Supporting Informationfor
Silane catecholate: versatile tools for self-assembled dynamic covalent bond chemistry
Yoshiteru Kawakami, ${ }^{\text {a }}$ Tsuyoshi Ogishima, ${ }^{\text {a }}$ Tomoki Kawara, ${ }^{a}$ Shota Yamauchi, ${ }^{a}$ KazuhikoOkamoto, ${ }^{\text {a }}$ Singo Nikaido, ${ }^{\text {a }}$ Daiki Souma, ${ }^{\text {b }}$ Ren-Hua Jin ${ }^{\text {b }}$ and Yoshio Kabe*a
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Kanagawa University 2946, Tsuchiya, Hiratsuka259-1293, Japan.
${ }^{\mathrm{b}}$ Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University 3-2-7,Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 Japan.

1. General information and experimental procedures S2
2. Structural assignment and spectral data S17
3. Crystallographic data S62
4. MeCN-promoted DCC conditions for the formation of $\mathbf{4 a}, \mathbf{5 a}$ and $\mathbf{6 a}$ S64
5. ${ }^{1} \mathrm{H}$ NMR titration S74
6. Attempts to achieve gas adsorption within $\mathbf{4 a} \cdot \mathbf{4} \mathrm{HNEt}_{3}, \mathbf{5 a} \cdot 6 \mathrm{Na}$, and $\mathbf{5 a} \cdot 1.5(\mathbf{8})$ S85
7. Supporting references S89

1. General information and experimental procedures

All reactions were performed under an argon atmosphere unless otherwise specified. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at room temperature using a JEOL JNM-ECX 600R, JNM-ECS 400, or JNM-ECA 400 spectrometer. High resolution mass spectra (ESI) were recorded on a JEOL JMS-T100LC mass spectrometer using a reserpine and YOKUDELUNA calibration kit (JEOL) for accurate mass calibration. Commercially available solvents and reagents were purchased from Sigma-Aldrich, Wako, TCI, and KANTO. Anhydrous DMF was purchased from Wako. Tetrahydrofuran (THF) was distilled from lithium aluminum hydride (LAH). Methanol was distilled from calcium hydride, while acetonitrile was dried over MS3 \AA. Trimethoxysilanes, $\left[\mathrm{RSi}(\mathrm{OMe})_{3}, \mathrm{R}\right.$ $=\mathrm{Ph}$, p-tolyl, Me, vinyl, $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}$, and $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMe}_{2}$] were purchased from Shin-Etsu Chemical Co., Ltd. 9,10-Dimethyl-9,10-ethano-9,10-dihydro-2,3,6,7-tetrahydroxyanthracene (EAT) (2) was prepared from pyrocatechol and 2,5-hexanedione according to a literature method. ${ }^{1)}$ Cyclotricatechylene (CTC) (3) was also synthesized according to a modified known procedure ${ }^{2-5}$) by hydrochloric acid catalyzed condensation of veratrole with trioxane to initially yield cyclotriveratrylene (CTV), followed by demethylation using $\mathrm{Me}_{3} \mathrm{SiCl} / \mathrm{NaI}$ in acetonitrile. Stoddart's blue box $\left(8 \cdot 4 \mathrm{PF}_{6}\right)$ and its synthetic precursor $\left(7 \cdot 2 \mathrm{PF}_{6}\right)$ were also prepared according to a modified literature method ${ }^{6-7}$) by N-alkylation of 1,1’-[1,4-phenylene-bis(methylene)]-bis(4,4'-bipyridinium) bis(hexafluorophosphate) with 1,4-bis(iodomethyl)benzene instead of the corresponding dibromide in the presence of 1,5-bi(2-(2-methoxyethoxy)ethoxy)naphthalene as template.
1.1. Synthesis of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}$

9,10-Dimethyl-9,10-ethano-9,10-dihydro-2,3,6,7-tetrahydroxyanthracene (EAT) etherate $\left(\mathbf{2} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$ ($6.00 \mathrm{mmol}, 2.24 \mathrm{~g}$), $\mathrm{PhSi}(\mathrm{OMe})_{3}(4.40 \mathrm{mmol}, 0.872 \mathrm{~g}, 0.822 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(16.0 \mathrm{mmol}, 1.62 \mathrm{~g}$, 2.23 mL) were dissolved in 45 mL of THF, 15 mL of MeCN , and 15 mL of MeOH . The reaction mixture was stirred and refluxed under a nitrogen atmosphere for 2 days. The mixture was then cooled to room temperature, and the precipitate was collected by suction filtration. It was then washed with 20 mL of THF and dried under reduced pressure to give $2.52 \mathrm{~g}(0.871 \mathrm{mmol}, 87.1 \%)$ of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}$ as a white powder.
$\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}:{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.66(\mathrm{br}, 4 \mathrm{H}, \mathrm{NH}), 8.42(\mathrm{~s}, 8 \mathrm{H}, \mathrm{OH}), 7.51$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 8 \mathrm{H}, o-\mathrm{CH}), 7.13-7.09(\mathrm{~m}, 12 \mathrm{H}, p-\mathrm{CH}$ and $m-\mathrm{CH}), 6.59(\mathrm{~s}, 8 \mathrm{H}, \mathrm{ArH}), 6.41(\mathrm{~s}, 16 \mathrm{H}$, $\mathrm{ArH}), 3.59\left(\mathrm{~m}, \mathrm{OCH}_{2}, 16 \mathrm{H}\right), 2.85\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{NCH}_{2}\right), 1.75\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}, 16 \mathrm{H}\right), 1.67(\mathrm{~s}$, $\left.12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.64\left(\mathrm{brs}, 24 \mathrm{H}, \mathrm{CH}_{3}\right), 1.39\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.35\left(\mathrm{brs}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 36 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (150MHz, DMSO- d_{6}) $\delta 146.77$ (C), 142.77 (ipso-C), 141.74 (C), 137.63 (C), $136.25(\mathrm{C}), 134.77(o-\mathrm{CH}), 127.45(p-\mathrm{CH}), 126.62(m-\mathrm{CH}), 108.77(\mathrm{CH}), 103.08(\mathrm{CH}), 67.04$ $\left(\mathrm{OCH}_{2}\right), 45.55\left(\mathrm{NCH}_{2}\right), 40.25(\mathrm{C}), 39.94(\mathrm{C}), 36.27\left(\mathrm{CH}_{2}\right), 36.24\left(\mathrm{CH}_{2}\right), 25.14\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 19.24$ $\left(\mathrm{CH}_{3}\right), 18.52\left(\mathrm{CH}_{3}\right), 8.49\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{29} \mathrm{Si}$ NMR $\left(120 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta-86.91\left(\mathrm{PhSiO}_{4}\right) ;$ HRMS (ESI-, MeOH) m / z calcd for $\mathrm{C}_{138} \mathrm{H}_{129} \mathrm{~N}_{1} \mathrm{O}_{24} \mathrm{Si}_{4}\left[\mathrm{M}+\mathrm{HNEt}_{3}+\mathrm{H}+2 \text { (2) }\right]^{2-}$ 1147.89908, found 1147.89793 .
1.2. Preparation of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3}$

Compound $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}(2.00 \mathrm{mmol}, 5.78 \mathrm{~g})$ was dissolved in 50 mL of DMSO and 50 mL of DMF upon heating. Further addition of 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 300 mL of $\mathrm{Et}_{2} \mathrm{O}$ led to the precipitation of a white powder. The powder was collected by suction filtration and dried under reduced pressure to give $2.71 \mathrm{~g}(1.35 \mathrm{mmol}, 67.5 \%)$ of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3}$.

4a•4 $\mathrm{HNEt}_{3}:{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.62(\mathrm{br}, 4 \mathrm{H}, \mathrm{NH}), 7.52(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 8 \mathrm{H}, o-\mathrm{CH})$, 7.14-7.11 (m, 12H, $p-\mathrm{CH}$ and $m-\mathrm{CH}), 6.42(\mathrm{~s}, 16 \mathrm{H}, \mathrm{ArH}), 2.81\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{NCH}_{2}\right), 1.65(\mathrm{brs}$, $24 \mathrm{H}, \mathrm{CH}_{3}$), $1.37\left(\mathrm{brs}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 0.98\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO$\left.d_{6}\right) \delta 146.74(\mathrm{C}), 142.76$ (ipso-C), $136.20(\mathrm{C}), 134.74(o-\mathrm{CH}), 127.40(p-\mathrm{CH}), 126.58(m-\mathrm{CH})$, $103.03(\mathrm{CH}), 45.52\left(\mathrm{NCH}_{2}\right), 40.21(\mathrm{C}), 36.24\left(\mathrm{CH}_{2}\right), 19.21\left(\mathrm{CH}_{3}\right), 8.43\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{29} \mathrm{Si}$ NMR ($\left.120 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta-86.85\left(\mathrm{PhSiO}_{4}\right)$; HRMS (ESI-, MeOH$) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{102} \mathrm{H}_{93} \mathrm{~N}_{1} \mathrm{O}_{16} \mathrm{Si}_{4}$ $\left[\mathrm{M}+\mathrm{HNEt}_{3}+\mathrm{H}\right]^{2-}$ 849.77857, found 849.77934.
1.3. Synthesis of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{2} \mathrm{Bn} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}$

9,10-Dimethyl-9,10-ethano-9,10-dihydro-2,3,6,7-tetrahydroxyanthracene (EAT) (2) (2.00 mmol , $0.597 \mathrm{~g}), \mathrm{PhSi}(\mathrm{OMe})_{3}(2.10 \mathrm{mmol}, 0.416 \mathrm{~g}, 0.392 \mathrm{~mL})$, and $\mathrm{NEt}_{2} \mathrm{Bn}(6.00 \mathrm{mmol}, 0.979 \mathrm{~g}, 1.08 \mathrm{~mL})$ were dissolved in 15 mL of THF and 5 mL of MeCN . The reaction mixture was stirred and refluxed under a nitrogen atmosphere for 1 day. The mixture was then cooled to room temperature, and the precipitate was collected by suction filtration. It was washed with 10 mL of THF and dried under reduced pressure to give $0.665 \mathrm{~g}(0.212 \mathrm{mmol}, 63.7 \%)$ of $\mathbf{4} \mathbf{a} \cdot 4 \mathrm{HNEt}_{2} \mathrm{Bn} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}$ as a white powder.

4a•4HNEt $t_{2} \mathrm{Bn} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}:{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.98$ (br, 4H, NH), $8.42(\mathrm{~s}, 8 \mathrm{H}, \mathrm{OH})$, $7.51(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 8 \mathrm{H}, o-\mathrm{CH}), 7.36-7.30\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.13-7.10(\mathrm{~m}, 12 \mathrm{H}, p-\mathrm{CH}$ and $m-\mathrm{CH})$, $6.60(\mathrm{~s}, 8 \mathrm{H}, \mathrm{ArH}), 6.41(\mathrm{~s}, 16 \mathrm{H}, \mathrm{ArH}), 4.06\left(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.59\left(\mathrm{~m}, \mathrm{OCH}_{2}, 16 \mathrm{H}\right)$, 2.88-2.75 (m, 16H, NCH $), 1.75\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}, 16 \mathrm{H}\right), 1.67\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.64$ (brs, $24 \mathrm{H}, \mathrm{CH}_{3}$), $1.40\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.36$ (brs, $\left.16 \mathrm{H}, \mathrm{CH}_{2}\right), 0.95\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}$, DMSO- d_{6}) $\delta 146.80$ (C), 142.77 (ipso-C), 141.78 (C), 137.67 (C), 136.33 (C), 134.79 (o-CH), 130.80 (NBn, $o-\mathrm{CH}), 129.93$ (NBn, ipso-C), 129.38 (NBn, $p-\mathrm{CH}), 128.87$ (NBn, $m-\mathrm{CH}), 127.48(p-$ $\mathrm{CH}), 126.64(m-\mathrm{CH}), 108.80(\mathrm{CH}), 103.14(\mathrm{CH}), 67.05\left(\mathrm{OCH}_{2}\right), 55.00\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 45.85\left(\mathrm{NCH}_{2}\right)$, $40.28(\mathrm{C}), 39.97(\mathrm{C}), 36.29\left(\mathrm{CH}_{2}\right), 36.27\left(\mathrm{CH}_{2}\right), 25.16\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 19.25\left(\mathrm{CH}_{3}\right), 18.54\left(\mathrm{CH}_{3}\right), 8.24$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{29} \mathrm{Si}$ NMR $\left(120 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta-86.72\left(\mathrm{PhSiO}_{4}\right)$; HRMS (ESI-, MeOH) m/z calcd for $\mathrm{C}_{143} \mathrm{H}_{131} \mathrm{~N}_{1} \mathrm{O}_{24} \mathrm{Si}_{4}\left[\mathrm{M}+\mathrm{HNEt}_{2} \mathrm{Bn}+\mathrm{H}+2(2)\right]^{2-} 1178.90691$, found 1178.90791.
1.4. Synthesis of $\mathbf{4 a} \cdot 4 \mathrm{HNMe}_{2} \mathrm{Bn} \cdot 2 \mathrm{HHF}$

9,10-Dimethyl-9,10-ethano-9,10-dihydro-2,3,6,7-tetrahydroxyanthracene (EAT) (2) (2.00 mmol , $0.597 \mathrm{~g}), \mathrm{PhSi}(\mathrm{OMe})_{3}(2.10 \mathrm{mmol}, 0.416 \mathrm{~g}, 0.392 \mathrm{~mL})$, and $\mathrm{NMe}_{2} \mathrm{Bn}(6.00 \mathrm{mmol}, 0.811 \mathrm{~g}, 0.901$ mL) were dissolved in 15 mL of THF and 5 mL of MeCN . The reaction mixture was stirred and refluxed under a nitrogen atmosphere for 2 day. The mixture was then cooled to room temperature, and the precipitate was collected by suction filtration. It was then washed with 10 mL of THF and dried under reduced pressure to give $0.845 \mathrm{~g}(0.369 \mathrm{mmol}, 73.8 \%)$ of $\mathbf{4} \mathbf{a} \cdot 4 \mathrm{HNMe}_{2} \mathrm{Bn} \cdot 2 \mathrm{THF}$ as a white powder.

