mL) organic phases were dried over CaCl₂ and filtered. To the resulting dry solutions were added the corresponding XH-substrates (0.75 mmol) and Rh₂(esp)₂ (5.7 mg, 7.5 μ mol, 1 mol %). All reaction mixtures were stirred at ambient temperature overnight, evaporated and subjected to flash column chromatography on SiO₂ using the indicated eluent.

Diethyl 2-((furan-2-carbonyl)oxy)malonate (74)

The title compound was synthesized from diethyl malonate (120 mg, 0.75 mmol) and furan-2carboxylic acid (84 mg, 0.75 mmol); eluent – *n*-hexane–DCM (50:50 to 0:100). Yield 105 mg (52%), transparent colorless oil. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.66 (dd, *J* = 1.7, 0.8, 1H), 7.38 (dd, *J* = 3.6, 0.8, 1H), 6.57 (dd, *J* = 3.6, 1.7, 1H), 5.74 (s, 1H), 4.42 – 4.26 (m, 4H), 1.34 (t, *J* = 7.1, 6H). NMR ¹³C (101 MHz, CDCl₃) δ 164.2, 156.8, 147.4, 143.0, 120.0, 112.1, 71.7, 62.6, 14.0. HRMS (ESI +ve) Exact mass calculated for C₁₂H₁₄NaO₇ [M+Na]⁺ : 293.0632, found 293.0636.

1,3-Dioxo-1-phenylbutan-2-yl 4-fluorobenzoate (75)

The title compound was synthesized from 1-phenylbutane-1,3-dione (122 mg, 0.75 mmol) and *p*-fluorobenzoic acid (105 mg, 0.75 mmol); eluent – *n*-hexane–acetone (93:7 to 85:15). Yield 70 mg (31%), transparent oil (diketone/ketoenol mixture ~ 8:1). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) (signals of diketone tautomer) δ 8.14 (dd, *J* = 8.9, 5.4, 2H), 8.10 – 8.09 (m, 2H), 7.69 – 7.63 (m, 1H), 7.53 (t, *J* = 7.7, 2H), 7.17 (t, *J* = 8.7, 2H), 6.50 (s, 1H), 2.41 (s, 3H). NMR ¹³C (101 MHz, CDCl₃, *J*/Hz) (signals of diketone tautomer) δ 199.3, 190.8, 166.3 (d, *J* = 255.6), 164.0, 134.4, 134.4, 132.7 (d, *J* = 9.5), 129.5, 128.8, 124.8 (d, *J* = 3.0), 115.9 (d, *J* = 22.1), 82.6, 27.0. HRMS (ESI +ve) Exact mass calculated for C₁₇H₁₃FNaO₄ [M+Na]⁺: 323.0690, found 323.0675.

Ethyl (2-oxo-1-tosylpropyl)carbamate (76)

The title compound was synthesized from 1-tosylacetone (159 mg, 0.75 mmol) and ethyl carbamate (67 mg, 0.75 mmol); eluent – *n*-hexane–acetone (90:10 to 70:30). Yield 76 mg (34%), white solid; m.p. 121.5–123.2 °C (MeOH–H₂O). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.79 (d, *J* = 8.0, 2H), 7.37 (d, *J* = 8.0, 2H), 5.95 (br.d, *J* = 8.2, 1H), 5.75 (d, *J* = 9.3 Hz, 1H), 3.95 (q, *J* = 7.0, 2H), 2.64 (s, 3H), 2.47 (s, 3H), 1.12 (t, *J* = 7.0, 3H). NMR ¹³C (101 MHz, CDCl₃) δ 195.5, 154.5, 145.9, 133.0, 129.8, 129.7, 78.3, 62.0, 30.5, 21.7, 14.3. HRMS (ESI +ve) Exact mass calculated for C₁₃H₁₇NNaO₅S [M+Na]⁺ : 322.0720, found 322.0711.

