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1. General information and experimental procedures

All reactions were performed under an argon atmosphere unless otherwise specified. 'H
and 3C NMR spectra were recorded at room temperature using a JEOL INM-ECX 600R, INM-ECS
400, or INM-ECA 400 spectrometer. High resolution mass spectra (ESI) were recorded on a JEOL
JMS-T100LC mass spectrometer using a reserpine and YOKUDELUNA calibration kit (JEOL) for
accurate mass calibration. Commercially available solvents and reagents were purchased from
Sigma-Aldrich, Wako, TCI, and KANTO. Anhydrous DMF was purchased from Wako.
Tetrahydrofuran (THF) was distilled from lithium aluminum hydride (LAH). Methanol was distilled
from calcium hydride, while acetonitrile was dried over MS3A. Trimethoxysilanes, [RSi(OMe)s;, R
= Ph, p-tolyl, Me, vinyl, (CH,);SH, and (CH,);NMe;] were purchased from Shin-Etsu Chemical Co.,
Ltd. 9,10-Dimethyl-9,10-ethano-9,10-dihydro-2,3,6,7-tetrahydroxyanthracene (EAT) (2) was
prepared from pyrocatechol and 2,5-hexanedione according to a literature method.D
Cyclotricatechylene (CTC) (3) was also synthesized according to a modified known procedure>> by
hydrochloric acid catalyzed condensation of veratrole with trioxane to initially yield
cyclotriveratrylene (CTV), followed by demethylation using Me;SiCl/Nal in acetonitrile. Stoddart’s
blue box (8:4PFs) and its synthetic precursor (7-2PF¢) were also prepared according to a modified
literature method®”? by N-alkylation of 1,1°-[1,4-phenylene-bis(methylene)]-bis(4,4’-bipyridinium)
bis(hexafluorophosphate) with 1,4-bis(iodomethyl)benzene instead of the corresponding dibromide
in the presence of 1,5-bi(2-(2-methoxyethoxy)ethoxy)naphthalene as template.

1.1. Synthesis of 4a-4HNEt;-2(2)-4THF

Ph, O id 0 ,Ph
Si-0 0si
oo 60 - 4HNEt;*
_ ETA (2), NE; % Q Ho o
PhSi(OMe)s - < P> 2 OO @)
THF, MeCN, MeOH, reflux Q ﬂ
1a 00 00 - 4THF

Siz0 0si
i \

PH OO Ph
4a-4HNEt;-2(2)-4THF
9,10-Dimethyl-9,10-ethano-9,10-dihydro-2,3,6,7-tetrahydroxyanthracene (EAT) etherate (2-Et,0)
(6.00 mmol, 2.24 g), PhSi(OMe); (4.40 mmol, 0.872 g, 0.822 mL), and Et;N (16.0 mmol, 1.62 g,
2.23 mL) were dissolved in 45 mL of THF, 15 mL of MeCN, and 15 mL of MeOH. The reaction
mixture was stirred and refluxed under a nitrogen atmosphere for 2 days. The mixture was then
cooled to room temperature, and the precipitate was collected by suction filtration. It was then
washed with 20 mL of THF and dried under reduced pressure to give 2.52 g (0.871 mmol, 87.1%) of
4a-4HNEt;-2(2)-4THF as a white powder.
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4a-4HNEt;-2(2)-4THF: 'H NMR (600MHz, DMSO-d;) 5 8.66 (br, 4H, NH), 8.42 (s, 8H, OH), 7.51
(d, J = 6.4 Hz, 8H, 0-CH), 7.13-7.09 (m, 12H, p-CH and m-CH), 6.59 (s, 8H, ArH), 6.41 (s, 16H,
ArH), 3.59 (m, OCH,, 16H), 2.85 (q, J = 7.2 Hz, 24H, NCH,), 1.75 (m, OCH,CH,, 16H), 1.67 (s,
12H, CH3), 1.64 (brs, 24H, CHs), 1.39 (s, 8H, CH,), 1.35 (brs, 16H, CH,), 1.00 (t, J = 7.2 Hz, 36H,
NCH,CH3); '*C NMR (150MHz, DMSO-dy) & 146.77 (C), 142.77 (ipso-C), 141.74 (C), 137.63 (C),
136.25 (C), 134.77 (o-CH), 127.45 (p-CH), 126.62 (m-CH), 108.77 (CH), 103.08 (CH), 67.04
(OCH,), 45.55 (NCH,), 40.25 (C), 39.94 (C), 36.27 (CH,), 36.24 (CH,), 25.14 (OCH,CH,), 19.24
(CH3), 18.52 (CH3), 8.49 (NCH,CH;); 2Si NMR (120MHz, DMSO-dy) § -86.91 (PhSiO,); HRMS
(ESI-, MeOH) m/z caled for Cy35H 129N 02481, [M+HNEt+H+2(2)] 1147.89908, found 1147.89793.

1.2. Preparation of 4a-4HNEt;

S0 0-s{ . Si-0 0°si
vy aq " 4HNEt; Reprecipitation with vy ]
7 Q Ho on CH,Cly, Et,0 i/ [\
S D 2Forde @ - <« D> e
Q ﬂ DMF, DMSO Q ﬂ
O‘g 0 o} ;)_,o PA4THF O‘SQ' o) o} g_,o
) I 17 ]
PR OR 50 Ph P OR 50 Ph
7 7
4a-4HNEt;-2(2)-4THF 4a-4HNEt;

Compound 4a-4HNEt;-2(2)-4THF (2.00 mmol, 5.78 g) was dissolved in 50 mL of DMSO and 50
mL of DMF upon heating. Further addition of 100 mL of CH,Cl, and 300 mL of Et,O led to the
precipitation of a white powder. The powder was collected by suction filtration and dried under

reduced pressure to give 2.71 g (1.35 mmol, 67.5%) of 4a-4HNEt;.