4a $\cdot 4 \mathrm{HNMe}{ }_{2} \mathrm{Bn} \cdot 2 \mathrm{THF}:{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 9.36(\mathrm{br}, 4 \mathrm{H}, \mathrm{NH}), 7.51(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $8 \mathrm{H}, o-\mathrm{CH}), 7.36-7.31\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.13-7.09(\mathrm{~m}, 12 \mathrm{H}, p-\mathrm{CH}$ and $m-\mathrm{CH}), 6.41(\mathrm{~s}, 16 \mathrm{H}, \mathrm{ArH})$, 4.06 (brs, $8 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}$), $3.59\left(\mathrm{~m}, \mathrm{OCH}_{2}, 8 \mathrm{H}\right), 2.51\left(\mathrm{~s}, 24 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.75\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}, 8 \mathrm{H}\right), 1.64$ (brs, $24 \mathrm{H}, \mathrm{CH}_{3}$), 1.36 (brs, $16 \mathrm{H}, \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}) $\delta 146.71$ (C), 142.76 (ipsoC), 136.24 (C), $134.70(o-\mathrm{CH}), 130.67$ (NBn, $o-\mathrm{CH}$), 130.52 ($\mathrm{NBn}, i p s o-\mathrm{C}$), 129.34 ($\mathrm{NBn}, p-\mathrm{CH}$), $128.82(\mathrm{NBn}, m-\mathrm{CH}), 127.39(p-\mathrm{CH}), 126.58(m-\mathrm{CH}), 103.08(\mathrm{CH}), 67.00\left(\mathrm{OCH}_{2}\right), 59.92\left(\mathrm{NCH}_{2} \mathrm{Ph}\right)$, $41.79\left(\mathrm{NCH}_{3}\right), 40.21(\mathrm{C}), 36.21\left(\mathrm{CH}_{2}\right), 25.10\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 19.20\left(\mathrm{CH}_{3}\right) ;{ }^{29} \mathrm{Si}$ NMR $(120 \mathrm{MHz}$, DMSO- d_{6}) δ-86.86 $\left(\mathrm{PhSiO}_{4}\right)$; HRMS (ESI-, MeOH$) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{105} \mathrm{H}_{91} \mathrm{~N}_{1} \mathrm{O}_{16} \mathrm{Si}_{4}$ $\left[\mathrm{M}+\mathrm{HNMe}_{2} \mathrm{Bn}+\mathrm{H}\right]^{2-}$ 866.77075, found 866.76976.
1.5. Synthesis of $\mathbf{4 a} \cdot 4 \mathrm{HNMe}{ }_{2} \mathrm{Bu} \cdot 2 \mathrm{THF}$

9,10-Dimethyl-9,10-ethano-9,10-dihydro-2,3,6,7-tetrahydroxyanthracene (EAT) (2) (2.00 mmol , $0.597 \mathrm{~g}), \mathrm{PhSi}(\mathrm{OMe})_{3}(2.20 \mathrm{mmol}, 0.436 \mathrm{~g}, 0.411 \mathrm{~mL})$, and $\mathrm{NMe}_{2} \mathrm{Bu}(6.00 \mathrm{mmol}, 0.607 \mathrm{~g}, 0.842$
mL) were dissolved in 15 mL of THF, 5 mL of MeCN , and 5 mL of MeOH . The reaction mixture was stirred and refluxed under a nitrogen atmosphere for 2 days. The mixture was then cooled to room temperature, and the precipitate was collected by suction filtration. It was then washed with 10 mL of THF and dried under reduced pressure to give $0.624 \mathrm{~g} \quad(0.290 \mathrm{mmol}, 58.0 \%)$ of $\mathbf{4 a} \cdot 4 \mathrm{HNMe}_{2} \mathrm{Bu} \cdot 2 \mathrm{THF}$ as a white powder.
$4 \mathbf{a} \cdot 4 \mathrm{HNMe}_{2} \mathrm{Bu} \cdot 2 \mathrm{THF}:{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.98(\mathrm{br}, 4 \mathrm{H}, \mathrm{NH}), 7.51(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 8 \mathrm{H}$, $o-\mathrm{CH}), 7.13-7.10(\mathrm{~m}, 12 \mathrm{H}, p-\mathrm{CH}$ and $m-\mathrm{CH}), 6.41(\mathrm{~s}, 16 \mathrm{H}, \mathrm{ArH}), 3.59\left(\mathrm{~m}, \mathrm{OCH}_{2}, 8 \mathrm{H}\right), 2.81(\mathrm{brt}, J=$ $8.1 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.56\left(\mathrm{~s}, 24 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.75\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}, 8 \mathrm{H}\right), 1.64$ (brs, 24 H , CH_{3}), 1.45-1.39 (m, $8 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.35 (brs, $16 \mathrm{H}, \mathrm{CH}_{2}$), 1.42 (sext, $J=7.5 \mathrm{~Hz}, 8 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.42\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}) $\delta 146.70$ (C), 142.79 (ipso-C), 136.21 (C), 134.77 (o-CH), 127.38 (p-CH), 126.57 (m-CH), 103.06 $(\mathrm{CH}), 67.00\left(\mathrm{OCH}_{2}\right), 56.54\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 42.29\left(\mathrm{NCH}_{3}\right), 40.20(\mathrm{C}), 36.24\left(\mathrm{CH}_{2}\right), 25.85$ $\left(\begin{array}{llllll}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), & 25.11 \quad\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), & 19.20 \quad\left(\mathrm{CH}_{3}\right), & 19.13 \quad\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), \quad 13.41\end{array}\right.$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{29} \mathrm{Si}$ NMR (120MHz, DMSO- d_{6}) $\delta-87.02\left(\mathrm{PhSiO}_{4}\right) ;$ HRMS (ESI-, MeOH) m/z calcd for $\mathrm{C}_{102} \mathrm{H}_{93} \mathrm{~N}_{1} \mathrm{O}_{16} \mathrm{Si}_{4}\left[\mathrm{M}+\mathrm{HNMe}_{2} \mathrm{Bu}+\mathrm{H}\right]^{2-}$ 849.77857, found 849.77895 .
1.6. Synthesis of $\mathbf{4 a} \cdot 4$ TMEDAH $\cdot 2$ THF

9,10-Dimethyl-9,10-ethano-9,10-dihydro-2,3,6,7-tetrahydroxyanthracene (EAT) etherate $\left(\mathbf{2} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$ $(2.00 \mathrm{mmol}, 0.745 \mathrm{~g}), \mathrm{PhSi}(\mathrm{OMe})_{3}(2.20 \mathrm{mmol}, 0.436 \mathrm{~g}, 0.411 \mathrm{~mL})$, and TMEDA (6.00 mmol , $0.697 \mathrm{~g}, 0.900 \mathrm{~mL}$) were dissolved in 15 mL of THF, 5 mL of MeCN , and 5 mL of MeOH . The reaction mixture was stirred and refluxed under a nitrogen atmosphere for 1 day. The mixture was then cooled to room temperature, and the precipitate was collected by suction filtration. It was then washed with 10 mL of THF and dried under reduced pressure to give $0.877 \mathrm{~g}(0.397 \mathrm{mmol}, 79.4 \%)$ of $\mathbf{4 a} \cdot 4 \mathrm{TMEDAH} \cdot 2 \mathrm{THF}$ as a white powder.

4a•4 TMEDAH•2THF: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.51(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 8 \mathrm{H}, o-\mathrm{CH}), 7.13-7.10$ $(\mathrm{m}, 12 \mathrm{H}, p-\mathrm{CH}$ and $m-\mathrm{CH}), 6.41(\mathrm{~s}, 16 \mathrm{H}, \mathrm{ArH}), 3.59\left(\mathrm{~m}, \mathrm{OCH}_{2}, 8 \mathrm{H}\right), 2.58\left(\mathrm{~s}, 16 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$,
$2.29\left(\mathrm{~s}, 48 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.75\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}, 8 \mathrm{H}\right), 1.64$ (brs, $24 \mathrm{H}, \mathrm{CH}_{3}$), 1.35 (brs, $16 \mathrm{H}, \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 146.73$ (C), 142.83 (ipso-C), 136.20 (C), 134.81 (o-CH), 127.39 (p $\mathrm{CH}), 126.59(m-\mathrm{CH}), 103.09(\mathrm{CH}), 67.02\left(\mathrm{OCH}_{2}\right), 53.38\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 43.71\left(\mathrm{NCH}_{3}\right), 40.22(\mathrm{C})$, $36.25\left(\mathrm{CH}_{2}\right), 25.12\left(\mathrm{OCH}_{2} \underline{\mathrm{CH}}_{2}\right), 19.23\left(\mathrm{CH}_{3}\right) ;{ }^{29} \mathrm{Si}$ NMR (120MHz, DMSO- $\left.d_{6}\right) \delta-87.02\left(\mathrm{PhSiO}_{4}\right)$; HRMS (ESI-, MeOH$) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{109} \mathrm{H}_{114} \mathrm{~N}_{4} \mathrm{O}_{17} \mathrm{Si}_{4}\left[\mathrm{M}+2\left(\mathrm{HNMe}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)+\mathrm{MeOH}\right]^{2-}$ 931.36280 , found 931.36222 .
1.7. Synthesis of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(\mathbf{2}) \cdot 2$ Anthracene \cdot THF

$\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(2) \cdot 2 a n t h r a c e n e \cdot$ THF
9,10-Dimethyl-9,10-ethano-9,10-dihydro-2,3,6,7-tetrahydroxyanthracene (EAT) (2) (2.00 mmol, $0.597 \mathrm{~g}), \mathrm{PhSi}(\mathrm{OMe})_{3}(2.10 \mathrm{mmol}, 0.416 \mathrm{~g}, 0.392 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(6.00 \mathrm{mmol}, 0.607 \mathrm{~g}, 0.836 \mathrm{~mL})$ with anthracene ($4.00 \mathrm{mmol}, 0.713 \mathrm{~g}$) were dissolved in 15 mL of THF, 5 mL of MeCN , and 5 mL of MeOH . The reaction mixture was stirred and refluxed under a nitrogen atmosphere for 2 days. The mixture was then cooled to room temperature, and the precipitate was collected by suction filtration. It was then washed with 20 mL of THF and dried under reduced pressure to give 0.886 g $(0.292 \mathrm{mmol}, 87.6 \%)$ of $\mathbf{4 a} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{HNEt}_{3} \cdot 2$ Anthracene \cdot THF as a white powder.
$\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(\mathbf{2}) \cdot 2 \mathrm{Anthracene} \cdot \mathrm{THF}:{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.66(\mathrm{br}, 4 \mathrm{H}, \mathrm{NH}), 8.57(\mathrm{~s}$, $4 \mathrm{H}, 9,10-\mathrm{CH}), 8.41(\mathrm{~s}, 8 \mathrm{H}, \mathrm{OH}), 8.08(\mathrm{dd},, J=6.4,3.3 \mathrm{~Hz}, 8 \mathrm{H}, 1,4,5,8-\mathrm{CH}), 7.53-7.49(\mathrm{~m}, 16 \mathrm{H}, o-$ CH, 2,3,6,7-CH), 7.13-7.09 (m, 12H, $p-\mathrm{CH}$ and $m-\mathrm{CH}$), 6.59 (s, 8H, ArH), 6.41 ($\mathrm{s}, 16 \mathrm{H}, \mathrm{ArH}$), 3.59 $\left(\mathrm{m}, \mathrm{OCH}_{2}, 4 \mathrm{H}\right), 2.86\left(\mathrm{q}, J=7.3 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{NCH}_{2}\right), 1.75\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}, 4 \mathrm{H}\right), 1.67\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.63$ (brs, $24 \mathrm{H}, \mathrm{CH}_{3}$), $1.39\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2}\right.$), 1.35 (brs, $16 \mathrm{H}, \mathrm{CH}_{2}$), 1.01 (t, $J=7.3 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (150MHz, DMSO-d d_{6}) $\delta 146.79$ (C), 142.78 (ipso-C), 141.75 (C), 137.64 (C), 136.27 (C), $134.78(o-\mathrm{CH}), 131.20(\mathrm{C}), 128.03(1,4,5,8-\mathrm{CH}), 127.45(p-\mathrm{CH}), 126.62(m-\mathrm{CH}), 126.02(9,10-\mathrm{CH})$, $125.54(2,3,6,7-\mathrm{CH}), 108.78(\mathrm{CH}), 103.09(\mathrm{CH}), 67.03\left(\mathrm{OCH}_{2}\right), 45.54\left(\mathrm{NCH}_{2}\right), 40.26(\mathrm{C}), 39.95(\mathrm{C})$, $36.27\left(\mathrm{CH}_{2}\right), 36.23\left(\mathrm{CH}_{2}\right), 25.13\left(\mathrm{OCH}_{2} \underline{\mathrm{CH}}_{2}\right), 19.24\left(\mathrm{CH}_{3}\right), 18.52\left(\mathrm{CH}_{3}\right), 8.43\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{29} \mathrm{Si}$ NMR ($\left.120 \mathrm{MHz}, \quad \mathrm{DMSO}-d_{6}\right) ~ \delta-86.94\left(\mathrm{PhSiO}_{4}\right) ;$ HRMS (ESI-, MeOH$) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{138} \mathrm{H}_{129} \mathrm{~N}_{1} \mathrm{O}_{24} \mathrm{Si}_{4}\left[\mathrm{M}+\mathrm{HNEt}_{3}+\mathrm{H}+2(2)\right]^{2-} 1147.89908$, found 1147.89916.
1.8. Synthesis of $\mathbf{4 b} \cdot 4 \mathrm{HNEt}_{3} \cdot 2 \mathrm{THF}$

9,10-Dimethyl-9,10-ethano-9,10-dihydro-2,3,6,7-tetrahydroxyanthracene (EAT) (2) (2.00 mmol , $0.597 \mathrm{~g})$, p-tolylSi(OMe) $)_{3}(2.10 \mathrm{mmol}, 0.446 \mathrm{~g}, 0.432 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(6.00 \mathrm{mmol}, 0.607 \mathrm{~g}, 0.836$ mL) were dissolved in 15 mL of THF, 5 mL of MeCN , and 5 mL of MeOH . The reaction mixture was stirred and refluxed under a nitrogen atmosphere for 2 days. The mixture was then cooled to room temperature, and the precipitate was collected by suction filtration. It was then washed with 10 mL of THF and dried under reduced pressure to give 0.599 g ($0.271 \mathrm{mmol}, 54.2 \%$) of $\mathbf{4 b} \cdot 4 \mathrm{HNEt}_{3} \cdot 2 \mathrm{THF}$ as a white powder.

4b $\cdot 4 \mathrm{HNEt}_{3} \cdot 2 \mathrm{THF}: 8.63(\mathrm{br}, 4 \mathrm{H}, \mathrm{NH}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 8 \mathrm{H}, o-\mathrm{CH}), 6.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 8 \mathrm{H}, m-$ $\mathrm{CH}), 6.40(\mathrm{~s}, 16 \mathrm{H}, \mathrm{ArH}), 3.59\left(\mathrm{~m}, \mathrm{OCH}_{2}, 8 \mathrm{H}\right), 2.82\left(\mathrm{q}, J=7.3 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.17(\mathrm{~s}, 12 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 1.75\left(\mathrm{~m}, \mathrm{OCH}_{2} \underline{\mathrm{CH}}_{2}, 8 \mathrm{H}\right), 1.63\left(\mathrm{brs}, 24 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35\left(\mathrm{brs}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $36 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (150MHz, DMSO- d_{6}) $\delta 146.79(\mathrm{C}), 139.16(\mathrm{C}), 136.33(\mathrm{C}), 136.12(\mathrm{C})$, $135.06(o-\mathrm{CH}), 127.24(m-\mathrm{CH}), 102.98(\mathrm{CH}), 67.00\left(\mathrm{OCH}_{2}\right), 45.57\left(\mathrm{NCH}_{2}\right), 40.20(\mathrm{C}), 36.29\left(\mathrm{CH}_{2}\right)$, $25.11\left(\mathrm{OCH}_{2} \underline{\mathrm{CH}_{2}}\right), 20.97\left(\mathrm{ArCH}_{3}\right), 19.22\left(\mathrm{CH}_{3}\right), 8.48\left(\mathrm{NCH}_{2} \underline{\mathrm{CH}_{3}}\right) ;{ }^{29} \mathrm{Si}$ NMR (120MHz, DMSO- $\left.d_{6}\right)$ $\delta-86.57\left(p-T o l y l S_{i O}\right)$; HRMS (ESI-, MeOH) m / z calcd for $\mathrm{C}_{106} \mathrm{H}_{101} \mathrm{~N}_{1} \mathrm{O}_{16} \mathrm{Si}_{4}\left[\mathrm{M}+\mathrm{HNEt}_{3}+\mathrm{H}\right]^{2-}$ 877.80987, found 877.80782.
1.9. Synthesis of $\mathbf{5 a} \cdot \mathbf{6} \mathrm{HNEt}_{3}$