2-Methoxy-4-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one 1,1-dioxide (77)

The title compound was synthesized from 4-methyl-2*H*-benzo[*b*][1,4]thiazin-3(4*H*)-one 1,1-dioxide (158 mg, 0.75 mmol) and methanol (45 mg, 1.4 mmol); eluent – *n*-hexane–acetone (90:10 to 65:35). Yield 94 mg (52%), white solid; m.p. 135.1–136.7 °C (MeOH). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 8.00 (dd, *J* = 7.7, 1.6, 1H), 7.71 (ddd, *J* = 8.4, 7.5, 1.6, 1H), 7.36 (td, *J* = 7.6, 0.9, 1H), 7.30 (d, *J* = 8.3, 1H), 4.80 (s, 1H), 3.78 (s, 3H), 3.51 (s, 3H). NMR ¹³C (101 MHz, CDCl₃) δ 162.4, 138.7, 135.2, 126.4,

125.8, 124.5, 118.1, 90.4, 61.7, 32.2. HRMS (ESI +ve) Exact mass calculated for $C_{10}H_{11}NNaO_4S$ [M+Na]⁺ : 264.0301, found 264.0306.

Dimethyl 2-((cyclopropanecarbonyl)oxy)succinate (78)

The title compound was synthesized from dimethyl 2-acetylsuccinate (141 mg, 0.75 mmol) and cylopropanecarboxylic acid (65 mg, 0.75 mmol); eluent – *n*-hexane–acetone (98:2 to 90:10). Yield 86 mg (50%), transparent oil. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 5.49 (dd, *J* = 6.5, 5.8, 1H), 3.78 (s, 3H), 3.74 (s, 3H), 2.96 – 2.87 (m, 2H), 1.70 (tt, *J* = 8.0, 4.6, 1H), 1.10 – 1.04 (m, 2H), 0.97 – 0.90 (m, 2H). NMR ¹³C (101 MHz, CDCl₃) δ 173.8, 169.6, 169.5, 68.1, 52.6, 52.1, 36.0, 12.6, 9.0, 8.9. HRMS (ESI +ve) Exact mass calculated for C₁₀H₁₄NaO₆ [M+Na]⁺ : 253.0683, found 253.0687.

V. Preparation of compounds 79-83 and 86 from diazo ketoester 11'

tert-Butyl 2-methyl-3-oxo-3-(*p*-tolylamino)propanoate (79). A solution of *tert*-butyl 2-diazo-3oxobutanoate (169 mg, 0.92 mmol) and *p*-toluidine (91 mg, 0.85 mmol) in dry DCE (1.5 mL) was heated in microwave reactor at 140 °C for 1 hour. The residue after evaporation of solvent was purified by flash column chromatorgraphy (*n*-hexane/acetone, gradient from 90:10 to 75:25) to afford the titled compound. Yield 173 mg (71%), white solid; m.p. 147.4–149.7 °C (*n*-hexane–CHCl₃). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 8.60 (s, 1H, NH), 7.44 (d, *J* = 8.4 Hz, 2H), 7.14 (d, *J* = 8.3 Hz, 2H), 3.35 (q, *J* = 7.3 Hz, 1H, C<u>H</u>CH₃), 2.33 (s, 3H, 4'-CH₃), 1.52 (s, 9H, C(CH₃)₃), 1.51 (d, *J* = 7.3 Hz, 3H, CHC<u>H₃</u>). NMR ¹³C (101 MHz, CDCl₃) δ 172.1, 167.3, 135.2, 133.9, 129.5, 119.9, 82.5, 48.3, 28.0, 20.8, 15.5. HRMS (ESI +ve) Exact mass calculated for C₁₅H₂₁NNaO₃ [M+Na]⁺ : 286.1414, found 286.1408.

tert-Butyl 3-(3,4-dihydro-2*H*-pyran-5-yl)-2-methyl-3-oxopropanoate (80). A solution of *tert*-butyl 2diazo-3-oxobutanoate (169 mg, 0.92 mmol) and *p*-toluidine (419 μ L, 4.6 mmol) in dry DCE (1.5 mL) was heated in microwave reactor at 140 °C for 1 hour. The residue after evaporation of solvent was purified by flash column chromatorgraphy (*n*-hexane/acetone, 85:15) to afford the titled compound. Yield 93 mg (42%), transparent oil. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.67 (s, 1H, =CH), 4.08 (t, *J* =