4a-4HNEt;: 'H NMR (600MHz, DMSO-d) & 8.62 (br, 4H, NH), 7.52 (d, J = 6.4 Hz, 8H, 0-CH),
7.14-7.11 (m, 12H, p-CH and m-CH), 6.42 (s, 16H, ArH), 2.81 (q, J = 7.2 Hz, 24H, NCH,), 1.65 (brs,
24H, CH3), 1.37 (brs, 16H, CH,), 0.98 (t, J = 7.2 Hz, 36H, NCH,CH;); *C NMR (150MHz, DMSO-
dg) & 146.74 (C), 142.76 (ipso-C), 136.20 (C), 134.74 (0-CH), 127.40 (p-CH), 126.58 (m-CH),
103.03 (CH), 45.52 (NCH,), 40.21 (C), 36.24 (CH,), 19.21 (CH;), 8.43 (NCH,CH,); 2Si NMR
(120MHz, DMSO-dy) & -86.85 (PhSiO4); HRMS (ESI-, MeOH) m/z caled for CjooHgsN,016Sis
[M+HNEt;+H]? 849.77857, found 849.77934.

1.3. Synthesis of 4a-4HNEt,Bn-2(2)-4THF
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Si-0 O-si
oo 50 - 4HNEt,Bn*
ETA (2), NEt,Bn % N o o
PhSi(OMe), - < P> 2 OGO @)
THF, MeCN, reflux Q /)
1a o0 00 - 4THF
S0 0:Si

4a-4HNEt,Bn-2(2)-4THF
9,10-Dimethyl-9,10-ethano-9,10-dihydro-2,3,6,7-tetrahydroxyanthracene (EAT) (2) (2.00 mmol,
0.597 g), PhSi(OMe); (2.10 mmol, 0.416 g, 0.392 mL), and NEt,Bn (6.00 mmol, 0.979 g, 1.08 mL)
were dissolved in 15 mL of THF and 5 mL of MeCN. The reaction mixture was stirred and refluxed
under a nitrogen atmosphere for 1 day. The mixture was then cooled to room temperature, and the
precipitate was collected by suction filtration. It was washed with 10 mL of THF and dried under
reduced pressure to give 0.665 g (0.212 mmol, 63.7%) of 4a-4HNEt,Bn-2(2)-4THF as a white

powder.

4a-4HNEt,Bn-2(2)-4THF: 'H NMR (600MHz, DMSO-d) & 8.98 (br, 4H, NH), 8.42 (s, 8H, OH),
7.51 (d, J = 6.4 Hz, 8H, 0-CH), 7.36-7.30 (m, 20H, NCH,Ph), 7.13-7.10 (m, 12H, p-CH and m-CH),
6.60 (s, 8H, ArH), 6.41 (s, 16H, ArH), 4.06 (d, J = 5.3 Hz, 81, NCH,Ph), 3.59 (m, OCH,, 16H),
2.88-2.75 (m, 16H, NCH,), 1.75 (m, OCH,CH,, 16H), 1.67 (s, 12H, CHs), 1.64 (brs, 24H, CHs),
1.40 (s, 8H, CH,), 1.36 (brs, 16H, CH,), 0.95 (t, J = 7.2 Hz, 24H, NCH,CH3); *C NMR (150MHz,
DMSO-ds) § 146.80 (C), 142.77 (ipso-C), 141.78 (C), 137.67 (C), 136.33 (C), 134.79 (o-CH),
130.80 (NBn, 0-CH), 129.93 (NBn, ipso-C), 129.38 (NBn, p-CH), 128.87 (NBn, m-CH), 127.48 (p-
CH), 126.64 (m-CH), 108.80 (CH), 103.14 (CH), 67.05 (OCH,), 55.00 (NCH,Ph), 45.85 (NCH,),
40.28 (C), 39.97 (C), 36.29 (CH,), 36.27 (CHy), 25.16 (OCH,CH,), 19.25 (CHs), 18.54 (CHs), 8.24
(NCH,CHs); 2Si NMR (120MHz, DMSO-dy) & -86.72 (PhSiO4); HRMS (ESI-, MeOH) m/z calcd
for C143H 3N 02,Sis [M+HNELBn+H+2(2)]2 1178.90691, found 1178.90791.

1.4. Synthesis of 4a-4HNMe,Bn-2THF
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4a-4HNMe,Bn-2THF
9,10-Dimethyl-9,10-ethano-9,10-dihydro-2,3,6,7-tetrahydroxyanthracene (EAT) (2) (2.00 mmol,
0.597 g), PhSi(OMe); (2.10 mmol, 0.416 g, 0.392 mL), and NMe,Bn (6.00 mmol, 0.811 g, 0.901
mL) were dissolved in 15 mL of THF and 5 mL of MeCN. The reaction mixture was stirred and
refluxed under a nitrogen atmosphere for 2 day. The mixture was then cooled to room temperature,
and the precipitate was collected by suction filtration. It was then washed with 10 mL of THF and
dried under reduced pressure to give 0.845 g (0.369 mmol, 73.8%) of 4a-4HNMe,Bn-2THF as a

white powder.

4a-4HNMe,Bn-2THF: 'H NMR (600MHz, DMSO-dys) 8 9.36 (br, 4H, NH), 7.51 (d, J = 6.4 Hz,
8H, 0-CH), 7.36-7.31 (m, 20H, NCH,Ph), 7.13-7.09 (m, 12H, p-CH and m-CH), 6.41 (s, 16H, ArH),
4.06 (brs, 8H, NCH,Ph), 3.59 (m, OCH,, 8H), 2.51 (s, 24H, NCH3), 1.75 (m, OCH,CH,, 8H), 1.64
(brs, 24H, CH3), 1.36 (brs, 16H, CH,); 3C NMR (150MHz, DMSO-dy) 8 146.71 (C), 142.76 (ipso-
C), 136.24 (C), 134.70 (0-CH), 130.67 (NBn, 0-CH), 130.52 (NBn, ipso-C), 129.34 (NBn, p-CH),
128.82 (NBn, m-CH), 127.39 (p-CH), 126.58 (m-CH), 103.08 (CH), 67.00 (OCHy), 59.92 (NCH,Ph),
41.79 (NCHj), 40.21 (C), 36.21 (CH,), 25.10 (OCH,CH,), 19.20 (CH;); »Si NMR (120MHz,
DMSO-ds) 6 -86.86 (PhSiO;); HRMS (ESI-, MeOH) m/z caled for C;osHoiN;O16Si4
[M+HNMe,Bn+H]?* 866.77075, found 866.76976.