Cyclotricatechylene (CTC) (3) (2.00 mmol, 0.733 g$), \mathrm{PhSi}(\mathrm{OMe})_{3}(3.30 \mathrm{mmol}, 0.654 \mathrm{~g}, 0.616 \mathrm{~mL})$,
and $\mathrm{Et}_{3} \mathrm{~N}(9.00 \mathrm{mmol}, 0.911 \mathrm{~g}, 1.25 \mathrm{~mL})$ were dissolved in 20 mL of DMF and 10 mL of MeCN . The reaction mixture was stirred and heated at $100^{\circ} \mathrm{C}$ overnight under a nitrogen atmosphere. After cooling to room temperature, all the volatiles were removed under reduced pressure. The resulting residue was redissolved in 20 mL of THF and 10 mL of MeCN . Addition of $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ led to the precipitation of a brownish powder, which was collected by suction filtration and dried under reduced pressure to give $1.27 \mathrm{~g}(0.473 \mathrm{mmol}, 94.6 \%)$ of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ as a light brown powder.
$\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}:{ }^{1} \mathrm{H}$ NMR $\delta 8.59(\mathrm{br}, 6 \mathrm{H}, \mathrm{NH}), 7.36(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 12 \mathrm{H}, o-\mathrm{CH}), 7.14-7.07(\mathrm{~m}, 18 \mathrm{H}, p-$ CH and $m-\mathrm{CH}), 6.49(\mathrm{~s}, 24 \mathrm{H}, \mathrm{ArH}), 4.44\left(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.12(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 12 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right), 2.85-2.79\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{NCH}_{2}\right), 0.95\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 54 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 148.49(\mathrm{C})$, 142.31 (ipso-C), 133.64 (o-CH), 128.82 (C), 127.40 ($p-\mathrm{CH}$), 126.65 ($m-\mathrm{CH}$), $110.33(\mathrm{CH}), 45.65$ $\left(\mathrm{NCH}_{2}\right), 35.59\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right), 8.47\left(\mathrm{CH}_{3}\right) ;{ }^{29} \mathrm{Si}$ NMR $\delta-86.94\left(\mathrm{PhSiO}_{4}\right) ;$ HRMS (ESI-, MeOH) m/z calcd for $\mathrm{C}_{144} \mathrm{H}_{142} \mathrm{~N}_{4} \mathrm{O}_{24} \mathrm{Si}_{6}\left[\mathrm{M}+4 \mathrm{HNEt}_{3}\right]^{2-}$ 1239.43148, found 1239.43078.
1.10. Synthesis of $\mathbf{6 a} \cdot 9 \mathrm{HNEt}_{3}$

Cyclotricatechylene (CTC) (3) ($2.00 \mathrm{mmol}, 0.733 \mathrm{~g}), \mathrm{PhSi}(\mathrm{OMe})_{3}(3.30 \mathrm{mmol}, 0.614 \mathrm{~g}, 0.616 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(9.00 \mathrm{mmol}, 0.911 \mathrm{~g}, 1.25 \mathrm{~mL})$ were dissolved in 30 mL of DMF. The reaction mixture was stirred and heated at $100^{\circ} \mathrm{C}$ overnight under a nitrogen atmosphere. After cooling to room temperature, 400 mL of THF was added and a small amount of black precipitate was formed and immediately filtered off. Then, the solution was left standing for 2 h until precipitation of a brown crystalline solid occurred. The solid was filtered and redissolved in 20 mL of THF and 10 mL of MeCN . Addition of $\mathrm{Et}_{2} \mathrm{O}$ led to the precipitation of a brownish powder, whichwas collected by suction filtration and dried under reduced pressure to give $0.487 \mathrm{~g}(0.121 \mathrm{mmol}, 36.3 \%)$ of $\mathbf{6 a} \cdot 9 \mathrm{HNEt}_{3}$ as a light brown powder.

The residual DMF-THF filtrate was evaporated under reduced pressure and treated as described above (section 1.10) to give $0.797 \mathrm{~g}(0.297 \mathrm{mmol}, 59.4 \%)$ of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ as a light brown powder.

6a• $9 \mathrm{HNEt}_{3}:{ }^{1} \mathrm{H}$ NMR $\delta 8.43(\mathrm{br}, 9 \mathrm{H}, \mathrm{NH}), 7.35(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 12 \mathrm{H}, o-\mathrm{CH}), 7.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.o-\mathrm{CH}^{\prime}\right), 7.13-7.06(\mathrm{~m}, 18 \mathrm{H}, p-\mathrm{CH}$ and $m-\mathrm{CH}), 6.63\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}, m-\mathrm{CH}^{\prime}\right), 6.55(\mathrm{~s}, 12 \mathrm{H}, \mathrm{ArH})$, 6.47 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{ArH}$), $6.42(\mathrm{~s}, 12 \mathrm{H}, \mathrm{ArH}), 6.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, p-\mathrm{CH}), 4.55(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right), 4.44\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.22-3.06\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 2.61(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $\left.54 \mathrm{H}, \mathrm{NCH}_{2}\right), 0.88\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 81 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 148.51(\mathrm{C}), 148.47(\mathrm{C}), 148.36(\mathrm{C}), 142.33$ (ipso-C), 141.35 (ipso-C'), 133.70 (o-CH), 133.35 (o-CH'), 129.89 (C), 129.11 (C), 127.64 (C), $127.33(p-\mathrm{CH}), 127.22\left(p-\mathrm{CH}^{\prime}\right), 126.61(m-\mathrm{CH}), 126.22\left(m-\mathrm{CH}^{\prime}\right), 111.16(\mathrm{CH}), 110.44(\mathrm{CH})$, $110.35(\mathrm{CH}), 45.48\left(\mathrm{NCH}_{2}\right), 36.28\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right), 35.67\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right), 8.41\left(\mathrm{CH}_{3}\right) ;{ }^{29} \mathrm{Si}$ NMR $\delta-86.34$ $\left(3 \mathrm{PhSiO}_{4}\right),-86.85\left(6 \mathrm{PhSiO}_{4}\right) ;$ HRMS (ESI-, MeOH$) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{216} \mathrm{H}_{214} \mathrm{~N}_{6} \mathrm{O}_{36} \mathrm{Si}_{9}$ $\left[\mathrm{M}+6 \mathrm{HNEt}_{3}+\mathrm{H}\right]^{2-} 1859.65113$, found 1859.64986 .

1.11. Synthesis of $\mathbf{5 b} \cdot 6 \mathrm{HNEt}_{3}$

Cyclotricatechylene (CTC) (3) ($2.00 \mathrm{mmol}, 0.733 \mathrm{~g}$), p - TolylSi(OMe) $)_{3}(3.30 \mathrm{mmol}, 0.701 \mathrm{~g}, 0.678$ $\mathrm{mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(9.00 \mathrm{mmol}, 0.911 \mathrm{~g}, 1.25 \mathrm{~mL})$ were dissolved in 20 mL of DMF and 10 mL of MeCN . The reaction mixture was stirred and heated at $100^{\circ} \mathrm{C}$ overnight under a nitrogen atmosphere. After cooling to room temperature, all the volatiles were removed under reduced pressure. The resulting residue was redissolved in 20 mL of THF and 10 mL of MeCN . Addition of $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ led to the precipitation of a brownish powder, which was collected by suction filtration and dried under reduced pressure to give $1.38 \mathrm{~g}(0.498 \mathrm{mmol}, 99.6 \%)$ of $\mathbf{5 b} \cdot 6 \mathrm{HNEt}_{3}$ as an off-white powder.
$\mathbf{5 b} \cdot 6 \mathrm{HNEt}_{3}:{ }^{1} \mathrm{H}$ NMR $\delta 8.63(\mathrm{br}, 6 \mathrm{H}, \mathrm{NH}), 7.28(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 12 \mathrm{H}, o-\mathrm{CH}), 6.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $12 \mathrm{H}, m-\mathrm{CH}), 6.50(\mathrm{~s}, 24 \mathrm{H}, \mathrm{ArH}), 4.47\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.15(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 12 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right), 2.86\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{NCH}_{2}\right), 0.97\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 54 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 148.54(\mathrm{C}), 138.77$ (ipso-C), 136.28 (p-C), $133.80(o-\mathrm{CH}), 128.77(\mathrm{C}), 127.32(m-\mathrm{CH}), 110.29(\mathrm{CH}), 45.71\left(\mathrm{NCH}_{2}\right)$, $35.63\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right), 21.05\left(\mathrm{ArCH}_{3}\right), 8.48\left(\mathrm{CH}_{3}\right) ;{ }^{29} \mathrm{Si} \mathrm{NMR} \delta-86.40\left(p-\mathrm{TolylSiO}_{4}\right) ;$ HRMS (ESI-, $\mathrm{MeOH}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{150} \mathrm{H}_{154} \mathrm{~N}_{4} \mathrm{O}_{24} \mathrm{Si}_{6}\left[\mathrm{M}+4 \mathrm{HNEt}_{3}\right]^{2-}$ 1281.47843, found 1281.47666.
1.12. Synthesis of $\mathbf{5 c} \cdot 6 \mathrm{HNEt}_{3}$

Cyclotricatechylene (CTC) (3) ($2.00 \mathrm{mmol}, 0.733 \mathrm{~g}$), $\mathrm{MeSi}(\mathrm{OMe})_{3}(3.30 \mathrm{mmol}, 0.450 \mathrm{~g}, 0.471$ $\mathrm{mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(9.00 \mathrm{mmol}, 0.911 \mathrm{~g}, 1.25 \mathrm{~mL})$ were dissolved in 20 mL of DMF and 10 mL of MeCN . The reaction mixture was stirred and heated at $100^{\circ} \mathrm{C}$ overnight under a nitrogen atmosphere. After cooling to room temperature, all the volatiles were removed under reduced pressure. The resulting residue was redissolved in 30 mL of THF and 15 mL of MeCN . Addition of $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ led to the precipitation of a brownish powder, which was collected by suction filtration and dried under reduced pressure to give $1.15 \mathrm{~g}(0.497 \mathrm{mmol}, 99.4 \%)$ of $\mathbf{5 c} \cdot 6 \mathrm{HNEt}_{3}$ as an off-white powder.

5c $\cdot 6 \mathrm{HNEt}_{3}:{ }^{1} \mathrm{H}$ NMR $\delta 8.54$ (br, $6 \mathrm{H}, \mathrm{NH}$), $6.36(\mathrm{~s}, 24 \mathrm{H}, \operatorname{ArH}), 4.43(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 12 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.09\left(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 2.76\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{NCH}_{2}\right), 0.91(\mathrm{t}, J=7.2$ $\left.\mathrm{Hz}, 54 \mathrm{H}, \mathrm{CH}_{3}\right),-0.29\left(\mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 148.27(\mathrm{C}), 128.48(\mathrm{C}), 110.17(\mathrm{CH}), 45.58\left(\mathrm{NCH}_{2}\right)$, $35.62\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right), 8.43\left(\mathrm{CH}_{3}\right),-0.22\left(\mathrm{SiCH}_{3}\right) ;{ }^{29} \mathrm{Si}$ NMR $\delta-75.02\left(\mathrm{MeSiO}_{4}\right) ;$ HRMS $(\mathrm{ESI}-, \mathrm{MeOH})$ m / z calcd for $\mathrm{C}_{114} \mathrm{H}_{130} \mathrm{~N}_{4} \mathrm{O}_{24} \mathrm{Si}_{6}\left[\mathrm{M}+4 \mathrm{HNEt}_{3}\right]^{2-}$ 1053.38453, found 1053.38564 .

1.13. Synthesis of $\mathbf{5 d} \cdot 6 \mathrm{HNEt}_{3}$

Cyclotricatechylene (CTC) (3) ($2.00 \mathrm{mmol}, 0.733 \mathrm{~g}$), VinylSi(OMe) $)_{3}(3.30 \mathrm{mmol}, 0.489 \mathrm{~g}, 0.505$ $\mathrm{mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(9.00 \mathrm{mmol}, 0.911 \mathrm{~g}, 1.25 \mathrm{~mL}$) were dissolved in 20 mL of DMF and 10 mL of MeCN . The reaction mixture was stirred and heated at $100^{\circ} \mathrm{C} 1$ day under a nitrogen atmosphere. After cooling to room temperature, all the volatiles were removed under reduced pressure. The resulting residue was redissolved in 20 mL of THF and 10 mL of MeCN . Addition of $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$
led to the precipitation of a brownish powder. The powder was collected by suction filtration and dried under reduced pressure to give $1.14 \mathrm{~g}(0.478 \mathrm{mmol}, 94.6 \%)$ of $\mathbf{5 d} \cdot \mathbf{6} \mathrm{HNEt}_{3}$ as a light brown powder.
$\mathbf{5 d} \cdot 6 \mathrm{HNEt}_{3}:{ }^{1} \mathrm{H}$ NMR $\delta 8.57(\mathrm{br}, 6 \mathrm{H}, \mathrm{NH}), 6.40(\mathrm{~s}, 24 \mathrm{H}, \mathrm{ArH}), 5.78(\mathrm{dd}, J=20.0,14.6 \mathrm{~Hz}, 6 \mathrm{H}$, SiCH), $5.46\left(\mathrm{dd}, J=14.6,5.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.42\left(\mathrm{dd}, J=20.0,5.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.44(\mathrm{~d}$, $\left.J=13.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.12\left(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 2.81\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{NCH}_{2}\right), 0.95(\mathrm{t}, J$ $\left.=7.2 \mathrm{~Hz}, 54 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 148.31(\mathrm{C}), 140.75(\mathrm{SiCH}), 128.61(\mathrm{C}), 128.58\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 110.20$ $(\mathrm{CH}), 45.62\left(\mathrm{NCH}_{2}\right), 35.58\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right), 8.43\left(\mathrm{CH}_{3}\right) ;{ }^{29} \mathrm{Si}$ NMR $\delta-87.64\left(\mathrm{VinylSiO}_{4}\right) ;$ HRMS (ESI-, $\mathrm{MeOH}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{120} \mathrm{H}_{130} \mathrm{~N}_{4} \mathrm{O}_{24} \mathrm{Si}_{6}\left[\mathrm{M}+4 \mathrm{HNEt}_{3}\right]^{2-}$ 1089.38453, found 1089.38557.

1.14. Synthesis of $\mathbf{5 e} \cdot 6 \mathrm{HNEt}_{3}$

Cyclotricatechylene (CTC) (3) (2.00 mmol, 0.733 g$), \mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}(\mathrm{OMe})_{3}(3.30 \mathrm{mmol}, 0.648 \mathrm{~g}$, $0.613 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(9.00 \mathrm{mmol}, 0.911 \mathrm{~g}, 1.25 \mathrm{~mL}$) were dissolved in 20 mL of DMF and 10 mL of MeCN . The reaction mixture was stirred and heated at $100^{\circ} \mathrm{C} 1$ day under a nitrogen atmosphere. After cooling to room temperature, all the volatiles were removed under reduced pressure. The resulting residue was redissolved in 20 mL of THF and 10 mL of MeCN . Addition of $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ led to the precipitation of a brownish powder, which was collected by suction filtration and dried under reduced pressure to give $1.31 \mathrm{~g}(0.490 \mathrm{mmol}, 98.0 \%)$ of $\mathbf{5 e} \cdot 6 \mathrm{HNEt}_{3}$ as an off-white powder.

5e•6HNEt ${ }_{3}:{ }^{1} \mathrm{H}$ NMR $\delta 8.56(\mathrm{br}, 6 \mathrm{H}, \mathrm{NH}), 6.38(\mathrm{~s}, 24 \mathrm{H}, \mathrm{ArH}), 4.42(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 12 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.10\left(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 2.79\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.25(\mathrm{q}, J=7.4$ $\mathrm{Hz}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}$), 1.93 (t, $J=7.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{SH}$), 1.37 (quin, $J=7.8 \mathrm{~Hz}, 12 \mathrm{H}, \underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{~S}$), $0.91(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 54 \mathrm{H}, \mathrm{CH}_{3}$), $0.36\left(\mathrm{t}, J=8.3 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{SiCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 148.48$ (C), 128.48 (C), 110.08 $(\mathrm{CH}), 45.66\left(\mathrm{NCH}_{2}\right), 35.62\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right), 29.34\left(\mathrm{CH}_{2} \mathrm{~S}\right), 27.57\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 16.55\left(\mathrm{SiCH}_{2}\right), 8.46$ $\left(\mathrm{CH}_{3}\right) ;{ }^{29} \mathrm{Si}$ NMR $\delta-76.39\left(\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SiO}_{4}\right)$; HRMS (ESI-, MeOH$) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{126} \mathrm{H}_{154} \mathrm{~N}_{4} \mathrm{O}_{24} \mathrm{~S}_{6} \mathrm{Si}_{6}$ $\left[\mathrm{M}+4 \mathrm{HNEt}_{3}\right]^{2-} 1233.39464$, found 1233.39472 .