5.3 Hz, 2H), 3.77 (q, J = 7.0 Hz, 1H, C<u>H</u>CH₃), 2.28 (t, J = 6.3 Hz, 2H), 1.92 – 1.84 (m, 2H), 1.42 (s, 9H, C(CH₃)₃), 1.31 (d, J = 7.0 Hz, 3H, CHC<u>H₃</u>). NMR ¹³C (101 MHz, CDCl₃) δ 194.4 (C=O), 170.39 (CO₂), 157.5 (=CH), 115.9 (<u>C</u>=CH), 81.2, 67.1, 47.8, 27.9, 21.0, 18.6, 13.8. HRMS (ESI +ve) Exact mass calculated for C₁₃H₂₀NaO₄ [M+Na]⁺ : 263.1254, found 263.1266.

(2SR,3RS)-tert-Butyl 2-(4-methoxyphenyl)-3-methyl-4-oxo-1-phenylazetidine-3-carboxylate (81). 2-diazo-3-oxobutanoate solution *tert*-butyl (169 mg, 0.92 mmol) N-(p-А of and methoxybezylidene)aniline (179 mg, 0.85 mmol) in dry DCE (1.5 mL) was heated in microwave reactor at 140 °C for 1 hour. The residue after evaporation of solvent was purified by flash column chromatorgraphy (n-hexane/acetone, gradient from 95:5 to 85:15) to afford the titled compound. Yield 177 mg (57%), white solid; m.p. 136.6–138.2 °C (*n*-hexane). NMR ¹H (400 MHz, CDCl₃, J/Hz) δ 7.40 -7.18 (m, 6H), 7.09 (t, J = 7.0 Hz, 1H), 6.88 (d, J = 8.3 Hz, 2H), 4.85 (s, 1H, 4-H), 3.80 (s, 3H, OCH₃), 1.76 (s, 3H, 3-CH₃), 1.10 (s, 9H, C(CH₃)₃). NMR ¹³C (101 MHz, CDCl₃) δ 167.1, 164.8, 159.9, 137.6, 129.0, 128.4, 125.8, 124.0, 117.3, 114.0, 82.0, 66.2, 65.9, 55.4, 27.4, 18.1. HRMS (ESI +ve) Exact mass calculated for $C_{22}H_{25}NNaO_4 [M+Na]^+$: 390.1676, found 390.1663.

tert-Butyl 5-methyl-1,2,3-thiadiazole-4-carboxylate (82). To a solution of *tert*-butyl 2-diazo-3oxobutanoate (169 mg, 0.92 mmol) in 5 mL of dry benzene were added Lawesson's reagent (223 mg, 0.55 mmol) and DIPEA (226 μ L, 1.3 mmol) and the mixture was refluxed for 2.5 hours. After evaporation of solvent the residue was purified by flash column chromatorgraphy (*n*-hexane/acetone, gradient from 100:0 to 90:10) to afford the titled compound. Yield 83 mg (45%), yellow oil. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 2.88 (s, 3H, CH₃), 1.68 (s, 9H, C(CH₃)₃). NMR ¹³C (101 MHz, CDCl₃) δ 160.0 (CO), 158.9, 151.5, 83.3, 28.2, 11.0. HRMS (ESI +ve) Exact mass calculated for C₈H₁₂N₂NaO₂S [M+Na]⁺ : 223.0512, found 223.0510.

tert-Butyl 5-methyl-1-(phenylamino)-1*H*-1,2,3-triazole-4-carboxylate (83). A solution of *tert*-butyl 2-diazo-3-oxobutanoate (169 mg, 0.92 mmol) and phenylhydrazine hydrochloride (145 mg, 1.0 mmol) in methanol (2 mL) was stirred for 48 hours at room temperature. The residue after removal of solvent was extracted with ether (3×3 mL). Ether washings were evaporated and the crude product was purified by flash column chromatorgraphy (DCM/MeOH, 50:1) to afford the titled compound. Yield 78 mg

(31%), pale beige solid; m.p. 156.1–159.6 °C (decomp.). NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 7.82 (s, 1H, NH), 7.25 – 7.19 (m, 2H), 7.03 – 6.97 (m, 1H), 6.53 – 6.48 (m, 2H), 2.53 (s, 3H, CH₃), 1.66 (s, 9H, C(CH₃)₃). NMR ¹³C (101 MHz, CDCl₃) δ 160.6 (CO), 145.1, 139.4, 136.4, 129.5, 122.9, 113.8, 82.3, 28.3, 8.8. HRMS (ESI +ve) Exact mass calculated for C₁₄H₁₈N₄NaO₂ [M+Na]⁺ : 297.1322, found 297.1320.