1.5. Synthesis of 4a-4HNMe,Bu-2THF

Si-0 0O-si
fofe} 60
ETA (2), NMe,Bu 7 N - 4HNMe,Bu*
PhSi(OMe)s - < >
THF, MeCN, MeOH, reflux Q] 4] - 2THF
1a Lo o
Si0 0:Si

4a-4HNMe,Bu-2THF
9,10-Dimethyl-9,10-ethano-9,10-dihydro-2,3,6,7-tetrahydroxyanthracene (EAT) (2) (2.00 mmol,
0.597 g), PhSi(OMe); (2.20 mmol, 0.436 g, 0.411 mL), and NMe,Bu (6.00 mmol, 0.607 g, 0.842
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mL) were dissolved in 15 mL of THF, 5 mL of MeCN, and 5 mL of MeOH. The reaction mixture
was stirred and refluxed under a nitrogen atmosphere for 2 days. The mixture was then cooled to
room temperature, and the precipitate was collected by suction filtration. It was then washed with 10
mL of THF and dried under reduced pressure to give 0.624 g  (0.290 mmol, 58.0%) of
4a-4HNMe,Bu-2THF as a white powder.

4a-4HNMe,Bu-2THF: 'H NMR (600MHz, DMSO-dj) 8 8.98 (br, 4H, NH), 7.51 (d, J= 6.4 Hz, 8H,
0-CH), 7.13-7.10 (m, 12H, p-CH and m-CH), 6.41 (s, 16H, ArH), 3.59 (m, OCH,, 8H), 2.81 (brt, J =
8.1 Hz, 8H, NCH,CH,CH,CH3;), 2.56 (s, 24H, NCH3), 1.75 (m, OCH,CH,, 8H), 1.64 (brs, 24H,
CH;), 1.45-1.39 (m, 8H, NCH,CH,CH,CHj3), 1.35 (brs, 16H, CH,), 1.42 (sext, J = 7.5 Hz, 8H,
NCH,CH,CH,CHj3), 1.42 (t, J = 7.4 Hz, 12H, NCH,CH,CH,CHj;); '3*C NMR (150MHz, DMSO-dy)
8 146.70 (C), 142.79 (ipso-C), 136.21 (C), 134.77 (o-CH), 127.38 (p-CH), 126.57 (m-CH), 103.06
(CH), 67.00 (OCH,), 56.54 (NCH,CH,CH,CHj;), 42.29 (NCHj3;), 40.20 (C), 36.24 (CHp), 25.85
(NCH,CH,CH,CH3), 25.11 (OCH,CH,), 19.20 (CH;), 19.13 (NCH,CH,CH,CHj), 13.41
(NCH,CH,CH,CHj;); 2Si NMR (120MHz, DMSO-dy) 8 -87.02 (PhSiO4); HRMS (ESI-, MeOH) m/z
caled for Cg,Ho3N;O16Si4 [M+HNMe,Bu+H]? 849.77857, found 849.77895.

1.6. Synthesis of 4a-4TMEDAH -2THF

'Si-0 0-si
fofe) fole]
) ETA (2), TMEDA ’ Q - ATMEDAH*
PhSi(OMe)3 S D
THF, MeCN, MeOH, reflux Q i - 2THF
1a Yo ad
/Si:O O:Si,
TMEDA = Me,NCH,CH,NMe, PR Oy ’0 O 'Ph

4a-4TMEDAH-2THF

9,10-Dimethyl-9,10-ethano-9,10-dihydro-2,3,6,7-tetrahydroxyanthracene (EAT) etherate (2-Et,0)
(2.00 mmol, 0.745 g), PhSi(OMe); (2.20 mmol, 0.436 g, 0.411 mL), and TMEDA (6.00 mmol,
0.697 g, 0.900 mL) were dissolved in 15 mL of THF, 5 mL of MeCN, and 5 mL of MeOH. The
reaction mixture was stirred and refluxed under a nitrogen atmosphere for 1 day. The mixture was
then cooled to room temperature, and the precipitate was collected by suction filtration. It was then
washed with 10 mL of THF and dried under reduced pressure to give 0.877 g (0.397 mmol, 79.4%)
of 4a-4 TMEDAH-2THF as a white powder.

4a-4 TMEDAH-2THF: 'H NMR (600MHz, DMSO-dy) § 7.51 (d, J = 6.4 Hz, 8H, 0-CH), 7.13-7.10
(m, 12H, p-CH and m-CH), 6.41 (s, 16H, ArH), 3.59 (m, OCH,, 8H), 2.58 (s, 16H, NCH,CH,N),
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2.29 (s, 48H, NCHj3), 1.75 (m, OCH,CH,, 8H), 1.64 (brs, 24H, CHj3), 1.35 (brs, 16H, CH,); '3C
NMR (150MHz, DMSO-dy) 6 146.73 (C), 142.83 (ipso-C), 136.20 (C), 134.81 (0o-CH), 127.39 (p-
CH), 126.59 (m-CH), 103.09 (CH), 67.02 (OCH,), 53.38 (NCH,CH,N), 43.71 (NCHj3;), 40.22 (C),
36.25 (CHy), 25.12 (OCH,CH,), 19.23 (CHj3); 2°Si NMR (120MHz, DMSO-d;) 8 -87.02 (PhSiOy);
HRMS (ESI-, MeOH) m/z caled for CiooH;14N4017Si4 [M+2(HNMe,CH,CH,NMe,)+MeOH]*
931.36280, found 931.36222.

1.7. Synthesis of 4a-4HNEt;-2(2)-2 Anthracene- THF

Ny o, Ph
Si-O O-Si . +
&3 ;18 4HNEt,
ETA (2), NEts, anthracene ’ Q ., HO OH o
PhSi(OMe)s 2 - < D 2 IR, @
THF, MeCN, MeOH, reflux Q 4’
1a o0 do "2
SizO. O-Si

PH ':oo; "ph - THF

4a-4HNEt;-2(2)-2anthracene-THF
9,10-Dimethyl-9,10-ethano-9,10-dihydro-2,3,6,7-tetrahydroxyanthracene (EAT) (2) (2.00 mmol,
0.597 g), PhSi(OMe); (2.10 mmol, 0.416 g, 0.392 mL), and EtzN (6.00 mmol, 0.607 g, 0.836 mL)
with anthracene (4.00 mmol, 0.713 g) were dissolved in 15 mL of THF, 5 mL of MeCN, and 5 mL
of MeOH. The reaction mixture was stirred and refluxed under a nitrogen atmosphere for 2 days.
The mixture was then cooled to room temperature, and the precipitate was collected by suction
filtration. It was then washed with 20 mL of THF and dried under reduced pressure to give 0.886 g

(0.292 mmol, 87.6%) of 4a-2(2)-4HNEt;-2Anthracene- THF as a white powder.