1.15. Synthesis of $\mathbf{5 a} \cdot 6 \mathrm{Na}$

Cyclotricatechylene (CTC) (3) ($2.00 \mathrm{mmol}, 0.733 \mathrm{~g}), \mathrm{PhSi}(\mathrm{OMe})_{3}(3.30 \mathrm{mmol}, 0.654 \mathrm{~g}, 0.616 \mathrm{~mL})$, and $\mathrm{NaOH}(3.10 \mathrm{mmol}, 0.124 \mathrm{~g})$ were dissolved in 20 mL of DMF and 10 mL of MeCN . The reaction mixture was stirred and heated at $100^{\circ} \mathrm{C}$ overnight under a nitrogen atmosphere. After cooling to room temperature, all the volatiles were removed under reduced pressure. The resulting crude product was dissolved in 5 mL of MeOH . After addition of 100 mL of benzene, the mixture was left standing for 1 h until a small amount of black precipitate was formed and filtered off. The solvent was removed under reduced pressure and the residue was redissolved in 10 mL of THF. Addition of $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ led to the precipitation of a white powder, which was collected by suction filtration and dried under reduced pressure to give $0.948 \mathrm{~g}(0.429 \mathrm{mmol}, 85.8 \%)$ of $\mathbf{5 a} \cdot 6 \mathrm{Na}$ as an off-white powder.

5a $\cdot 6 \mathrm{Na}:{ }^{1} \mathrm{H}$ NMR $\delta 7.38(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 12 \mathrm{H}, o-\mathrm{CH}), 7.14-7.07(\mathrm{~m}, 18 \mathrm{H}, p-\mathrm{CH}$ and $m-\mathrm{CH}), 6.51(\mathrm{~s}$, $24 \mathrm{H}, \mathrm{ArH}$), $4.45\left(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.11\left(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right) ;{ }^{13} \mathrm{C}$ NMR δ 148.23 (C), 141.87 (ipso-C), 133.62 (o-CH), 128.87 (C), 127.65 ($p-\mathrm{CH}), 126.74$ ($m-\mathrm{CH}$), 110.76 $(\mathrm{CH}), 35.74\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right) ;{ }^{29} \mathrm{Si}$ NMR $\delta-87.17\left(\mathrm{PhSiO}_{4}\right) ;$ HRMS (ESI-, MeOH$) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{124} \mathrm{H}_{94} \mathrm{Na}_{4} \mathrm{O}_{28} \mathrm{Si}_{6}[\mathrm{M}+4 \mathrm{Na}+4 \mathrm{MeOH}]^{2-} 1145.20690$, found 1145.20624.
1.16. Synthesis of $\mathbf{5 c} \cdot 6 \mathrm{Na}$

Cyclotricatechylene (CTC) (3) ($2.00 \mathrm{mmol}, 0.733 \mathrm{~g}$), $\mathrm{MeSi}(\mathrm{OMe})_{3}(3.30 \mathrm{mmol}, 0.450 \mathrm{~g}, 0.471$
mL), and $\mathrm{NaOH}(3.10 \mathrm{mmol}, 0.124 \mathrm{~g}$) were dissolved in 20 mL of DMF and 10 mL of MeCN . The reaction mixture was stirred and heated at $100^{\circ} \mathrm{C}$ overnight under a nitrogen atmosphere. After cooling to room temperature, all the volatiles were removed under reduced pressure. The resulting crude product was dissolved in 20 mL of MeOH and 20 mL of THF. After addition of 100 mL of benzene, the mixture was left standing for 30 min until a small amount of black precipitate was formed and filtered off. The solvent was removed under reduced pressure and the residue was redissolved in 10 mL of MeOH . Addition of $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ led to the precipitation of a white powder, which was collected by suction filtration and dried under reduced pressure to give 0.897 g ($0.488 \mathrm{mmol}, 97.6 \%$) of $\mathbf{5 a} \cdot 6 \mathrm{Na}$ as an off-white powder.
$5 \mathrm{c} \cdot 6 \mathrm{Na}:{ }^{1} \mathrm{H}$ NMR $\delta 6.41(\mathrm{~s}, 24 \mathrm{H}, \mathrm{ArH}), 4.45\left(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.09(\mathrm{~d}, J=13.1 \mathrm{~Hz}$, $\left.12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right),-0.25\left(\mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 147.97(\mathrm{C}), 128.62(\mathrm{C}), 110.72(\mathrm{CH}), 35.82\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right)$, $-0.16\left(\mathrm{SiCH}_{3}\right) ;{ }^{29} \mathrm{Si}$ NMR $\delta-75.16\left(\mathrm{MeSiO}_{4}\right)$; HRMS (ESI-, MeOH) m/z calcd for $\mathrm{C}_{94} \mathrm{H}_{82} \mathrm{Na}_{4} \mathrm{O}_{28} \mathrm{Si}_{6}$ $[\mathrm{M}+4 \mathrm{Na}+4 \mathrm{MeOH}]^{2-} 959.15995$, found 959.16131 .

1.17. Synthesis of $\mathbf{5 f} \cdot 6 \mathrm{Na}$

Cyclotricatechylene (CTC) (3) ($2.00 \mathrm{mmol}, 0.733 \mathrm{~g}$), $\mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}(\mathrm{OMe})_{3}(3.30 \mathrm{mmol}, 0.684 \mathrm{~g}$, 0.722 mL), and $\mathrm{NaOH}(3.10 \mathrm{mmol}, 0.124 \mathrm{~g}$) were dissolved in 20 mL of DMF and 10 mL of MeCN . The reaction mixture was stirred and heated at $100^{\circ} \mathrm{C}$ overnight under a nitrogen atmosphere. After cooling to room temperature, small amount of precipitate was formed and removed by filtration. All the volatiles were then removed under reduced pressure from filtrate. The resulting crude product was dissolved in 15 mL of MeOH and 5 mL of MeCN . Addition of $\mathrm{Et}_{2} \mathrm{O}(400 \mathrm{~mL})$ led to the precipitation of a pink white powder, which was collected by suction filtration and dried under reduced pressure to give $1.04 \mathrm{~g}(0.459 \mathrm{mmol}, 91.8 \%)$ of $\mathbf{5 f} \cdot 6 \mathrm{Na}$ as a pink white powder.

5f $\cdot 6 \mathrm{Na}:{ }^{1} \mathrm{H}$ NMR $\delta 6.42(\mathrm{~s}, 24 \mathrm{H}, \mathrm{ArH}), 4.44\left(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.09(\mathrm{~d}, J=13.1 \mathrm{~Hz}$, $\left.12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 1.98\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.94\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.21$ (quin, $J=7.8 \mathrm{~Hz}, 12 \mathrm{H}$, $\left.\mathrm{SiCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 0.25\left(\mathrm{t}, J=8.3 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{SiCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 148.31(\mathrm{C}), 128.63(\mathrm{C}), 110.70$
$(\mathrm{CH}), 63.25\left(\mathrm{CH}_{2} \mathrm{~N}\right), 45.41\left(\mathrm{NCH}_{3}\right), 36.00\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right), 22.28\left(\mathrm{SiCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 14.79\left(\mathrm{SiCH}_{2}\right) ;{ }^{29} \mathrm{Si}$ NMR $\delta-75.66\left(\mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SiO}_{4}\right)$. MS spectrum of $\mathbf{5 f} \cdot 6 \mathrm{Na}$ was not detectable due to degradation of its ionic species in mass spectrometer.
1.18. Cation exchange of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$

1.18.1. Cation exchange of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ with $\mathrm{Me}_{4} \mathrm{NCl}$

Compound 5a $\cdot 6 \mathrm{HNEt}_{3}(0.100 \mathrm{mmol}, 269 \mathrm{mg}$) was dissolved in 130 mL of dry MeOH in 200 mL flask. Then, $\mathrm{Me}_{4} \mathrm{NCl}(1.20 \mathrm{mmol}, 132 \mathrm{mg})$ was placed in a 25 mL volumetric flask and diluted with dry MeOH to a total volume of 25 mL , thus yielding a $48 \mathrm{mM} \mathrm{Me}{ }_{4} \mathrm{NCl}$ solution. The $\mathrm{Me}_{4} \mathrm{NCl}$ solution was added dropwise to the solution of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ over 25 min . The precipitate was collected by suction filtration and dried to give $177 \mathrm{mg}(70.3 \mu \mathrm{~mol}, 70.3 \%)$ of $\mathbf{5 a} \cdot 6 \mathrm{Me}_{4} \mathrm{~N}$ as a brown powder.

5a $\cdot 6 \mathrm{Me}_{4} \mathrm{~N}:{ }^{1} \mathrm{H}$ NMR $\delta 7.36(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 12 \mathrm{H}, o-\mathrm{CH}), 7.13-7.04(\mathrm{~m}, 18 \mathrm{H}, p-\mathrm{CH}$ and $m-\mathrm{CH}), 6.51$ $(\mathrm{s}, 24 \mathrm{H}, \mathrm{ArH}), 4.43\left(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.11\left(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 2.77$ (brs, $72 \mathrm{H}, \mathrm{NCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $\delta 148.64$ (C), 142.29 (ipso-C), 133.64 (o-CH), 128.85 (C), 127.45 ($p-\mathrm{CH}$), $126.67(m-\mathrm{CH}), 110.38(\mathrm{CH}), 54.34\left(\mathrm{NCH}_{3}\right), 35.49\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right) ;{ }^{29} \mathrm{Si} \mathrm{NMR} \delta-86.83\left(\mathrm{PhSiO}_{4}\right)$; HRMS (ESI-, MeOH) m / z calcd for $\mathrm{C}_{136} \mathrm{H}_{126} \mathrm{~N}_{4} \mathrm{O}_{24} \mathrm{Si}_{6}\left[\mathrm{M}+4 \mathrm{Me}_{4} \mathrm{~N}\right]^{2-} 1183.36888$, found 1183.37118 .

1.18.2. Cation exchange of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ with $\mathrm{Et}_{4} \mathrm{NCl}$

Compound $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}(0.100 \mathrm{mmol}$, 269 mg) was dissolved in 120 mL of dry MeOH in 200 mL flask. Then, $\mathrm{Et}_{4} \mathrm{NCl}(1.20 \mathrm{mmol}, 199 \mathrm{mg})$ was placed in a 25 mL volumetric flask and diluted with dry MeOH to a total volume of 25 mL , thus yielding a $48 \mathrm{mM} \mathrm{Et}_{4} \mathrm{NCl}$ solution. $\mathrm{The}_{\mathrm{Et}}^{4} \mathrm{NCl}$ solution was added dropwise to the solution of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ over 10 min . The precipitate was collected by suction filtration and dried to give $171 \mathrm{mg}(59.9 \mu \mathrm{~mol}, 59.9 \%)$ of $\mathbf{5 a} \cdot 6 \mathrm{Et}_{4} \mathrm{~N}$ as a brown powder.

5a $\cdot 6 \mathrm{Et}_{4} \mathrm{~N}$: ${ }^{1} \mathrm{H}$ NMR $\delta 7.35(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 12 \mathrm{H}, o-\mathrm{CH}), 7.13-7.05(\mathrm{~m}, 18 \mathrm{H}, p-\mathrm{CH}$ and $m-\mathrm{CH}), 6.48$ ($\mathrm{s}, 24 \mathrm{H}, \mathrm{ArH}$), $4.43\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.11\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 2.92(\mathrm{br}$, $36 \mathrm{H}, \mathrm{NCH}_{2}$), $0.90\left(\mathrm{br}, 54 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta 148.28$ (C), 142.28 (ipso-C), 133.68 (o-CH), 128.83 (C), $127.38(p-\mathrm{CH}), 126.58(m-\mathrm{CH}), 110.25(\mathrm{CH}), 51.30\left(\mathrm{NCH}_{2}\right), 35.53\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right), 6.77\left(\mathrm{CH}_{3}\right) ;{ }^{29} \mathrm{Si}$ NMR $\delta-86.76\left(\mathrm{PhSiO}_{4}\right) ;$ HRMS $(E S I-, \mathrm{MeOH}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{152} \mathrm{H}_{158} \mathrm{~N}_{4} \mathrm{O}_{24} \mathrm{Si}_{6}\left[\mathrm{M}+4 \mathrm{Et}_{4} \mathrm{~N}\right]^{2-}$ 1295.49408, found 1295.49291.

1.18.3. Cation exchange of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ with $N-\mathrm{MePyI}$

Compound $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}(0.100 \mathrm{mmol}, 269 \mathrm{mg})$) was dissolved in 120 mL of dry MeOH in 200 mL flask. Then, N-MePyI ($1.20 \mathrm{mmol}, 265 \mathrm{mg}$) was placed in a 25 mL volumetric flask and diluted with dry MeOH to a total volume of 25 mL , thus yielding a $48 \mathrm{mM} N$-MePyI solution. The N-MePyI solution was added dropwise to the solution of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ over 10 min . The precipitate was collected by suction filtration and dried to give $213 \mathrm{mg}(80.8 \mu \mathrm{~mol}, 80.8 \%)$ of $\mathbf{5 a} \cdot 6 \mathrm{MePy}$ as a brown powder.

5a•6MePy: ${ }^{1} \mathrm{H}$ NMR $\delta 8.63$ (br, 12H, 2-CH), 8.59 (br, 6H, 4-CH), 7.81 (br, 12H, 3-CH), 7.44 (d, J $=6.5 \mathrm{~Hz}, 12 \mathrm{H}, o-\mathrm{CH}), 7.17-7.09(\mathrm{~m}, 18 \mathrm{H}, p-\mathrm{CH}$ and $m-\mathrm{CH}), 6.73(\mathrm{~s}, 24 \mathrm{H}, \mathrm{ArH}), 4.50(\mathrm{~d}, J=13.1$ $\left.\mathrm{Hz}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 4.02\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.20\left(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 148.23$ (C), 145.33 ($4-\mathrm{CH}$), 144.97 ($2-\mathrm{CH}$), 141.65 (ipso-C), 133.63 (o-CH), 129.34 (C), 127.64 (p-CH), $127.39(3-\mathrm{CH}), 126.77(m-\mathrm{CH}), 110.66(\mathrm{CH}), 48.01\left(\mathrm{NCH}_{3}\right), 35.46\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right) ;{ }^{29} \mathrm{Si}$ NMR $\delta-86.26$ $\left(\mathrm{PhSiO}_{4}\right)$; HRMS (ESI-, MeOH$) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{144} \mathrm{H}_{110} \mathrm{~N}_{4} \mathrm{O}_{24} \mathrm{Si}_{6}\left[\mathrm{M}+4 \mathrm{MeNC}_{5} \mathrm{H}_{5}\right]^{2-}$ 1223.30628, found 1223.30773.

1.18.4. Cation exchange of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ with $\mathrm{N}-\mathrm{BuPyCl}$

Compound $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}(0.100 \mathrm{mmol}$, 269 mg) was dissolved in 120 mL of dry MeOH in 200 mL flask. Then, N-BuPyCl ($1.20 \mathrm{mmol}, 206 \mathrm{mg}$) was placed in a 25 mL volumetric flask and diluted with dry MeOH to a total volume of 25 mL , thus yielding a $48 \mathrm{mM} \mathrm{N}-\mathrm{BuPyCl}$ solution. The $N-$ BuPyCl solution was added dropwise to the solution of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ over 45 min . The precipitate was collected by suction filtration and dried to give $214 \mathrm{mg}(74.1 \mu \mathrm{~mol}, 74.1 \%)$ of $\mathbf{5 a} \cdot 6 \mathrm{BuPy}$ as a dark brown powder.