3-Hydroxy-5,5-dimethyldihydrofuran-2(3*H***)-one (86)**. To a stirred solution of *tert*-butyl 2-diazo-3-oxobutanoate (339 mg, 1.84 mmol) in 2.5 mL of dry DCM was slowly added the solution of $Rh_2(esp)_2$ (6.8 mg, 0.009 mmol) in 0.5 mL of dry DCM (gas evolution!). The mixture was stirred for 2 hours at room temperature (full conversion of diazo compound was controlled by TLC). The solution prepared as described in Method B (the volume containing 2 mmol of sulfonyl azide) was added and the mixture was vigorously stirred for 2 hours. After extraction with EtOAc (3×6 mL) the organic phase was dried over Na₂SO₄ and evaporated. The crude product was purified by flash column chromatography (DCM–acetone, 15:1) to afford the titled compound. Yield 91 mg (38%), transparent colorless oil. NMR ¹H (400 MHz, CDCl₃, *J*/Hz) δ 4.67 (dd, *J* = 9.9, 8.6 Hz, 1H, 3-H), 3.39 (br.s, 1H, OH), 2.53 (dd, *J* = 12.8, 8.6 Hz, 1H, C<u>H</u>H), 2.08 (dd, *J* = 12.8, 9.9 Hz, 1H, CH<u>H</u>), 1.53 (s, 3H), 1.43 (s, 3H). NMR ¹³C (101 MHz, CDCl₃) δ 177.6 (CO), 82.5 (3-C), 68.8 (5-C), 42.9 (4-C), 29.1 (CH₃), 27.6 (CH₃). HRMS (ESI +ve) Exact mass calculated for C₆H₁₀NaO₃ [M+Na]⁺ : 153.0522, found 153.0527.

VI. Crystallographic data for compound 81

X-ray Single Crystal analysis was performed on Agilent Technologies SuperNova HyPix3000 diffractometer with monochromated CuK α radiation. The crystal was kept at 129 K during data collection. Using Olex2⁵³, the structure was solved with the olex2.solve⁵⁴ structure solution program using Charge Flipping and refined with the olex2.refine⁵⁴ refinement package using Gauss-Newton minimisation.

CCDC 1897286 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>http://www.ccdc.cam.ac.uk</u>.

Table 1 Crystal data and structure refinement for 81.	
Empirical formula	$C_{44}H_{51}N_3O_7$
Formula weight	733.91
Temperature/K	129
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	5.76130(10)
b/Å	20.9417(3)
c/Å	32.5782(5)
α/°	90
β/°	93.1090(10)
$\gamma/^{\circ}$	90
Volume/Å ³	3924.82(11)
Z	4
$\rho_{calc}g/cm^3$	1.2419
μ/mm^{-1}	0.676
F(000)	1573.0
Radiation	Cu K α (λ = 1.54184)
2 Θ range for data collection/°	5.02 to 147.74
Index ranges	$-6 \le h \le 7, -24 \le k \le 26, -40 \le l \le 40$
Reflections collected	23582
Independent reflections	7868 [$R_{int} = 0.0453$, $R_{sigma} = 0.0539$]
Data/restraints/parameters	7868/0/497
Goodness-of-fit on F ²	1.055
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0540, wR_2 = 0.1431$
Final R indexes [all data]	$R_1 = 0.0726, wR_2 = 0.1540$
Largest diff. peak/hole / e Å-3	0.47/-0.70