4a-4HNEt;-2(2)-2Anthracene- THF: 'H NMR (600MHz, DMSO-d;) 8 8.66 (br, 4H, NH), 8.57 (s,
4H, 9,10-CH), 8.41 (s, 8H, OH), 8.08 (dd, , J = 6.4, 3.3 Hz, 8H, 1,4,5,8-CH), 7.53-7.49 (m, 16H, o-
CH, 2,3,6,7-CH), 7.13-7.09 (m, 12H, p-CH and m-CH), 6.59 (s, 8H, ArH), 6.41 (s, 16H, ArH), 3.59
(m, OCH,, 4H), 2.86 (q, J = 7.3 Hz, 24H, NCH,), 1.75 (m, OCH,CH,, 4H), 1.67 (s, 12H, CH3), 1.63
(brs, 24H, CH3), 1.39 (s, 8H, CH,), 1.35 (brs, 16H, CH,), 1.01 (t, J = 7.3 Hz, 36H, NCH,CHj;); '3C
NMR (150MHz, DMSO-dg) 6 146.79 (C), 142.78 (ipso-C), 141.75 (C), 137.64 (C), 136.27 (C),
134.78 (0-CH), 131.20 (C), 128.03 (1.,4,5,8-CH), 127.45 (p-CH), 126.62 (m-CH), 126.02 (9,10-CH),
125.54 (2,3,6,7-CH), 108.78 (CH), 103.09 (CH), 67.03 (OCHy,), 45.54 (NCH,), 40.26 (C), 39.95 (C),
36.27 (CHp), 36.23 (CHy), 25.13 (OCH,CH,), 19.24 (CHj), 18.52 (CHj;), 8.43 (NCH,CHj;); 2°Si
NMR (120MHz, DMSO-ds) 6 -86.94 (PhSiO4); HRMS (ESI-, MeOH) m/z caled for
C138H 20N 1024Si; [M+HNEt;+H+2(2)]* 1147.89908, found 1147.89916.
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1.8. Synthesis of 4b-4HNEt;-2THF

p-Tolyl ,OO\ ,p-Tolyl
Si-0 -Si,

O-Si
(0]e} 00
ETA (2), NEty 7 N - AHNEL’
p-TolylSi(OMe)s > A D
THF, MeCN, MeOH, reflux N Y - 2THF
1o 00 (0]6]

p-Tolyl’éi:S 50
>
4b-4HNEt;-2THF

9,10-Dimethyl-9,10-ethano-9,10-dihydro-2,3,6,7-tetrahydroxyanthracene (EAT) (2) (2.00 mmol,

0.597 g), p-tolylSi(OMe); (2.10 mmol, 0.446 g, 0.432 mL), and Et;N (6.00 mmol, 0.607 g, 0.836

mL) were dissolved in 15 mL of THF, 5 mL of MeCN, and 5 mL of MeOH. The reaction mixture

was stirred and refluxed under a nitrogen atmosphere for 2 days. The mixture was then cooled to

room temperature, and the precipitate was collected by suction filtration. It was then washed with 10

mL of THF and dried under reduced pressure to give 0.599 g (0.271 mmol, 54.2%) of
4b-4HNEt;-2THF as a white powder.

4b-4HNEt;-2THF: 8.63 (br, 4H, NH), 7.41 (d, J = 7.8 Hz, 8H, 0-CH), 6.93 (d, /= 7.8 Hz, 8H, m-
CH), 6.40 (s, 16H, ArH), 3.59 (m, OCH,, 8H), 2.82 (q, J = 7.3 Hz, 24H, NCH,), 2.17 (s, 12H,
ArCHj), 1.75 (m, OCH,CH,, 8H), 1.63 (brs, 24H, CHs), 1.35 (brs, 16H, CH,), 0.98 (t, J = 7.3 Hz,
36H, NCH,CH;); *C NMR (150MHz, DMSO-dy) & 146.79 (C), 139.16 (C), 136.33 (C), 136.12 (C),
135.06 (0-CH), 127.24 (m-CH), 102.98 (CH), 67.00 (OCH,), 45.57 (NCH,), 40.20 (C), 36.29 (CH,),
25.11 (OCH,CH,), 20.97 (ArCHj3), 19.22 (CHj;), 8.48 (NCH,CHj;); 2°Si NMR (120MHz, DMSO-d5)
8 -86.57 (p-TolylSiO4); HRMS (ESI-, MeOH) m/z caled for Cjo¢H;oiN;O16Sis; [M+HNEt;+H]*
877.80987, found 877.80782.

1.9. Synthesis of Sa-6HNEt;

CTC (3), NEt;

PhSi(OMe);

1a

- 6HNEt;*
DMF-MeCN, 100 °C

5a-6HNEt,

Cyclotricatechylene (CTC) (3) (2.00 mmol, 0.733 g), PhSi(OMe); (3.30 mmol, 0.654 g, 0.616 mL),
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and Et;N (9.00 mmol, 0.911 g, 1.25 mL) were dissolved in 20 mL of DMF and 10 mL of MeCN.
The reaction mixture was stirred and heated at 100 °C overnight under a nitrogen atmosphere. After
cooling to room temperature, all the volatiles were removed under reduced pressure. The resulting
residue was redissolved in 20 mL of THF and 10 mL of MeCN. Addition of Et,0 (200 mL) led to
the precipitation of a brownish powder, which was collected by suction filtration and dried under

reduced pressure to give 1.27 g (0.473 mmol, 94.6%) of 5a-6HNEt; as a light brown powder.