5a•6BuPy: ${ }^{1} \mathrm{H}$ NMR $\delta 8.88$ (br, 18H, 2-CH and 4-CH), 8.00 (br, 12H, 3-CH), 7.47 (br, 12H, o-CH), $7.14(\mathrm{br}, 18 \mathrm{H}, p-\mathrm{CH}$ and $m-\mathrm{CH}), 6.77(\mathrm{br}, 24 \mathrm{H}, \mathrm{ArH}), 4.50\left(\mathrm{br}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 4.36(\mathrm{br}, 10 \mathrm{H}$,
NCH_{2}), 3.23 (br, $12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}$), 1.49 (br, $10 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$), 0.51 (br, $25 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \underline{\mathrm{CH}}_{2} \underline{C H}_{3}$), 0.40 (br, $2 \mathrm{H}, \mathrm{NCH}_{2}{ }^{\prime}$), -1.58 (br, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}{ }_{2}$), -2.12 (br, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}{ }^{\prime}$), -2.25 (br, 3 H , $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}{ }^{\prime}$); ${ }^{13} \mathrm{C}$ NMR $\delta 148.05$ (C), 145.88 ($4-\mathrm{CH}$), 144.23 (2-CH), 141.50 (ipso-C), 133.77 ($o-\mathrm{CH}$), 129.46 (C), 128.11 (3-CH), 127.71 ($p-\mathrm{CH}), 126.81$ ($m-\mathrm{CH}$), $110.80(\mathrm{CH}), 60.76$ $\left(\mathrm{NCH}_{2}\right), \quad 35.52\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right), \quad 32.72 \quad\left(\mathrm{NCH}_{2} \underline{\mathrm{CH}}_{2}\right), \quad 17.94 \quad\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{CH}_{3}\right), \quad 12.89$ $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{29} \mathrm{Si}$ NMR $\delta-86.17$ (br, PhSiO_{4}); HRMS (ESI-, MeOH) m/z calcd for $\mathrm{C}_{156} \mathrm{H}_{134} \mathrm{~N}_{4} \mathrm{O}_{24} \mathrm{Si}_{6}\left[\mathrm{M}+4 \mathrm{BuNC}_{5} \mathrm{H}_{5}\right]^{2-}$ 1307.40018, found 1307.39803.

2. Structural assignment and spectral data

2.1. Structual assignment and spectral data for $\mathbf{4 a}, \mathbf{b} \cdot 4 \mathrm{HNR}_{3} \cdot \mathrm{n}(\mathbf{2}) \cdot \mathrm{m}($ anthracene $) \cdot 1(\mathrm{THF})\left(\mathrm{HNR}_{3}=\right.$ $\mathrm{HNEt}_{3}, \mathrm{HNEt}_{2} \mathrm{Bn}, \mathrm{HNMe}_{2} \mathrm{Bn}, \mathrm{HNMe} 2 \mathrm{Bu}, \mathrm{TMEDAH}\left(\mathrm{HNMe}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right) ; \mathrm{n}=0,2 ; \mathrm{m}=0,2 ; 1=$ $1,2,4)$

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 a}$ showed a $1: 1$ ratio of the 9,10 -dimethyl-9,10-ethano-9,10dihydroanthracene and silyl phenyl unit excluding the peaks driving from the $\mathrm{HNEt}_{3}{ }^{+}$counter ions, complexed 2, and THF (Figure S1 and S2). ${ }^{29}$ Si NMR showed a peak at -86.9 ppm , which is characteristic of an aryl-substituted penta-coordinated anionic silane biscatecholate (Figure S3). On the basis of the integrals of the peaks in the ${ }^{1} \mathrm{H}$ NMR spectra of Figure S1, a 1:4:2:4 molar ratio of 4a, $\mathrm{HNEt}_{3}{ }^{+}$, 2, and THF was observed that remained invariant throughout the experimental procedureand can be attributed to the molecular complex $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}$. The formation of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}$ was also confirmed by ESI-mass spectroscopy (Figure S4). A negative ion peak of the molecular complex was found at $\mathrm{m} / \mathrm{z} 1147.8$, which corresponds to $\left[\mathrm{M}+\mathrm{HNEt}_{3}+\mathrm{H}+2(\mathbf{2})\right]^{2-}$. Pure $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3}$ was obtained after redissolving the product in $\mathrm{DMSO} / \mathrm{DMF}$ followed by precipitation with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ to remove compound 2.
The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and DEPT135 NMR spectra of pure 4 a consisted of the 9,10 -dimethyl-9,10-ethano-9,10-dihydroanthracene and silyl phenyl unit in a 1:1 ratio without compound 2 (Figure S5, S6 and S7), while ${ }^{29}$ Si NMR showed the same value as that of the molecular complex (Figure S8). The formation of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3}$ was also confirmed by ESI-mass spectroscopy. The negative ion spectrum showed apparent molecular ions that were consistent with $\left[\mathrm{M}+\mathrm{HNEt}_{3}+\mathrm{H}\right]^{2-}$ at $\mathrm{m} / \mathrm{z} 849.8$ (where M is the tetraanion core) (Figure S9). All NMR and ESI-mass spectroscopic data were supported the formation of the cyclic tetramer of silane catecholate $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3}$.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure $\mathrm{S} 3 .{ }^{29} \mathrm{Si}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}\left(120 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S4. ESI-MS spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}(\mathrm{MeOH})$.

Figure $\mathrm{S} 5 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S7. ${ }^{13} \mathrm{C}$ and DEPT135 NMR spectra of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3}\left(150 \mathrm{MHz}\right.$, DMSO- d_{6}).

Figure S8. ${ }^{29} \mathrm{Si}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3}\left(120 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S9. ESI-MS spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3}(\mathrm{MeOH})$.

The replacement of triethylamine with diethylbenzylamine, dimethylbenzylamine, dimethylbutylamine, and tetramethylethylenediamine (TMEDA) resulted in macrocycle formation, i.e., $\quad \mathbf{4 a} \cdot 4 \mathrm{HNEt}_{2} \mathrm{Bn} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}, \quad \mathbf{4 a} \cdot 4 \mathrm{HNMe}_{2} \mathrm{Bn} \cdot 2 \mathrm{THF}, \quad \mathbf{4 a} \cdot 4 \mathrm{HNMe}_{2} \mathrm{Bu} \cdot 2 \mathrm{THF}, \quad$ and 4a•4HTMEDA•2THF. These macrocycles with different ammonium cations were fully characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{29} \mathrm{Si}$ NMR as well as ESI-mass spectroscopy (Figure S10-S25).

With regard to molecular complex $\mathbf{4 a}$ with reactant $\mathbf{2}$, it is noteworthy that the addition of anthracene to the reaction of $\mathbf{1 a}$ and $\mathbf{2}$ with $\mathrm{Et}_{3} \mathrm{~N}$ produced a macrocycle complex including anthracene, i.e., $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(2) \cdot 2$ anthracene \cdot THF (Figure S26-S29). Hence, it can be assumed that reactant $\mathbf{2}$ and anthracene may act as template for macrocycle formation.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{2} \mathrm{Bn} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure $\mathrm{S} 11 .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{2} \mathrm{Bn} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure $\mathrm{S} 12 .{ }^{29} \mathrm{Si}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{2} \mathrm{Bn} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}\left(120 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure S13. ESI-MS spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{2} \mathrm{Bn} \cdot 2(\mathbf{2}) \cdot 4 \mathrm{THF}(\mathrm{MeOH})$.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNMe}_{2} \mathrm{Bn} \cdot 2 \mathrm{THF}\left(600 \mathrm{MHz}\right.$, DMSO- d_{6}).

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNMe}_{2} \mathrm{Bn} \cdot 2 \mathrm{THF}\left(150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure S16. ${ }^{29} \mathrm{Si}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNMe}_{2} \mathrm{Bn} \cdot 2 \mathrm{THF}\left(120 \mathrm{MHz}\right.$, DMSO- d_{6}).

Figure S17. ESI-MS spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNMe}_{2} \mathrm{Bn} \cdot 2 \mathrm{THF}(\mathrm{MeOH})$.

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNMe} \mathrm{e}_{2} \mathrm{Bu} \cdot 2 \mathrm{THF}\left(600 \mathrm{MHz}\right.$, DMSO- d_{6}).

Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNMe}_{2} \mathrm{Bu} \cdot 2 \mathrm{THF}\left(150 \mathrm{MHz}\right.$, DMSO- d_{6}).

Figure S20. ${ }^{29} \mathrm{Si}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNMe}_{2} \mathrm{Bu} \cdot 2 \mathrm{THF}\left(120 \mathrm{MHz}\right.$, DMSO- d_{6}).

Figure S21. ESI-MS spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNMe}_{2} \mathrm{Bu} \cdot 2 \mathrm{THF}(\mathrm{MeOH})$.

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{TMEDAH} \cdot 2 \mathrm{THF}\left(600 \mathrm{MHz}\right.$, DMSO- d_{6}).

Figure S23. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{TMEDAH} \cdot 2 \mathrm{THF}\left(150 \mathrm{MHz}\right.$, DMSO- d_{6}).

Figure S24. ${ }^{29}$ Si NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{TMEDAH} \cdot 2 \mathrm{THF}\left(120 \mathrm{MHz}\right.$, DMSO- d_{6}).

Figure S25. ESI-MS spectrum of $\mathbf{4 a} \cdot 4 \mathrm{TMEDAH} \cdot 2 \mathrm{THF}(\mathrm{MeOH})$.

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(\mathbf{2}) \cdot$ anthracene $\cdot 4 \mathrm{THF}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S27. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(\mathbf{2}) \cdot$ anthracene $\cdot 4 \mathrm{THF}\left(150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure S28. ${ }^{29}$ Si NMR spectrum of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(\mathbf{2})$ anthracene $\cdot 4 \mathrm{THF}\left(120 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure S29. ESI-MS spectrum of $\mathbf{4 a} \cdot \mathbf{4} \mathrm{HNEt}_{3} \cdot 2(\mathbf{2}) \cdot$ anthracene $\cdot 4 \mathrm{THF}(\mathrm{MeOH})$.

The replacement of p-tolylSi(OMe$)_{3}$ with $\mathrm{PhSi}(\mathrm{OMe})_{3}$ resulted in the formation of a macrocycle possessing a p-tolyl group, i.e., $\mathbf{4 b} \cdot 4 \mathrm{HNEt}_{3} \cdot 2(\mathbf{2}) \cdot 2 \mathrm{THF}$ (Figure $\mathrm{S} 30-\mathrm{S} 33$).

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 b} \cdot 4 \mathrm{HNEt}_{3} \cdot 2 \mathrm{THF}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure S31. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 b} \cdot 4 \mathrm{HNEt}_{3} \cdot 2 \mathrm{THF}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S32. ${ }^{29} \mathrm{Si} \mathrm{NMR} \mathrm{spectrum} \mathrm{of} \mathbf{4 b} \cdot 4 \mathrm{HNEt}_{3} \cdot 2 \mathrm{THF}\left(120 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S33. ESI-MS spectrum of $\mathbf{4 b} \cdot 4 \mathrm{HNEt}_{3} \cdot 2 \mathrm{THF}(\mathrm{MeOH})$.
2.2. Structual assignment and spectral data of $\mathbf{5 a - f}$ and $\mathbf{6 a}$

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and DEPT135 NMR spectra of both 5a and 6a showed a 2:3:3 molar ratio of cyclotricatechylene (CTC), silyl phenyl and $\mathrm{HNEt}_{3}{ }^{+}$counter ion (Figure S34, S35, S36, S39, and S40). The ${ }^{29}$ Si NMR spectra of 5a and 6a showed peak at -86.94 ppm and $-86.34,-86.85 \mathrm{ppm}$, respectively, corresponding to a penta-coordinated anionic silane biscatecholate (Figure S37 and S41). The ESI mass spectra of $\mathbf{5 a}$ and $\mathbf{6 a}$ also showed molecular ions that were consistent with
$\left[\mathrm{M}+4 \mathrm{HNEt}_{3}\right]^{2-}$ at $\mathrm{m} / \mathrm{z} 1239.4$ for $\mathbf{5 a}(\mathrm{M}=$ hexaanion core $)$ and $\left[\mathrm{M}+7 \mathrm{HNEt}_{3}\right]^{2-}$ at $\mathrm{m} / \mathrm{z} 1859.6$ for $\mathbf{6 a}$ ($\mathrm{M}=$ nonaanion core) (Figure S38 and S42).

The spectral results of 5a indicated a tetrameric tetrahedral cage structure of this silane catecholate compound, where the CTC units are situated at the vertices of the tetrahedron with the silane catecholate bridging them along each tetrahedral edge.
The spectral data obtained for $\mathbf{6 a}$ also confirmed a hexameric prismatic cage structure, which is concaved inward placing three phenyl groups inside a nanocage. Upon a closer inspection of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 a}$ (Figure S39), six sets of phenyl protons could be seen at almost the same chemical shift as those of $\mathbf{5 a}$ (Figure S34) at $7.36 \mathrm{ppm}(o-\mathrm{CH})$ and $7.14-7.07 \mathrm{ppm}(m-, p-\mathrm{CH})$. The remaining three sets of phenyl protons were shifted to higher fields, i.e., at $7.22 \mathrm{ppm}(o-\mathrm{CH}), 6.63$ $\mathrm{ppm}\left(m-\mathrm{CH}^{\prime}\right)$, and $6.38 \mathrm{ppm}\left(p-\mathrm{CH}^{\prime}\right)$ owing to the three phenyl groups located inside of magnetically anisotropic nanocage accounting for the eighteen aromatic rings of CTC.

Figure S34. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}\left(600 \mathrm{MHz}\right.$, DMSO- d_{6}).

Figure $\mathrm{S} 35 .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S36. ${ }^{13} \mathrm{C}$ and DEPT135 NMR spectra of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}\left(150 \mathrm{MHz}\right.$, DMSO- d_{6}).

Figure S37. ${ }^{29} \mathrm{Si}$ NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}\left(120 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S38. ESI-MS spectrum of $\mathbf{5 a} \cdot \mathbf{6} \mathrm{HNEt}_{3}(\mathrm{MeOH})$.

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 a} \cdot 9 \mathrm{HNEt}_{3}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure $\mathrm{S} 40 .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 a} \cdot 9 \mathrm{HNEt}_{3}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure $\mathrm{S} 41 .{ }^{29} \mathrm{Si}$ NMR spectrum of $\mathbf{6 a} \cdot 9 \mathrm{HNEt}_{3}\left(120 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S42. ESI-MS spectrum of $\mathbf{6 a} \cdot 9 \mathrm{HNEt}_{3}(\mathrm{MeOH})$.

The replacement of the phenyl group in $\mathrm{RSi}(\mathrm{OMe})_{3}$ with p-tolyl, methyl, vinyl, and $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}$ resulted in the formation of tetrahedral nanocages, i.e., $\mathbf{5 b} \cdot \mathbf{6} \mathrm{HNEt}_{3}, \mathbf{5 c} \cdot \mathbf{6} \mathrm{HNEt}_{3}, \mathbf{5 d} \cdot \mathbf{H N E t}{ }_{3}$, and $5 e \cdot 6 \mathrm{HNEt}_{3}$, respectively (Figure S43-S59). By using NaOH instead of $\mathrm{Et}_{3} \mathrm{~N}$, the ammonium cation could also be replaced by Na^{+}affording $\mathbf{5 a} \cdot 6 \mathrm{Na}$ and $\mathbf{5 c} \cdot 6 \mathrm{Na}$ (Figure S60-S67).

The reaction of $\mathrm{H}_{2} \mathrm{NCONH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}(\mathrm{OMe})_{3}, \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}(\mathrm{OMe})_{3}$, and $\mathrm{Me}_{2} \mathrm{~N}^{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}(\mathrm{OMe})_{3}$ with CTC and $\mathrm{Et}_{3} \mathrm{~N}$ led to a complex mixture of intermediate oligomers, which was insoluble due to the cation-anion interactions between $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHR}_{2}{ }^{+}$and the silane catecholate anions, thus impeding the further reaction progress. On the other hand, the reaction of $\mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Si}(\mathrm{OMe})_{3}$ with CTC and

NaOH yielded tetrameric cage $\mathbf{5 f} \cdot 6 \mathrm{Na}$ (Figure S68-S70).
These anionic nanocages with different substituents at the silicon atoms were fully characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{29}$ Si NMR as well as ESI-mass spectroscopy.