Fig.S1 Crystal structure of compound 81

VII. References

- 1. Kan He. Novel inhibitors of protein kinases.WO 2017066193 A1.
- 2. Kokel, B.; Viehe, H. G. Angew. Chem. 1980, 92(9), 754.
- 3. Galiullina, S. V.; Zakharova, V. M.; Kantin, G. P.; Nikolaev, V. A. *Rus. J. Org. Chem.* 2007, 43(4), 607.
- 4. Schulze, B.; Nikolaev, Vs. V.; Hennig, L.; Rodina, L. L.; Sieler, J.; Nikolaev, V. A. *Rus. J. Org. Chem.* **2004**, *40*(5), 740.
- 5. Nikolaev, V. A.; Shevchenko, V. V.; Platz, M. S.; Khimich, N. N. Rus. J. Org. Chem. 2006, 42(6), 815.
- Moriarty, R. M.; Bailey, B. R., III; Prakash, O.; Prakash, I. J. Am. Chem. Soc. 1985, 107(5), 1375.
- 7. Chen, Z.-B.; Hong, D.; Wang, Y.-G. J. Org. Chem. 2009, 74(2), 903.
- Supurgibekov, M. B.; Hennig, L.; Schulze, B.; Nikolaev, V. A. Rus. J. Org. Chem. 2008, 44(12), 18403.
- 9. Kantin, G.; Dar'in, D.; Krasavin, M. Eur. J. Org. Chem. 2018, 35, 4857.
- 10. Harned, A. M.; Sherrill, W. M.; Flynn, D. L.; Hanson, P. R. Tetrahedron 2005, 61(51), 12093.
- 11. Shi, B.; Blake, A. J.; Lewis, W.; Campbell, I. B.; Judkins, B. D.; Moody, C. J. J. Org. Chem. **2010**, *75*(1), 152.
- 12. Swenson, R. E.; Sowin, T. J.; Zhang, H. Q. J. Org. Chem., 2002, 67 (26), 9182.
- 13. Ingle, V. N.; Gaidhane, P. K.; Hatzade, K. M.; Umare, V. D.; Taile, V. S. Intern. J. Pharm. *Tech. Res.* **2009**, *1*(3), 605.
- 14. Marcoux, D.; Goudreau, S. R.; Charette, A. B. J. Org. Chem. 2009, 74(23), 8939.
- 15. Wheeler, T. N. J. Org. Chem. 1979, 44(26), 4906.
- 16. Lu, C.-D.; Chen, Z.-Y.; Liu, H.; Hu, W.-H.; Mi, A.-Q.; Doyle, M. P. J. Org. Chem. 2004, 69(14), 4856.
- 17. Qi, H.; Zhang, J.; Xu, J. Synthesis 2011, 6, 887.
- 18. Pandit, R. P.; Kim, S. H.; Lee, Y. R. Adv. Syn. Cat. 2016, 358(22), 3586.
- 19. Peng, C.; Cheng, J.; Wang, J. J. Am. Chem. Soc. 2007, 129(28), 8708.
- 20. Wurz, R. P.; Lin, W.; Charette, A. B. Tet. Lett. 2003, 44(49), 8845.
- 21. L'Abbe, G.; Godts, F. Bull. Soc. Chim. Belges 1987, 96(3), 229.
- 22. Zheng, C.; Zhang, X.; Ijaz Hussain, M.; Huang, M.; Liu, Q.; Xiong, Y.; Zhu, X. Tet. Lett. 2017, 58(6), 574.
- 23. Cui, X.; Xu, X.; Lu, H.; Zhu, S.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133(10), 3304.
- 24. Katritzky, A. R.; El Khatib, M.; Bol'shakov, O.; Khelashvili, L.; Steel, P. J. J. Org. Chem. 2010, 75(19), 6532.
- 25. Kitamura, M.; Tashiro, N.; Sakata, R.; Okauchi, T. Synlett 2010, 16, 2503.
- 26. de Lucas, N. C.; Netto-Ferreira, J. C.; Andraos, J.; Scaiano, J. C. J. Org. Chem. 2001, 66(15), 5016.
- 27. Tomioka, H.; Hirai, K.; Tabayashi, K.; Murata, S.; Izawa, Y.; Inagaki, S.; Okajima, T. *J. Am. Chem. Soc.* **1990**, *112*(21), 7692.
- 28. Harned, A. M.; Sherrill, W. M.; Flynn, D. L.; Hanson, P. R. Tetrahedron 2005, 61(51), 12093.
- 29. Lim, H. J.; Gallucci, J. C.; RajanBabu, T. V. Org. Lett. 2010, 12(9), 2162.
- Peng, H.; Cheng, Y.; Ni, N.; Li, M.; Choudhary, G.; Chou, H. T.; Lu, C.-D.; Tai, P. C.; Wang, B. *ChemMedChem* 2009, 4(9), 1457.
- 31. Volovenko, Y.; Volovnenko, T.; Popov, K. J. Heterocyclic Chem. 2007, 44(6), 1413.
- 32. Balli, H.; Loew, R.; Mueller, V.; Rempfler, H.; Sezen-Gezgin, A. *Helv. Chim. Acta* **1978**, *61*(1), 97.
- 33. Harriman, B. R.; Shelton, R. S.; Van Campen, M. G.; Warren, M. R. J. Am. Chem. Soc. 1945, 67, 1481.
- 34. Balli, H.; Mueller, V.; Sezen-Gezgin, A. Helv. Chim. Acta 1978, 61(1), 104.