5a-6HNEt;: 'H NMR § 8.59 (br, 6H, NH), 7.36 (d, J = 6.6 Hz, 12H, 0-CH), 7.14-7.07 (m, 18H, p-
CH and m-CH), 6.49 (s, 24H, ArH), 4.44 (d, J = 13.1 Hz, 12H, ArCH,Ar), 3.12 (d, J= 13.1 Hz, 12H,
ArCH,Ar), 2.85-2.79 (m, 36H, NCH,), 0.95 (t, J = 7.2 Hz, 54H, CH;); '*C NMR § 148.49 (C),
142.31 (ipso-C), 133.64 (o-CH), 128.82 (C), 127.40 (p-CH), 126.65 (m-CH), 110.33 (CH), 45.65
(NCH,), 35.59 (ArCH,Ar), 8.47 (CH;); 2Si NMR & -86.94 (PhSiO,); HRMS (ESI-, MeOH) m/z
caled for C143H;42N40,,4Sis [M+4HNE]> 1239.43148, found 1239.43078.

1.10. Synthesis of 6a-9HNE;

CTC (3), NEt,

PhSi(OMe)3
DMF, 100 °C
1a

5a-6HNEt; 6a-9HNEt,

Cyclotricatechylene (CTC) (3) (2.00 mmol, 0.733 g), PhSi(OMe); (3.30 mmol, 0.614 g, 0.616 mL),
and EtN (9.00 mmol, 0.911 g, 1.25 mL) were dissolved in 30 mL of DMF. The reaction mixture
was stirred and heated at 100 °C overnight under a nitrogen atmosphere. After cooling to room
temperature, 400 mL of THF was added and a small amount of black precipitate was formed and
immediately filtered off. Then, the solution was left standing for 2 h until precipitation of a brown
crystalline solid occurred. The solid was filtered and redissolved in 20 mL of THF and 10 mL of
MeCN. Addition of Et,O led to the precipitation of a brownish powder, whichwas collected by
suction filtration and dried under reduced pressure to give 0.487 g (0.121 mmol, 36.3%) of
6a-9HNETL; as a light brown powder.

The residual DMF-THF filtrate was evaporated under reduced pressure and treated as described

above (section 1.10) to give 0.797 g (0.297 mmol, 59.4%) of 5a-6HNEt; as a light brown powder.
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6a-9HNEt;: 'H NMR § 8.43 (br, 9H, NH), 7.35 (d, J = 6.6 Hz, 12H, 0-CH), 7.22 (d, J = 6.8 Hz, 6H,
0-CH’), 7.13-7.06 (m, 18H, p-CH and m-CH), 6.63 (t, J = 7.2 Hz, 6H, m-CH’), 6.55 (s, 12H, ArH),
6.47 (s, 12H, ArH), 6.42 (s, 12H, ArH), 6.38 (t, J = 7.6 Hz, 3H, p-CH’), 4.55 (d, J = 12.4 Hz, 6H,
ArCH,Ar), 4.44 (d, J = 12.6 Hz, 12H, ArCH,Ar), 3.22-3.06 (m, 18H, ArCH,Ar), 2.61 (q, J= 7.0 Hz,
54H, NCH,), 0.88 (t, J = 7.0 Hz, 81H, CH;); 3C NMR § 148.51 (C), 148.47 (C), 148.36 (C), 142.33
(ipso-C), 141.35 (ipso-C*), 133.70 (o-CH), 133.35 (0-CH’), 129.89 (C), 129.11 (C), 127.64 (C),
127.33 (p-CH), 127.22 (p-CH’), 126.61 (m-CH), 126.22 (m-CH’), 111.16 (CH), 110.44 (CH),
110.35 (CH), 45.48 (NCH,), 36.28 (ArCH,Ar), 35.67 (ArCHAr), 8.41 (CH;); Si NMR § -86.34
(3PhSiO;), -86.85 (6PhSiO,); HRMS (ESI, MeOH) m/z caled for CoisHaaNgOs6Si
[M+6HNEt;+H]? 1859.65113, found 1859.64986.

1.11. Synthesis of 5b-6HNEt;

4!f"i§\ )
-Tolyl-_ O O _p-Tolyl
p oy\si_o O\Si/p olyl
CTC (3), NEt; (o} 69

/

DMF-MeCN, 100 °C

p-TolylSi(OMe)3
1b

5b-6HNEt,

Cyclotricatechylene (CTC) (3) (2.00 mmol, 0.733 g), p-TolylSi(OMe); (3.30 mmol, 0.701 g, 0.678
mL), and Et;N (9.00 mmol, 0.911 g, 1.25 mL) were dissolved in 20 mL of DMF and 10 mL of
MeCN. The reaction mixture was stirred and heated at 100 °C overnight under a nitrogen atmosphere.
After cooling to room temperature, all the volatiles were removed under reduced pressure. The
resulting residue was redissolved in 20 mL of THF and 10 mL of MeCN. Addition of Et,O (200 mL)
led to the precipitation of a brownish powder, which was collected by suction filtration and dried

under reduced pressure to give 1.38 g (0.498 mmol, 99.6%) of Sb-6HNEL; as an off-white powder.

5b-6HNEt;: '"H NMR 3§ 8.63 (br, 6H, NH), 7.28 (d, J = 7.7 Hz, 12H, 0-CH), 6.93 (d, J = 7.7 Hz,
12H, m-CH), 6.50 (s, 24H, ArH), 4.47 (d, J = 13.0 Hz, 12H, ArCH,Ar), 3.15 (d, /= 13.0 Hz, 12H,
ArCH,Ar), 2.86 (m, 36H, NCH,), 0.97 (t, J = 7.2 Hz, 54H, CH3;); '3C NMR § 148.54 (C), 138.77
(ipso-C), 136.28 (p-C), 133.80 (0-CH), 128.77 (C), 127.32 (m-CH), 110.29 (CH), 45.71 (NCH,),
35.63 (ArCH,Ar), 21.05 (ArCHj;), 8.48 (CHj); 2°Si NMR § -86.40 (p-TolylSiO4); HRMS (ESI-,
MeOH) m/z calcd for Cy50H;54N40,4Sis [M+4HNEt;]> 1281.47843, found 1281.47666.
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1.12. Synthesis of 5¢-6HNEt;