Figure S43. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 b} \cdot 6 \mathrm{HNEt}_{3}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure $\mathrm{S} 44 .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 b} \cdot 6 \mathrm{HNEt}_{3}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure $\mathrm{S} 45 .{ }^{29} \mathrm{Si}$ NMR spectrum of $\mathbf{5 b} \cdot 6 \mathrm{HNEt}_{3}\left(120 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S46. ESI-MS spectrum of $\mathbf{5 b} \cdot \mathbf{6} \mathrm{HNEt}_{3}(\mathrm{MeOH})$.

Figure S47. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 c} \cdot 6 \mathrm{HNEt}_{3}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure $\mathrm{S} 48 .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 c} \cdot 6 \mathrm{HNEt}_{3}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure $\mathrm{S} 49 .{ }^{29} \mathrm{Si}$ NMR spectrum of $\mathbf{5 c} \cdot 6 \mathrm{HNEt}_{3}\left(120 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure S50. ESI-MS spectrum of $\mathbf{5 c} \cdot 6 \mathrm{HNEt}_{3}(\mathrm{MeOH})$.

Figure S51. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 d} \cdot 6 \mathrm{HNEt}_{3}\left(600 \mathrm{MHz}\right.$, DMSO- d_{6}).

Figure $\mathrm{S} 52 .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 d} \cdot 6 \mathrm{HNEt}_{3}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S53. ${ }^{13} \mathrm{C}$ and DEPT135 NMR spectra of $\mathbf{5 d} \cdot 6 \mathrm{HNEt}_{3}\left(150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure $\mathrm{S} 54 .{ }^{29} \mathrm{Si}$ NMR spectrum of $\mathbf{5 d} \cdot 6 \mathrm{HNEt}_{3}\left(120 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S55. ESI-MS spectrum of $\mathbf{5 d} \cdot 6 \mathrm{HNEt}_{3}(\mathrm{MeOH})$.

Figure S56. ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{e} \cdot 6 \mathrm{HNEt}_{3}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}).

Figure $\mathrm{S} 57 .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 e} \cdot 6 \mathrm{HNEt}_{3}\left(150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure $\mathrm{S} 58 .{ }^{29} \mathrm{Si}$ NMR spectrum of $\mathbf{5 e} \cdot 6 \mathrm{HNEt}_{3}\left(120 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure S59. ESI-MS spectrum of $\mathbf{5 e} \cdot 6 \mathrm{HNEt}_{3}(\mathrm{MeOH})$.

Figure S60. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{Na}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure $\mathrm{S} 61 .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{Na}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S62. ${ }^{29}$ Si NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{Na}\left(120 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S63. ESI-MS spectrum of $\mathbf{5 a} \cdot 6 \mathrm{Na}(\mathrm{MeOH})$.

Figure S64. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 c} \cdot 6 \mathrm{Na}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S65. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 c} \cdot 6 \mathrm{Na}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S66. ${ }^{29}$ Si NMR spectrum of $\mathbf{5 c} \cdot 6 \mathrm{Na}\left(120 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S67. ESI-MS spectrum of $\mathbf{5 c} \cdot 6 \mathrm{Na}(\mathrm{MeOH})$.

Figure S68. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 f} \cdot 6 \mathrm{Na}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S69. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 f} \cdot 6 \mathrm{Na}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S70. ${ }^{29}$ Si NMR spectrum of $\mathbf{5 f} \cdot 6 \mathrm{Na}\left(120 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.
2.3. Structual assignment and spectral data of $\mathbf{5 a} \cdot 6 \mathrm{R}_{4} \mathrm{~N}\left(\mathrm{R}_{4} \mathrm{~N}=\mathrm{Me}_{4} \mathrm{~N}, \mathrm{Et}_{4} \mathrm{~N}, \mathrm{MePy}\right.$ and BuPy)

The cation exchange of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ with $\mathrm{Me}_{4} \mathrm{NCl}, \mathrm{Et}_{4} \mathrm{NCl}$, MePyI and BuPyCl resulted in the formation of $\mathbf{5 a} \cdot 6 \mathrm{Me}_{\mathbf{4}} \mathrm{N}, \mathbf{5 a} \cdot 6 \mathrm{Et}_{4} \mathrm{~N}, \mathbf{5 a} \cdot 6 \mathrm{MePy}$ and $\mathbf{5 a} \cdot 6 \mathrm{BuPy}$ respectively. These cation-exchanged nanocages were fully characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{29} \mathrm{Si}$ NMR as well as ESI-mass spectroscopy (Figure S71-S86).

Figure S71. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{Me}_{4} \mathrm{~N}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure $\mathrm{S} 72 .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{Me}_{4} \mathrm{~N}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure $\mathrm{S} 73 .{ }^{29} \mathrm{Si}$ NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{Me}_{4} \mathrm{~N}\left(120 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S 74 . ESI-MS spectrum of $\mathbf{5 a} \cdot 6 \mathrm{Me}_{4} \mathrm{~N}(\mathrm{MeOH})$.

Figure $\mathrm{S} 75 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{Et}_{4} \mathrm{~N}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure $\mathrm{S} 76 .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{Et}_{4} \mathrm{~N}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S77. ${ }^{29} \mathrm{Si}$ NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{Et}_{4} \mathrm{~N}\left(120 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure S78. ESI-MS spectrum of $\mathbf{5 a} \cdot 6 \mathrm{Et}_{4} \mathrm{~N}(\mathrm{MeOH})$.

Figure S79. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{MePy}\left(600 \mathrm{MHz}\right.$, DMSO- d_{6}).

Figure $\mathrm{S} 80 .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{MePy}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure $\mathrm{S} 81 .{ }^{29} \mathrm{Si}$ NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{MePy}\left(120 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S 82 . ESI-MS spectrum of $\mathbf{5 a} \cdot 6 \mathrm{MePy}(\mathrm{MeOH})$.

Figure S83. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{BuPy}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure $\mathrm{S} 84 .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{BuPy}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S85. ${ }^{29}$ Si NMR spectrum of $\mathbf{5 a} \cdot 6 \mathrm{BuPy}\left(120 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S86. ESI-MS spectrum of $\mathbf{5 a} \cdot 6 \mathrm{BuPy}(\mathrm{MeOH})$.

3. Crystallographic data

Single crystals of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 8 \mathrm{MeOH}, \mathbf{5 a} \cdot 6 \mathrm{Na} \cdot 7 \mathrm{THF} \cdot 2 \mathrm{DMF} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6} \cdot 23 \mathrm{H}_{2} \mathrm{O}$, and $\mathbf{8} @ 4 \mathbf{4 a} \cdot 14 \mathrm{DMSO}$ $\cdot 5 \mathrm{H}_{2} \mathrm{O}$ suitable for X-ray diffraction analysis were mounted on a Rigaku VariMax with Saturn CCD diffractometer equipped with a $\mathrm{Mo}-\mathrm{K}_{\alpha}$ (graphite monochromated, $\lambda=0.71073$) radiation. Crystal data and data statistics are summarized in Table S1. The structures were solved by direct methods (SHELXS-97 ${ }^{8)}$ and SIR $2004{ }^{99}$) using WinGX v1.70.01 as interface. ${ }^{10}$) The non-hydrogen atoms were refined anisotropically by the full-matrix least-square method (SHELXL-97). ${ }^{8)}$ Hydrogen atoms were placed at calculated positions and kept fixed. In a subsequent refinement, the function $\Sigma \omega\left(F^{2}{ }_{\mathrm{o}}-F^{2}{ }_{\mathrm{c}}\right)^{2}$ was minimized, where $\left|F_{\mathrm{o}}\right|$ and $\left|F_{\mathrm{c}}\right|$ are the observed and calculated structure factor amplitudes, respectively. The agreement indices are defined as $R_{1}=\Sigma\left(| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right|\right) / \Sigma\left|F_{\mathrm{o}}\right|$ and $\mathrm{w} R_{2}=$ $\left[\Sigma \omega\left(F^{2}{ }_{\mathrm{o}}-F^{2}{ }_{\mathrm{c}}\right)^{2} / \Sigma\left(\omega F^{4}{ }_{\mathrm{o}}\right)\right]^{1 / 2}$.

The crystallographic data reported in this manuscript have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1892127 for $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 8 \mathrm{MeOH}, \quad 1892128$ for $\mathbf{5 a} \cdot \mathbf{6 N a} \cdot 7 \mathrm{THF} \cdot 2 \mathrm{DMF} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6} \cdot 23 \mathrm{H}_{2} \mathrm{O}$, and 1892129 for $\mathbf{8} @ \mathbf{4 a} \cdot 14 \mathrm{DMSO} \cdot 5 \mathrm{H}_{2} \mathrm{O}$. Copies of these data can be obtained free of charge via the CCDC Website.

Table S1. Crystal data and data collection parameters of $\mathbf{4 a} \cdot \mathbf{4} \mathrm{HNEt}_{3} \cdot 8 \mathrm{MeOH}$, $5 \mathbf{a} \cdot 6 \mathrm{Na} \cdot 7 \mathrm{THF} \cdot 2 \mathrm{DMF} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6} \cdot 23 \mathrm{H}_{2} \mathrm{O}$ and $\mathbf{8} @ 4 \mathbf{4} \cdot 14 \mathrm{DMSO} \cdot 5 \mathrm{H}_{2} \mathrm{O}$.

	$\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 8 \mathrm{MeOH}$	$\mathbf{5 a} \cdot 6 \mathrm{Na} \cdot 7 \mathrm{THF} \cdot 2 \mathrm{DMF}$. $2 \mathrm{C}_{6} \mathrm{H}_{6} \cdot 23 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \mathbf{8} @ 4 \mathbf{4} \cdot 14 \mathrm{DMSO} \\ & \cdot 5 \mathrm{H}_{2} \mathrm{O} \end{aligned}$
Empirical formula	$\mathrm{C}_{128} \mathrm{H}_{172} \mathrm{~N}_{4} \mathrm{O}_{24} \mathrm{Si}_{4}$	$\mathrm{C}_{166} \mathrm{H}_{206} \mathrm{~N}_{2} \mathrm{Na}_{6} \mathrm{O}_{56} \mathrm{Si}_{6}$	$\mathrm{C}_{80} \mathrm{H}_{101} \mathrm{~N}_{2} \mathrm{O}_{17.5} \mathrm{~S}_{7} \mathrm{Si}_{2}$
Formula weight	2263.06	3431.81	1651.23
Temperature (K)	120 (2)	120 (2)	120 (2)
Wavelength (\AA)	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	C2	P21/c	P21/c
a (\AA)	43.040 (48)	19.998 (4)	15.993 (7)
b (\AA)	9.038 (9)	34.746 (6)	21.486 (9)
c (\AA)	20.978 (22)	24.908 (5)	27.205 (11)
α (deg)	90.00	90.00	90.00
β (deg)	114.772 (14)	101.563 (3)	107.14 (2)
γ (deg)	90.00	90.00	90.00
Volume (\AA^{3})	7409 (14)	16956 (5)	8934 (7)
Z	2	4	4
$\begin{aligned} & \text { Density } \quad \text { (calculated) } \\ & \left(\mathrm{g} / \mathrm{cm}^{3}\right) \end{aligned}$	1.014	1.344	1.228
Absorption coefficient (mm^{-1})	0.099	0.152	0.266
F (000)	2432	7256	3500
Crystal size (mm)	$0.38 \times 0.31 \times 0.16$	$0.18 \times 0.16 \times 0.12$	$0.23 \times 0.20 \times 0.10$
Crystal color and habit	Colorless, Block	Colorless, Prism	Black, Prism
Solvent system	$\mathrm{MeCN} / \mathrm{MeOH}, \mathrm{MeOH}$ vapor	THF/Benzene	DMSO
Diffractometer	Rigaku Mercury CCD	Rigaku Mercury CCD	$\begin{aligned} & \text { Rigaku Mercury } \\ & \text { CCD } \end{aligned}$
Theta range for Data collection (deg)	3.05 to 27.45	3.05 to 27.45	3.01 to 27.43
Indexes	$-55 \leqq \mathrm{~h} \leqq 55$	$-25 \leqq \mathrm{~h} \leqq 22$	$-20 \leqq \mathrm{~h} \leqq 20$
	$-8 \leqq \mathrm{k} \leqq 11$	$-45 \leqq \mathrm{k} \leqq 44$	$-27 \leqq \mathrm{k} \leqq 27$
	$-27 \leqq 1 \leqq 25$	$-32 \leqq 1 \leqq 32$	$-35 \leqq 1 \leqq 35$
Reflections collected	21709	188131	128180
Independent reflections	11432 (0.1466)	38521 (0.1104)	20240 (0.1023)

The X-ray crystal structure of $\mathbf{4 a} \cdot 4 \mathrm{HNEt}_{3} \cdot 8 \mathrm{MeOH}$ showed an anionic macrocycle stack on top of one another cemented by ammonium cations to produce a tubular aggregate structure. Pyridinium cations were encapsulated inside the anionic macrocycle in $\mathbf{8 @ 4} @ \cdot 14 \mathrm{DMSO} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, whereas the windows of the tetrahedral cage were closed outside by $\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{+}$in $5 \mathrm{a} \cdot 6 \mathrm{Na} \cdot 7 \mathrm{THF} \cdot 2 \mathrm{DMF} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6} \cdot 23 \mathrm{H}_{2} \mathrm{O}$, based on X-ray crystallographic analysis.

4. MeCN-promoted DCC conditions for the formation of 4a, 5a and 6a

In order to simulate the formation of macrocycle 4a and nanocage 5a, oligomers were grown in a stepwise fashion to generate key intermediates A-1-A-3 and B-1, B-2 as shown in Scheme S1 and S3. Once intermediates $\mathbf{A - 1}$ and $\mathbf{B - 1}$ are formed, they can cyclize into $\mathbf{4 a}$ and $\mathbf{5 a}$ respectively. Conformer A-1 leads to $\mathbf{4 a}$, which can give rise to a tubular aggregate together with ammonium cations and/or template molecules and precipitate from the reaction mixture as the main product. In contrast, conformers A-2 and A-3 are assumed to lead to the formation of polymers. At this stage, MeCN can promote the conformational conversion among A-1, A-2, and A-3 by accelerating the bond exchange equilibrium and pseudo-rotation (Scheme S2).

4a

Scheme S1

Scheme S2

Similarly, conformer B-1 leads to the formation of nanocage $\mathbf{5 a}$, while $\mathbf{B - 2}$ results in the formation of $\mathbf{6 a}$. Addition of MeCN as well as heating induces the conformational conversion between $\mathbf{B} \mathbf{- 1}$ and $\mathbf{B - 2}$, thus yielding $\mathbf{5 a}$ as the exclusive product. In particular, although the time course NMR experiment of $\mathrm{PhSi}(\mathrm{OMe})_{3}(\mathbf{1 a)}$ and EAT (2) was unsuccessful due to the precipitation of 4a, that of 1a and CTC (3) provided data to support that the first equilibrium can be reached with MeCN (see Figure S87-S90).

Scheme S3

$\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$

$\mathbf{6 a} \cdot 9 \mathrm{HNEt}_{3}$

FigureS87. ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixture consisting of $\mathrm{PhSi}(\mathrm{OMe})_{3}(\mathbf{1 a})$, triscatechol (3), and NEt_{3} without MeCN in DMF at $100^{\circ} \mathrm{C}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

FigureS88. Time course of the reaction of $\mathrm{PhSi}(\mathrm{OMe})_{3}(\mathbf{1 a})$, triscatechol (3) and NEt_{3} without MeCN in DMF at $100^{\circ} \mathrm{C}$.

Figure $\mathrm{S} 89 .{ }^{1} \mathrm{H}$ NMR spectra of the reaction mixture consisting of $\mathrm{PhSi}(\mathrm{OMe})_{3}(\mathbf{1 a})$, triscatechol (3), and NEt_{3} with MeCN in DMF at $100^{\circ} \mathrm{C}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

FigureS90. Time course of the reaction of $\mathrm{PhSi}(\mathrm{OMe})_{3}(\mathbf{1 a})$, triscatechol (3) and NEt_{3} with MeCN in DMF at $100^{\circ} \mathrm{C}$.