- 35. Nikolaev, V. A.; Popik, V. V. Zhurnal Organicheskoi Khimii 1989, 25(1), 222.
- 36. Deadman, B. J.; O'Mahony, R. M.; Lynch, D.; Crowley, D. C.; Collins, S. G.; Maguire, A. R. *Org. Biomol. Chem.* **2016**, *14*(13), 3423.
- 37. Marcoux, D.; Goudreau, S. R.; Charette, A. B. J. Org. Chem. 2009, 74(23), 8939.
- 38. Ramachary, D. B.; Narayana, V. V.; Ramakumar, K. Tet. Lett. 2008, 49(17), 2704.
- 39. Kang, B.-R.; Wang, J.; Li, H.; Li, Y.; Mei, Q.-B.; Zhang, S.-Q. Med. Chem. Res., 2014, 23(3), 1340.
- 40. Xia, G.; Benmohamed, R.; Kim, J.; Arvanites, A. C.; Morimoto, R. I.; Ferrante, R. J.; Kirsch, D. R.; Silverman, R. B. *J. Med. Chem.*, **2011**, *54* (7), 2409.
- 41. Chuprakov, S.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127(11), 3714.
- 42. Brehm, W. J.; Levenson, T. J. Am. Chem. Soc. 1954, 76, 5389.
- 43. Pasceri, R.; Bartrum, H. E.; Hayes, C. J.; Moody, C. J. Chem. Comm. (Cambridge, United Kingdom), 2012, 48(99), 12077.
- 44. Aitken, R. A.; Armstrong, J. M.; Drysdale, M. J.; Ross, F. C.; Ryan, B. M. J. Chem. Soc., Perkin Trans. 1 1999, 5, 593.
- 45. Peng, H.; Cheng, Y.; Ni, N.; Li, M.; Choudhary, G.; Chou, H. T.; Lu, C.-D.; Tai, P. C.; Wang, B. *ChemMedChem* **2009**, *4*(9), 1457.
- 46. Chan, C.-K.; Wang, H.-S.; Hsu, R.-T.; Chang, M.-Y. Synthesis 2017, 49(11), 2423.
- 47. Chang, M.-Y.; Chen, H.-Y.; Chen, Y.-H. J. Org. Chem. 2017, 82(23), 12631.
- 48. Shrestha, R.; Lee, G. J.; Lee, Y. R. RSC Adv. 2016, 6(68), 63782.
- 49. Ukrainets, V.; Gorokhova, O. V.; Sidorenko, L. V.; Bereznyakova, N. L. Chem. Heterocyclic Comp. 2006, 42(8), 1032.
- 50. Regitz, M.; Liedhegener, A. Chem. Ber. 1966, 99(10), 3128.
- 51. Sancon, J.; Sweeney, J. B. Synlett 2010, 4, 664.
- 52. Erhunmwunse, M. O.; Steel, P. G. J. Org. Chem. 2008, 73(21), 8675.
- 53. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), *J. Appl. Cryst.* 42, 339-341.
- 54. Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2015). Acta Cryst. A71, 59-75.

VIII. NMR Spectra