CTC (3), NEt,

MeSi(OMe)s
1 DMF-MeCN, 100 °C
[

5¢-6HNE,

Cyclotricatechylene (CTC) (3) (2.00 mmol, 0.733 g), MeSi(OMe); (3.30 mmol, 0.450 g, 0.471
mL), and Et;N (9.00 mmol, 0.911 g, 1.25 mL) were dissolved in 20 mL of DMF and 10 mL of
MeCN. The reaction mixture was stirred and heated at 100 °C overnight under a nitrogen atmosphere.
After cooling to room temperature, all the volatiles were removed under reduced pressure. The
resulting residue was redissolved in 30 mL of THF and 15 mL of MeCN. Addition of Et,0 (300 mL)
led to the precipitation of a brownish powder, which was collected by suction filtration and dried

under reduced pressure to give 1.15 g (0.497 mmol, 99.4%) of S¢-6HNEL; as an off-white powder.

5c-6HNEt;: 'H NMR 8 8.54 (br, 6H, NH), 6.36 (s, 24H, ArH), 4.43 (d, J = 13.1 Hz, 12H,
ArCH,Ar), 3.09 (d, J = 13.1 Hz, 12H, ArCH,Ar), 2.76 (q, J = 7.2 Hz, 36H, NCH,), 0.91 (t, J= 7.2
Hz, 54H, CHj;), -0.29 (SiCHj3); '3C NMR § 148.27 (C), 128.48 (C), 110.17 (CH), 45.58 (NCH,),
35.62 (ArCH,Ar), 8.43 (CHj3), -0.22 (SiCHj3); 2°Si NMR § -75.02 (MeSiOg4); HRMS (ESI-, MeOH)
m/z caled for Cj14H;30N4044Sis [M+4HNE;]% 1053.38453, found 1053.38564.

1.13. Synthesis of 5d-6HNEt;

CTC (3), NEts

VinylSi(OMe),
1d

DMF-MeCN, 100 °C

5d-6HNEt,

Cyclotricatechylene (CTC) (3) (2.00 mmol, 0.733 g), VinylSi(OMe); (3.30 mmol, 0.489 g, 0.505
mL), and Et;N (9.00 mmol, 0.911 g, 1.25 mL) were dissolved in 20 mL of DMF and 10 mL of
MeCN. The reaction mixture was stirred and heated at 100 °C 1 day under a nitrogen atmosphere.
After cooling to room temperature, all the volatiles were removed under reduced pressure. The

resulting residue was redissolved in 20 mL of THF and 10 mL of MeCN. Addition of Et,O (200 mL)
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led to the precipitation of a brownish powder. The powder was collected by suction filtration and
dried under reduced pressure to give 1.14 g (0.478 mmol, 94.6%) of 5d-6HNEt; as a light brown

powder.

5d-6HNEt;: '"H NMR 3 8.57 (br, 6H, NH), 6.40 (s, 24H, ArH), 5.78 (dd, J = 20.0, 14.6 Hz, 6H,
SiCH), 5.46 (dd, J = 14.6, 5.0 Hz, 6H, CH=CH,), 5.42 (dd, J = 20.0, 5.0 Hz, 6H, CH=CH,), 4.44 (d,
J=13.1 Hz, 12H, ArCH,Ar), 3.12 (d, J= 13.1 Hz, 12H, ArCH,Ar), 2.81 (m, 36H, NCH,), 0.95 (t, J
=7.2 Hz, 54H, CH3;); *C NMR § 148.31 (C), 140.75 (SiCH), 128.61 (C), 128.58 (CH=CH,), 110.20
(CH), 45.62 (NCH,), 35.58 (ArCH,Ar), 8.43 (CH3;); Si NMR § -87.64 (VinylSiO,); HRMS (ESI-,
MeOH) m/z calcd for Cy20H;30N40,4Sis [M+4HNEt;]> 1089.38453, found 1089.38557.

1.14. Synthesis of 5e-6HNEt;

CTC (3), NEtg

HS(CH,)3Si(OMe)s

1e

DMF-MeCN, 100 °C

(CH5)3SH
5e-6HNEt,

Cyclotricatechylene (CTC) (3) (2.00 mmol, 0.733 g), HS(CH;);Si(OMe); (3.30 mmol, 0.648 g,
0.613 mL), and Et3N (9.00 mmol, 0.911 g, 1.25 mL) were dissolved in 20 mL of DMF and 10 mL of
MeCN. The reaction mixture was stirred and heated at 100 °C 1 day under a nitrogen atmosphere.
After cooling to room temperature, all the volatiles were removed under reduced pressure. The
resulting residue was redissolved in 20 mL of THF and 10 mL of MeCN. Addition of Et,O (200 mL)
led to the precipitation of a brownish powder, which was collected by suction filtration and dried

under reduced pressure to give 1.31 g (0.490 mmol, 98.0%) of Se-6HNEt; as an off-white powder.

5e-6HNEt;: 'H NMR & 8.56 (br, 6H, NH), 6.38 (s, 24H, ArH), 442 (d, J = 13.1 Hz, 12H,
ArCH,Ar), 3.10 (d, J = 13.1 Hz, 12H, ArCH,Ar), 2.79 (q, J = 7.2 Hz, 36H, NCH,), 2.25 (q, J = 7.4
Hz, 12H, CH,S), 1.93 (t, J = 7.8 Hz, 6H, SH), 1.37 (quin, J = 7.8 Hz, 12H, CH,CH,S), 0.91 (t, J =
7.2 Hz, 54H, CHs), 0.36 (t, J = 8.3 Hz, 12H, SiCH,); 13C NMR & 148.48 (C), 128.48 (C), 110.08
(CH), 45.66 (NCH,), 35.62 (ArCH,Ar), 29.34 (CH,S), 27.57 (CH,CH,S), 16.55 (SiCH,), 8.46
(CH3); 2Si NMR 6 -76.39 (HS(CH,);SiO4); HRMS (ESI-, MeOH) m/z caled for Co6H54N4024S6Sis
[M+4HNEt;]> 1233.39464, found 1233.39472.
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1.15. Synthesis of 5a-6Na