In order to datermine the temperature and solvent effects on the yields of $\mathbf{5 a}$ and $\mathbf{6 a}$, the following reactions were performed.

Cyclotricatechylene (CTC) (3) ($2.00 \mathrm{mmol}, 0.733 \mathrm{~g}$), $\mathrm{PhSi}(\mathrm{OMe})_{3}(3.30 \mathrm{mmol}, 0.614 \mathrm{~g}, 0.616 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(9.00 \mathrm{mmol}, 0.911 \mathrm{~g}, 1.25 \mathrm{~mL})$ were dissolved in a solvent (THF, THF/MeCN (3:1), THF/MeCN/MeOH (3:1:1), DMF, and DMF/MeCN (2:1), and the mixture was heated at a temperature lower than $100^{\circ} \mathrm{C}$. When THF, THF/MeCN (3:1), and THF/MeCN/MeOH (3:1:1) were used as solvent, various oligomeric intermediates precipitated after several hours (Figure S91). In contrast, when the reaction was conducted in DMF or DMF/MeCN (2:1), a homogeneous solution was obtained. In these cases, the formation of $\mathbf{5 a}$ and $\mathbf{6 a}$ within the reaction mixture was monitored by ${ }^{1} \mathrm{H}$ NMR, as shown in Figure S 92 and S93. The isolation of 5a and 6a was carried out as described above (section 1.10), followed by removal of the solvent under reduced pressure. Table S2 shows the reaction conditions and isolated yields of $\mathbf{5 a}$ and $\mathbf{6 a}$. Upon a closer inspection of Table S2, it can be seen that the usage of MeCN and higher reaction temperatures increased the yield of $\mathbf{5 a}$ compared to that of $\mathbf{6 a}$.

Figure $\mathrm{S} 91 .{ }^{1} \mathrm{H}$ NMR spectra of the precipitates obtained from the reaction mixtures of $\mathrm{PhSi}(\mathrm{OMe})_{3}$, CTC, and $\mathrm{Et}_{3} \mathrm{~N}$ in THF, THF/MeCN (3:1), and THF/MeCN/MeOH (3:1:1) under reflux (600 MHz , DMSO- d_{6}).

Figure $\mathrm{S} 92 .{ }^{1} \mathrm{H}$ NMR spectra of the reaction mixtures of $\mathrm{PhSi}(\mathrm{OMe})_{3}, \mathrm{CTC}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in various solvents and temperatures $\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.
\qquad

in DMF/MeCN, $100^{\circ} \mathrm{C}$

in DMF/MeCN,

Figure $\mathrm{S} 93 .{ }^{1} \mathrm{H}$ NMR spectra ($6-9 \mathrm{ppm}$ range) of the reaction mixtures of $\mathrm{PhSi}(\mathrm{OMe})_{3}, \mathrm{CTC}$, and $\mathrm{Et}_{3} \mathrm{~N}$ in various solvents and at different temperatures $\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Table S2. Solvent and temperature-dependent synthesis of silane catecholate nanocage 5a and 6a.

a) Reaction was performed until complete disappearance of the starting material and intermediates as determined by ${ }^{1} \mathrm{H}$ NMR analysis. b) Yields were calculated based on the starting CTC molecule.

5. ${ }^{1} \mathrm{H}$ NMR titrations

5.1. Titration of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ with $\mathrm{NBu}_{4} \mathrm{Cl}$

Compound $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}(8.06 \mathrm{mg}, 3.00 \mu \mathrm{~mol})$ was dissolved in 6 mL of $\mathrm{CD}_{3} \mathrm{OD}$ to afford a host solution (3 mM based on HNEt_{3}). $\mathrm{NBu}_{4} \mathrm{Cl}(33.4 \mathrm{mg}, 120 \mu \mathrm{~mol})$ was dissolved in 2 mL of $\mathrm{CD}_{3} \mathrm{OD}$ to give a guest solution $(60 \mathrm{mM})$. Next, $600 \mu \mathrm{~L}$ of host solution was added to a NMR tube by using a microsyringe, and the corresponding ${ }^{1} \mathrm{H}$ NMR spectrum was recorded. The host solution was titrated by adding $5.00 \mu \mathrm{~L}$ incremental amounts (molar ratio) of the guest solution, as shown in Table S3. Gradual changes in resonance were monitored as shown in Figure S94.

Table S3. Added amounts (molar ratio) of $\mathrm{NBu}_{4} \cdot \mathrm{Cl}$ to $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ and chemical shift changes of CTC, $\mathrm{HNEt}_{3}{ }^{+}$, and $\mathrm{NBu}_{4}{ }^{+}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$.

HNEt_{3} : NBu_{4}	CTC	$\mathrm{HN}\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right)_{3}{ }^{+}$		$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{4}+$			
	ArH	NCH_{2}	CH_{3}	NCH_{2}	CH_{2}	CH_{2}	CH_{3}
$\mathrm{NBu}_{4} \cdot \mathrm{Cl}$				3.239	1.664	1.419	1.030
$\begin{gathered} (\mathrm{SiPh})_{6}(\mathrm{CTC})_{4} \\ 6 \mathrm{HNEt}_{3} \end{gathered}$	6.671	2.802	0.952				
6:1	6.664	2.860	1.005	3.136	1.544	1.284	0.827
6:2	6.657	2.901	1.042	3.145	1.554	1.287	0.847
6:3	6.651	2.933	1.072	3.154	1.562	1.290	0.867
6:4	6.648	2.957	1.092	3.162	1.572	1.295	0.890
$6: 5$	6.645	2.978	1.110	3.170	1.580	1.307	0.905
6: 6	6.643	2.996	1.124	3.178	1.593	1.333	0.928

$(\mathrm{SiPh})_{6}(\mathrm{CTC})_{4} \cdot 6 \mathrm{HNEt}_{3}(5 \mathrm{a})$

Figure $\mathrm{S} 94 .{ }^{1} \mathrm{H}$ NMR titration of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ with $\mathrm{NBu}_{4} \mathrm{Cl}$; circles indicate $\mathrm{HNEt}_{3}{ }^{+}$, while rhomboids stand for $\mathrm{NBu}_{4}^{+}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$.

5.2. For the titration of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ with $\mathrm{NEt}_{4} \mathrm{Cl}$

Compound $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}(8.06 \mathrm{mg}, 3.00 \mu \mathrm{~mol})$ was dissolved in 6 mL of $\mathrm{CD}_{3} \mathrm{OD}$ to afford a host solution (3 mM based on HNEt_{3}). $\mathrm{NEt}_{4} \mathrm{Cl}\left(19.9 \mathrm{mg}, 120 \mu \mathrm{~mol}\right.$) was dissolved in 2 mL of $\mathrm{CD}_{3} \mathrm{OD}$ to give a guest solution $(60 \mathrm{mM})$. Next, $600 \mu \mathrm{~L}$ of host solution was added to a NMR tube by using a microsyringe, and the corresponding ${ }^{1} \mathrm{H}$ NMR spectrum was recorded. The host solution was titrated by adding $5.00 \mu \mathrm{~L}$ incremental amounts (molar ratio) of the guest solution, as shown in Table S4. Gradual changes in resonance were monitored as shown in Figure S95.

Table S4. Added amounts (molar ratio) of $\mathrm{NEt}_{4} \cdot \mathrm{Cl}$ to $\mathbf{5 a} \cdot \mathbf{6} \mathrm{HNEt}_{3}$ and chemical shift changes of CTC, $\mathrm{HNEt}_{3}{ }^{+}$, and $\mathrm{NEt}_{4}{ }^{+}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$.

$\mathrm{HNEt}_{3}: \mathrm{NEt}_{4}$	CTC	$\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}{ }^{+}$		$\mathrm{N}\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right)_{4}{ }^{+}$	
	ArH	NCH_{2}	CH_{3}	NCH_{2}	CH_{3}
$\mathrm{NBu}_{4} \cdot \mathrm{Cl}$				3.299	1.293
$(\mathrm{SiPh})_{6}(\mathrm{CTC})_{4} \cdot$					
$6 \mathrm{HNEt}_{3}$	6.671	2.802	0.952		
$6: 1$	6.673	2.939	1.063	2.581	0.773
$6: 2$	6.672	3.005	1.120	2.745	0.877
$6: 3$	6.672	3.043	1.157	2.859	0.953
$6: 4$	6.671	3.077	1.186	2.947	1.015
$6: 5$	6.670	3.093	1.203	3.002	1.054
$6: 6$	6.670	3.108	1.219	3.048	1.088

$(\mathrm{SiPh})_{6}\left(\mathrm{CTC}_{4} \cdot 6 \mathrm{HNEt}_{3}(\mathbf{5 a})\right.$

Figure $\mathrm{S} 95 .{ }^{1} \mathrm{H}$ NMR titration of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ with $\mathrm{NEt}_{4} \mathrm{Cl}$; circles indicate $\mathrm{HNEt}_{3}{ }^{+}$, while rhomboids stand for $\mathrm{NEt}_{4}{ }^{+}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$.

5.3. For the titration of $\mathbf{5 a} \cdot \mathbf{6} \mathrm{HNEt}_{3}$ with MePyI

Compound $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}(26.9 \mathrm{mg}, 10.0 \mu \mathrm{~mol})$ was dissolved in 2 mL of DMSO- d_{6} to afford a host solution (30 mM based on HNEt_{3}). MePyI ($33.2 \mathrm{mg}, 150 \mu \mathrm{~mol}$) was dissolved in $250 \mu \mathrm{~L}$ of DMSOd_{6} to give a guest solution $(600 \mathrm{mM})$. Next, $600 \mu \mathrm{~L}$ of host solution was added to a NMR tube by using a microsyringe, and the corresponding ${ }^{1} \mathrm{H}$ NMR spectrum was recorded. The host solution was titrated by adding $5.00 \mu \mathrm{~L}$ incremental amounts (molar ratio) of the guest solution, as shown in Table S5. Gradual changes in resonance were monitored as shown in Figure S96.

Table S5. Added amounts (molar ratio) of MePy $\cdot \mathrm{I}$ to $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ and chemical shift changes of CTC, $\mathrm{HNEt}_{3}{ }^{+}$, and $\mathrm{MePy}^{+}\left(600 \mathrm{MHz}\right.$, DMSO- d_{6}).

$\mathrm{HNEt}_{3}: \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NMe}$	CTC	$\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}{ }^{+}$		$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NCH}_{3}{ }^{+}$	
	ArH	NCH_{2}	CH_{3}	NCH_{3}	$\mathrm{NCH}_{3} @ 5 \mathrm{a}$
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NMe} \cdot \mathrm{I}$				4.340	
$(\mathrm{SiPh})_{6}(\mathrm{CTC})_{4} \cdot$					
$6 \mathrm{HNEt}_{3}$	6.492	2.733	0.939		
$6: 1$	6.584	2.720	0.948	4.318	2.506
$6: 2$	6.666	2.744	0.969	4.252	2.514
$6: 3$	6.689	2.769	0.985	4.225	2.535
$6: 4$	6.707	2.801	0.999	4.200	2.589
$6: 5$	6.721	2.821	1.019	4.199	2.635
$6: 6$	6.728	2.843	1.033	4.202	2.682

Figure S96. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ with MePyI; circles indicate $\mathrm{HNEt}_{3}{ }^{+}$, while rhomboids stand for $\mathrm{MePy}^{+}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

5.4. For the titration of $\mathbf{5 a} \cdot \mathbf{6} \mathrm{HNEt}_{3}$ with BuPyCl

Compound $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}(26.9 \mathrm{mg}, 10.0 \mu \mathrm{~mol})$ was dissolved in 2 mL of DMSO- d_{6} to afford a host
solution (30 mM based on HNEt_{3}). $\mathrm{BuPyCl}(103 \mathrm{mg}, 600 \mu \mathrm{~mol}$) was dissolved in $250 \mu \mathrm{~L}$ of DMSOd_{6} to give a guest solution $(600 \mathrm{mM})$. Next, $600 \mu \mathrm{~L}$ of host solution was added to a NMR tube by using a microsyringe, and the corresponding ${ }^{1} \mathrm{H}$ NMR spectrum was recorded. The host solution was titrated by adding $5.00 \mu \mathrm{~L}$ incremental amounts (molar ratio) of the guest solution, as shown in Table S6. Gradual changes in resonance were monitored as shown in Figure S97.

Table S6. Added amounts (molar ratio) of BuPy $\cdot \mathrm{Cl}$ to $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ and chemical shift changes of $\mathrm{CTC}, \mathrm{HNEt}_{3}{ }^{+}$, and $\mathrm{BuPy}^{+}\left(600 \mathrm{MHz}\right.$, DMSO- d_{6}).

$\mathrm{HNEt}_{3}: \mathrm{PyBu}$	CTC	$\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}{ }^{+}$		$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}{ }^{+} @ 5 \mathrm{a}$			
	ArH	NCH_{2}	CH_{3}	NCH_{2}	CH_{2}	CH_{2}	CH_{3}
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NBu} \cdot \mathrm{Cl}$				4.621	1.895	1.286	0.911
$\left(\mathrm{SiPh}_{6}(\mathrm{CTC})_{4}\right.$	6.492	2.733	0.939				
$.6 \mathrm{HNEt}_{3}$							
$6: 1$	6.609	2.777	0.987	-0.389	-1.569	-2.125	-2.244
$6: 2$	6.719	2.854	1.047	-0.388	-1.571	-2.113	-2.240
$6: 3$	6.743	2.896	1.080	-0.388	-1.572	-2.113	-2.242
$6: 4$	6.763	2.933	1.110	-0.388	-1.576	-2.117	-2.245
$6: 5$	6.775	2.948	1.125	-0.389	-1.574	-2.122	-2.244
$6: 6$	6.781	2.958	1.136	-0.398	-1.578	-2.124	-2.246

Figure $\mathrm{S} 97 .{ }^{1} \mathrm{H}$ NMR titration of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ with BuPyCl ; circles indicate $\mathrm{HNEt}_{3}{ }^{+}$, while rhomboids stand for $\mathrm{BuPy}^{+}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

5.5. For the titration of $\mathbf{4 a} \cdot 4 \mathrm{TMEDAH}$ with $7 \cdot 2 \mathrm{PF}_{6}$

Compound $\mathbf{4 a} \cdot 4$ TMEDAH ($20.7 \mathrm{mg}, 10.0 \mu \mathrm{~mol}$) was dissolved in 2 mL of DMSO- d_{6} to afford a host solution (20 mM based on TMEDAH). $7 \cdot 2 \mathrm{PF}_{6}(53.0 \mathrm{mg}, 75.0 \mu \mathrm{~mol}$) was dissolved in $250 \mu \mathrm{~L}$ of DMSO- d_{6} to give a guest solution (600 mM based on Pyridinium moiety). Next, $600 \mu \mathrm{~L}$ of host solution was added to a NMR tube by using a microsyringe, and the corresponding ${ }^{1} \mathrm{H}$ NMR spectrum was recorded. The host solution was titrated by adding $10.0 \mu \mathrm{~L}$ incremental amounts (molar ratio) of the guest solution, as shown in Table S7. Gradual changes in resonance were monitored as shown in Figure S98.

Table S7. Added amounts (molar ratio) of $\mathbf{7} \cdot 2 \mathrm{PF}_{6}$ to $\mathbf{4 a} \cdot 4 \mathrm{TMEDAH}$ and chemical shift changes of 7^{2+}, and TMEDAH ${ }^{+}$(600 MHz , DMSO- d_{6}).