CTC (3), NaOH

PhSi(OMe);
1a

DMF-MeCN, 100 °C

Cyclotricatechylene (CTC) (3) (2.00 mmol, 0.733 g), PhSi(OMe); (3.30 mmol, 0.654 g, 0.616 mL),
and NaOH (3.10 mmol, 0.124 g) were dissolved in 20 mL of DMF and 10 mL of MeCN. The
reaction mixture was stirred and heated at 100 °C overnight under a nitrogen atmosphere. After
cooling to room temperature, all the volatiles were removed under reduced pressure. The resulting
crude product was dissolved in 5 mL of MeOH. After addition of 100 mL of benzene, the mixture
was left standing for 1 h until a small amount of black precipitate was formed and filtered off. The
solvent was removed under reduced pressure and the residue was redissolved in 10 mL of THF.
Addition of Et,0 (100 mL) led to the precipitation of a white powder, which was collected by
suction filtration and dried under reduced pressure to give 0.948 g (0.429 mmol, 85.8%) of S5a-6Na

as an off-white powder.

5a-6Na: '"H NMR 67.38 (d, J = 6.6 Hz, 12H, 0-CH), 7.14-7.07 (m, 18H, p-CH and m-CH), 6.51 (s,
24H, ArH), 4.45 (d,J = 13.1 Hz, 12H, ArCH,Ar), 3.11 (d, J = 13.1 Hz, 12H, ArCH,Ar); 13C NMR &
148.23 (C), 141.87 (ipso-C), 133.62 (0-CH), 128.87 (C), 127.65 (p-CH), 126.74 (m-CH), 110.76
(CH), 35.74 (ArCH,Ar); °Si NMR & -87.17 (PhSiO,); HRMS (ESI-, MeOH) m/z calcd for
C124HosNay025Sis [M+4Na+4MeOH]* 1145.20690, found 1145.20624.

1.16. Synthesis of 5¢-6Na

CTC (3), NaOH

MeSi(OMe);
DMF-MeCN, 100 °C
1c

Cyclotricatechylene (CTC) (3) (2.00 mmol, 0.733 g), MeSi(OMe); (3.30 mmol, 0.450 g, 0.471
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mL), and NaOH (3.10 mmol, 0.124 g) were dissolved in 20 mL of DMF and 10 mL of MeCN. The
reaction mixture was stirred and heated at 100 °C overnight under a nitrogen atmosphere. After
cooling to room temperature, all the volatiles were removed under reduced pressure. The resulting
crude product was dissolved in 20 mL of MeOH and 20 mL of THF. After addition of 100 mL of
benzene, the mixture was left standing for 30 min until a small amount of black precipitate was
formed and filtered off. The solvent was removed under reduced pressure and the residue was
redissolved in 10 mL of MeOH. Addition of Et;0O (200 mL) led to the precipitation of a white
powder, which was collected by suction filtration and dried under reduced pressure to give 0.897 g

(0.488 mmol, 97.6%) of 5a-6Na as an off-white powder.

5c-6Na: TH NMR & 6.41 (s, 24H, ArH), 4.45 (d, J = 13.1 Hz, 12H, ArCH,Ar), 3.09 (d, J = 13.1 Hz,
12H, ArCH,Ar), -0.25 (SiCHs); 13C NMR § 147.97 (C), 128.62 (C), 110.72 (CH), 35.82 (ArCH,Ar),
-0.16 (SiCH3); 2°Si NMR § -75.16 (MeSiO,4); HRMS (ESI-, MeOH) m/z calcd for Co4Hg,NayOo5Sis
[M+4Na+4MeOH]? 959.15995, found 959.16131.

1.17. Synthesis of 5f-6Na

== T 6-
MeoN(HoC)a s(?’o \o. _(CHp)3NMe,
CTC (3), NaOH ! Q %o
MezN(CH2)3Si(OMe)3 - 6Na*
DMF-MeCN, 100 °C
1f
(CH2)3NMe,
5f-6Na

Cyclotricatechylene (CTC) (3) (2.00 mmol, 0.733 g), Me,N(CH,);Si(OMe); (3.30 mmol, 0.684 g,
0.722 mL), and NaOH (3.10 mmol, 0.124 g) were dissolved in 20 mL of DMF and 10 mL of MeCN.
The reaction mixture was stirred and heated at 100 °C overnight under a nitrogen atmosphere. After
cooling to room temperature, small amount of precipitate was formed and removed by filtration. All
the volatiles were then removed under reduced pressure from filtrate. The resulting crude product
was dissolved in 15 mL of MeOH and 5 mL of MeCN. Addition of Et;0O (400 mL) led to the
precipitation of a pink white powder, which was collected by suction filtration and dried under

reduced pressure to give 1.04 g (0.459 mmol, 91.8%) of 5f-6Na as a pink white powder.
5f-6Na: 'H NMR 8 6.42 (s, 24H, ArH), 4.44 (d, J = 13.1 Hz, 12H, ArCH,Ar), 3.09 (d, /= 13.1 Hz,
12H, ArCH,Ar), 1.98 (s, 36H, NCH3), 1.94 (t, J = 7.5 Hz, 12H, CH,N), 1.21 (quin, J= 7.8 Hz, 12H,

SiCH,CH,CH,N), 0.25 (t, J = 8.3 Hz, 12H, SiCH,); 3C NMR & 148.31 (C), 128.63 (C), 110.70
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(CH), 63.25 (CH,N), 45.41 (NCH3), 36.00 (ArCH,Ar), 22.28 (SiCH,CH,CH,N), 14.79 (SiCH,); 2°Si
NMR 6 -75.66 (Me;N(CH,;);S104). MS spectrum of 5f-6Na was not detectable due to degradation of

its ionic species in mass spectrometer.