4a: 7 a)	EAT	$\begin{aligned} & \mathrm{HN}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \\ & \underline{\mathrm{CH}_{2}} \mathbf{N}\left(\underline{\mathrm{CH}}_{3}\right)_{2}{ }^{+} \end{aligned}$		$\mathrm{C}_{6} \mathrm{H}_{4}\left(\underline{\mathrm{CH}}_{2} \mathrm{~N}_{\underline{\mathrm{C}}}^{5} \underline{\mathrm{H}_{4}} \underline{\mathrm{C}}_{5} \underline{H}_{4} \mathrm{~N}\right)_{2}{ }^{2+}$				
	ArH	NCH_{2}	NCH_{3}	$\mathrm{CH}_{2} \mathrm{~N}$	$3-\mathrm{CH}$	$2-\mathrm{CH}$	2'-CH	3'-CH
7-2PF6				5.866	9.320	8.628	7.992	8.859
$(\mathrm{SiPh})_{4}(\mathrm{EAT})_{4}$ 4TMEDAH	6.410	2.586	2.296					
1: 1 (4:2)	6.421	2.733	2.405	4.116	7.785	7.467	8.079	8.915
1:2 (4:4)	6.423	2.793	2.450	4.954	8.341	8.160	8.018	8.877
1:3 (4:6)	6.422	2.792	2.449	5.269	8.680	8.322	8.005	8.867
1: 4 (4:8)	6.421	2.793	2.450	5.429	8.839	8.399	7.998	8.863

[^0]

Figure S98. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{4 a} \cdot 4 \mathrm{TMEDAH}$ with $7 \cdot 2 \mathrm{PF}_{6}$; circles indicate TMEDAH^{+}, while rhomboids stand for $7^{2+}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.
5.6. For the titration of $\mathbf{4 a} \cdot 4 \mathrm{TMEDAH}$ with $\mathbf{8} \cdot 4 \mathrm{PF}_{6}$

Compound $\mathbf{4 a} \cdot 4$ TMEDAH ($20.7 \mathrm{mg}, 10.0 \mu \mathrm{~mol}$) was dissolved in 2 mL of DMSO- d_{6} to afford a host solution (20 mM based on TMEDAH). $\mathbf{8} \cdot 4 \mathrm{PF}_{6}(33.0 \mathrm{mg}, 30.0 \mu \mathrm{~mol}$) was dissolved in $200 \mu \mathrm{~L}$ of DMSO- d_{6} to give a guest solution (600 mM based on Pyridinium moiety). Next, $600 \mu \mathrm{~L}$ of host solution was added to a NMR tube by using a microsyringe, and the corresponding ${ }^{1} \mathrm{H}$ NMR spectrum was recorded. The host solution was titrated by adding $5.00 \mu \mathrm{~L}$ incremental amounts (molar ratio) of the guest solution, as shown in Table S 8 . Gradual changes in resonance were monitored as shown in Figure S99.

Table S8. Added amounts (molar ratio) of $\mathbf{8} \cdot 4 \mathrm{PF}_{6}$ to $\mathbf{4 a} \cdot 4 \mathrm{TMEDAH}$ and chemical shift changes of $\mathbf{8}^{4+}$, and TMEDAH ${ }^{+}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

4a: $8^{\text {a) }}$	$\begin{aligned} & \text { EAT } \\ & \hline \text { ArH } \end{aligned}$	$\begin{aligned} & \mathrm{HN}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \\ & \underline{\mathrm{CH}_{2}} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}^{+} \end{aligned}$		$\left(\underline{\mathrm{C}} 6 \underline{6} \underline{H}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{~N}^{1} \underline{C}_{5} \underline{H}_{4} \underline{\mathrm{C}}_{5} \underline{\mathrm{H}_{4}} \mathrm{~N}\right)_{2}{ }^{4+}$			
		NCH_{2}	NCH_{3}	$\mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{CH}_{2} \mathrm{~N}$	$3-\mathrm{CH}$	$2-\mathrm{CH}$
8.4PF 6				7.707	5.797	9.447	8.644
$(\mathrm{SiPh})_{4}(\mathrm{EAT})_{4}$ 4TMEDAH	6.410	2.586	2.296				
1:0.25 (4:1)	6.445	2.711	2.390	6.845	5.989	8.634	7.584
$1: 0.50$ (4:2)	6.446	2.788	2.447	6.936	5.848	8.459	7.427
$1: 0.75$ (4:3)	6.536	2.788	2.447	6.998	5.785	8.442	7.383
$1: 1.00$ (4:4)	6.623	2.788	2.447	7.042	5.757	8.426	7.404
$1: 1.25$ (4:5)	6.695	2.788	2.446	7.068	5.747	8.418	7.449
$1: 1.50$ (4:6)	6.736	2.788	2.447	7.094	5.747	8.415	7.478

a) Molar ratio of $\mathbf{4 a}$ and 8 . The values in parentheses represent the ratio of TMEDAH and pyridinium moiety in the 8.

igure $\mathrm{S} 99 .{ }^{1} \mathrm{H}$ NMR titration of $\mathbf{4 a} \cdot 4 \mathrm{TMEDAH}$ with $\mathbf{8} \cdot 4 \mathrm{PF}_{6}$; circles indicate TMEDAH^{+}, while rhomboids stand for $\mathbf{8}^{4+}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.
5.7. For the titration of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ with $\mathbf{7} \cdot 2 \mathrm{PF}_{6}$

Compound 5a $\cdot 6 \mathrm{HNEt}_{3}(13.4 \mathrm{mg}, 5.00 \mu \mathrm{~mol})$ was dissolved in 1 mL of DMSO- d_{6} to afford a host solution (30 mM based on HNEt_{3}). $7 \cdot 2 \mathrm{PF}_{6}(53.0 \mathrm{mg}$, $75.0 \mu \mathrm{~mol}$) was dissolved in $250 \mu \mathrm{~L}$ of DMSOd_{6} to give a guest solution (600 mM based on Pyridinium moiety). Next, $600 \mu \mathrm{~L}$ of host solution was added to a NMR tube by using a microsyringe, and the corresponding ${ }^{1} \mathrm{H}$ NMR spectrum was recorded. The host solution was titrated by adding $10.0 \mu \mathrm{~L}$ incremental amount (molar ratio) of the guest solution, as shown in Table S9. Gradual changes in resonance were monitored as shown in Figure S100.

Table S9. Added amounts (molar ratio) of $\mathbf{7} \cdot 2 \mathrm{PF}_{6}$ to $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ and chemical shift changes of 7^{2+}, and $\mathrm{HNEt}_{3}{ }^{+}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

$5 \mathrm{a}: 7 \mathrm{a})$	CTC	$\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}{ }^{+}$			$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{NC}_{5} \underline{\mathrm{H}}_{4} \underline{\mathrm{C}}_{5} \underline{H}_{4} \mathrm{~N}\right)_{2}{ }^{2+}$			
	ArH	NCH_{2}	CH_{3}	$\mathrm{CH}_{2} \mathrm{~N}$	$3-\mathrm{CH}$	$2-\mathrm{CH}$	$2^{\prime}-\mathrm{CH}$	$33^{\prime}-\mathrm{CH}$
$7 \cdot 2 \mathrm{PF}_{6}$				5.868	9.322	8.628	7.993	8.859
$(\mathrm{SiPh})_{6}(\mathrm{CTC})_{6}$	6.482	2.765	0.940					
$.6 \mathrm{HNEt}_{3}$								
$1: 1(6: 2)$	6.468	2.905	1.034	---	9.038	7.868	7.355	8.002
$1: 2(6: 4)$	6.465	2.964	1.076	5.238	8.925	7.903	7.360	8.247
$1: 3(6: 6)$	6.463	2.989	1.097	5.551	8.883	7.920	7.356	8.375

[^1]

Fig
ure $\mathrm{S} 100 .{ }^{1} \mathrm{H}$ NMR titration of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ with $7 \cdot 2 \mathrm{PF}_{6}$; circles indicate $\mathrm{HNEt}_{3}{ }^{+}$, while rhomboids stand for $7^{2+}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.
5.8. For the titration of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ with $\mathbf{8} \cdot 4 \mathrm{PF}_{6}$

Compound 5a $\cdot 6 \mathrm{HNEt}_{3}(13.4 \mathrm{mg}, 5.00 \mu \mathrm{~mol})$ was dissolved in 1 mL of DMSO- d_{6} to afford a host solution (30 mM based on HNEt_{3}). 8•4 $\mathrm{PF}_{6}(33.0 \mathrm{mg}, 30.0 \mu \mathrm{~mol}$) was dissolved in $200 \mu \mathrm{~L}$ of DMSO$d_{6} .20 \mu \mathrm{~L}$ of this solution was diluted with $80 \mu \mathrm{~L}$ of DMSO- d_{6} to give a guest solution $(120 \mathrm{mM}$ based on Pyridinium moiety). Next, $120 \mu \mathrm{~L}$ of host solution and $480 \mu \mathrm{~L}$ of DMSO- d_{6} was added to a NMR tube by using a microsyringe, and the corresponding ${ }^{1} \mathrm{H}$ NMR spectrum was recorded (6 mM of host solution based on HNEt_{3}). The host solution was titrated by adding $10.0 \mu \mathrm{~L}$ incremental amounts (molar ratio) of the guest solution, as shown in Table S10. Gradual changes in resonance were monitored as shown in Figure S101.

Table S10. Added amounts (molar ratio) of $\mathbf{8} \cdot 4 \mathrm{PF}_{6}$ to $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ and chemical shift changes of $\mathbf{8}^{4+}$, and $\mathrm{HNEt}_{3}{ }^{+}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

5a : 8 a)	CTC	$\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}{ }^{+}$		$\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{NC}_{5} \underline{\mathrm{H}}_{4} \underline{\mathrm{C}}_{5} \underline{\mathrm{H}}_{4} \mathrm{~N}\right)_{2}{ }^{4+}$			
	ArH	NCH_{2}	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{CH}_{2} \mathrm{~N}$	$3-\mathrm{CH}$	$2-\mathrm{CH}$
8.4PF 6				7.707	5.797	9.448	8.645
$\begin{gathered} (\mathrm{SiPh})_{6}(\mathrm{CTC})_{6} \\ \cdot 6 \mathrm{HNE}_{3} \end{gathered}$	6.474	2.775	0.947				
1:0.5 (6:2)	6.513	2.846	1.009	7.492	5.841	9.030	8.243
1: 1.0 (6:4)	6.599	2.874	1.045	7.502	5.842	9.031	8.240
1: 1.5 (6:6)	6.743	2.895	1.068	7.509	5.847	9.048	8.242

a) Molar ratio of $\mathbf{5 a}$ and $\mathbf{8}$. The values in parentheses represent the ratio of HNEt_{3} and pyridinium moiety in the 8.

Figure S101. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ with $\mathbf{8} \cdot 4 \mathrm{PF}_{6}$; circles indicate $\mathrm{HNEt}_{3}{ }^{+}$, while rhomboids stand for $\mathbf{8}^{4+}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

6. Attempts to achieve gas-adsorption within $4 \mathrm{a} \cdot \mathbf{4 \mathrm { HNEt } _ { 3 } , 5 a \cdot 6 \mathrm { Na } \text { , and } 5 \mathrm { a } \cdot 1 . 5 (8)}$

Based on the X-ray analysis of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$, four significant electrom density peaks were observed inside the cage, which were tentatively assigned to four HNEt_{3} cations (Figure S102 (left)). The ESI-

MS spectrum of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ also exhibited a molecular ion that was consistent with $\left[\mathrm{M}+4 \mathrm{HNEt}_{3}\right]^{2-}$ at $\mathrm{m} / \mathrm{z} 1239.4$ (Figure S 102 (right)). Therefore, the N_{2} gas adsorption-desorption analysis of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$ resulted in no porosity (Figure S103).

In the case of the X-ray analysis of $\mathbf{5 a} \cdot 6 \mathrm{Na}$, five or six water molecules were associated with each Na^{+}(Figure S 104 (left)). Since $6 \mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}{ }^{+}(\mathrm{n}=5,6)$ is too large to enter the window of the tetrahedral cage, six $\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}{ }^{+}$were located outside the negatively charged silicon centers to create an empty cavity. The ESI-MS spectrum of $\mathbf{5 a} \cdot 6 \mathrm{Na}$ showed a molecular ion corresponding to $[\mathrm{M}+4 \mathrm{Na}+4 \mathrm{MeOH}]^{2-}$ at $\mathrm{m} / \mathrm{z} 1145.2$ (Figure S 104 (right)). Unfortunately, N_{2} gas adsorptiondesorption was not observed (Figure S105).
Finally, owing to of the poor solubility and crystallinity of $\mathbf{5 a} \cdot 1.5(\mathbf{8})$ for X-ray analysis purposes, the molecular structure of $\mathbf{5 a} \cdot 1.5(\mathbf{8})$ was not disclosed. However, since the ${ }^{1} \mathrm{H}$ NMR titration experiment showed no inclusion of $\mathbf{8}$ into 5 a leading to the generation of an empty cavity, N_{2} gas adsorption-desorption analysis was also conducted. As a result, $\mathbf{5 a} \cdot 1.5(\mathbf{8})$ did not show any porosity (Figure S106) in analogy to $\mathbf{5 a} \cdot \mathbf{6 N a}$ most likely due to a tight interaction between the cage anions and counter cations, as shown by NMR titration results. In addition, the disordered arrangement of $5 \mathbf{a} \cdot 1.5(\mathbf{8})$ could disconnect the path of N_{2} gas dispersion into the material.

Figure S102. X-ray molecular structure (left) and ESI-MS spectrum (right) of $\mathbf{5 a} \cdot \mathbf{6 H N E t}{ }_{3}$. See also
Figure S38 for the full range ESI-MS spectrum of $\mathbf{5 a} \cdot \mathbf{6} \mathrm{HNEt}_{3}$.

ISOTHERM

Figure $\mathrm{S} 103 . \mathrm{N}_{2}$ gas adsorption of $\mathbf{5 a} \cdot 6 \mathrm{HNEt}_{3}$.

Figure S104. X-ray molecular structure (left) and ESI-MS spectrum (right) of $\mathbf{5 a} \cdot \mathbf{6 N a}$. See also Figure S63 for the full range ESI-MS spectrum of $\mathbf{5 a} \cdot 6 \mathrm{Na}$.

ISOTHERM

Figure $\mathrm{S} 105 . \mathrm{N}_{2}$ gas adsorption of $\mathbf{5 a} \cdot 6 \mathrm{Na}$.

ISOTHERM

Figure $\mathrm{S} 106 . \mathrm{N}_{2}$ gas adsorption of $\mathbf{5 a} \cdot 1.5(\mathbf{8})$

7. Supporting references

1) D. Fritsch, G. Bengtson, M. Carta, N. B. McKeown, Macromol. Chem. Phys., 2011, 212, 1137.
2) J. D. White and B. D. Gesner, Tetrahedron Lett., 1968, 9, 1591-1594.
3) Y. M. Vargas-Rodríguez, M. Vargas, R. Miranda, B. Francisco, O. Noguez, J. A. Morales-Serna, M. Salmón, Org. Commun., 2012, 5, 58-63.
4) J. A. Hyatt, J. Org. Chem., 1978, 43, 1808-1811.
5) A. Chakrabarti, H. M. Chawla, G. Hundal, N. Pant, Tetrahedron, 2005, 61, 12323-12329.
6) B. Odell, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, D. J. Williams, Angew. Chem., Int. Ed., 1988, 27, 1547-1550.
7) M. Asakawa, W. Dehaen, G. L'abbe', S. Menzer, J. Nouwen, F. M. Raymo, J. F. Stoddart, D. J. Williams, J. Org. Chem., 1996, 61, 9591-9595.
8) G.M. Sheldrick, Program for the Solution of Crystal Structures, University of Göttingen, Germany.
9) M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna, J. Appl. Cryst., 2005, 38, 381-388.
10) L. J. Farrugia, J. Appl. Cryst., 1999, 32, 837-838.

[^0]: a) Molar ratio of $\mathbf{4 a}$ and 7 . The values in parentheses represent the ratio of TMEDAH and pyridinium moiety in the 7.

[^1]: a) Molar ratio of $\mathbf{5 a}$ and $\mathbf{7}$. The values in parentheses represent the ratio of HNEt_{3} and pyridinium moiety in the 7.