1.18. Cation exchange of 5a-6HNEt;

ammonium or pyridinium salt

dry MeOH

ammonium or pyridinium salt =
Me4NCl, Et4NCI, MePyl, n-BuPyCI

5a-6HNEt,

M* = Me,N*, Et;N*, MePy*, n-BuPy*

1.18.1. Cation exchange of 5a-6HNEt; with Me,NCI

Compound 5a-6HNEt; (0.100 mmol, 269 mg) was dissolved in 130 mL of dry MeOH in 200 mL
flask. Then, MesNCI (1.20 mmol, 132 mg) was placed in a 25 mL volumetric flask and diluted with
dry MeOH to a total volume of 25 mL, thus yielding a 48 mM Mey,NCIl solution. The MesNCl
solution was added dropwise to the solution of Sa-6HNEt; over 25 min. The precipitate was
collected by suction filtration and dried to give 177 mg (70.3 pmol, 70.3%) of 5a-6Me,N as a brown

powder.

5a-6MeyN: 'HNMR 6 7.36 (d, J = 6.6 Hz, 12H, 0-CH), 7.13-7.04 (m, 18H, p-CH and m-CH), 6.51
(s, 24H, ArH), 4.43 (d, /= 13.1 Hz, 12H, ArCH,Ar), 3.11 (d, J = 13.1 Hz, 12H, ArCH,Ar), 2.77 (brs,
72H, NCH3); 3C NMR 8 148.64 (C), 142.29 (ipso-C), 133.64 (0-CH), 128.85 (C), 127.45 (p-CH),
126.67 (m-CH), 110.38 (CH), 54.34 (NCHj;), 35.49 (ArCH,Ar); Si NMR & -86.83 (PhSiO,);
HRMS (ESI-, MeOH) m/z caled for Ci3¢H;26N4024Sis [M+4Me,N]?- 1183.36888, found 1183.37118.

1.18.2. Cation exchange of 5a-6HNEt; with Et,NCI

Compound 5a-6HNEt; (0.100 mmol, 269 mg) was dissolved in 120 mL of dry MeOH in 200 mL
flask. Then, Et;NCI (1.20 mmol, 199 mg) was placed in a 25 mL volumetric flask and diluted with
dry MeOH to a total volume of 25 mL, thus yielding a 48 mM Et,NCI solution. The Et;NCI solution
was added dropwise to the solution of 5a-6HNEt; over 10 min. The precipitate was collected by
suction filtration and dried to give 171 mg (59.9 umol, 59.9%) of 5a-6Et4N as a brown powder.
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5a-6Et;N: 'TH NMR § 7.35 (d, J = 6.5 Hz, 12H, 0-CH), 7.13-7.05 (m, 18H, p-CH and m-CH), 6.48
(s, 24H, ArH), 4.43 (d, J = 13.0 Hz, 12H, ArCH,Ar), 3.11 (d, /= 13.0 Hz, 12H, ArCH,Ar), 2.92 (br,
36H, NCH,), 0.90 (br, 54H, CH3); 3C NMR & 148.28 (C), 142.28 (ipso-C), 133.68 (0-CH), 128.83
(C), 127.38 (p-CH), 126.58 (m-CH), 110.25 (CH), 51.30 (NCH,), 35.53 (ArCH,Ar), 6.77 (CH3); 2°Si
NMR § -86.76 (PhSiO,); HRMS (ESI-, MeOH) m/z calcd for C;s5,H;sgN;O4Sis [M+4EtyN]*>
1295.49408, found 1295.49291.

1.18.3. Cation exchange of 5a-6HNEt; with N-MePyl

Compound 5a-6HNEt; (0.100 mmol, 269 mg)) was dissolved in 120 mL of dry MeOH in 200 mL
flask. Then, N-MePyl (1.20 mmol, 265 mg) was placed in a 25 mL volumetric flask and diluted with
dry MeOH to a total volume of 25 mL, thus yielding a 48 mM N-MePyl solution. The N-MePyl
solution was added dropwise to the solution of Sa-6HNEt; over 10 min. The precipitate was
collected by suction filtration and dried to give 213 mg (80.8 pmol, 80.8%) of 5a-6MePy as a brown

powder.

5a-6MePy: '"H NMR § 8.63 (br, 12H, 2-CH), 8.59 (br, 6H, 4-CH), 7.81 (br, 12H, 3-CH), 7.44 (d, J
= 6.5 Hz, 12H, 0-CH), 7.17-7.09 (m, 18H, p-CH and m-CH), 6.73 (s, 24H, ArH), 4.50 (d, J = 13.1
Hz, 12H, ArCH,Ar), 4.02 (s, 18H, NCHj3), 3.20 (d, /= 13.1 Hz, 12H, ArCH,Ar); 13C NMR § 148.23
(C), 145.33 (4-CH), 144.97 (2-CH), 141.65 (ipso-C), 133.63 (0-CH), 129.34 (C), 127.64 (p-CH),
127.39 (3-CH), 126.77 (m-CH), 110.66 (CH), 48.01 (NCHj3), 35.46 (ArCH,Ar); 2°Si NMR § -86.26
(PhSi0,); HRMS (ESI-, MeOH) m/z calcd for Cj44H;10N4O24Sis [M+4MeNCsHs]> 1223.30628,
found 1223.30773.

1.18.4. Cation exchange of Sa-6HNEt; with N-BuPyCl

Compound 5a-6HNEt; (0.100 mmol, 269 mg) was dissolved in 120 mL of dry MeOH in 200 mL
flask. Then, N-BuPyCl (1.20 mmol, 206 mg) was placed in a 25 mL volumetric flask and diluted
with dry MeOH to a total volume of 25 mL, thus yielding a 48 mM N-BuPyCl solution. The N-
BuPyCl solution was added dropwise to the solution of 5a-6HNEt; over 45 min. The precipitate was
collected by suction filtration and dried to give 214 mg (74.1 umol, 74.1%) of 5a-6BuPy as a dark

brown powder.

5a-6BuPy: 'H NMR § 8.88 (br, 18H, 2-CH and 4-CH), 8.00 (br, 12H, 3-CH), 7.47 (br, 12H, 0-CH),
7.14 (br, 18H, p-CH and m-CH), 6.77 (br, 24H, ArH), 4.50 (br, 12H, ArCH,Ar), 4.36 (br, 10H,
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NCH,), 3.23 (br, 12H, ArCH,Ar), 1.49 (br, 10H, NCH,CH,), 0.51 (br, 25H, NCH,CH,CH,CHj), -
0.40 (br, 2H, NCH,"), -1.58 (br, 2H, NCH,CH,"), -2.12 (br, 2H, NCH,CH,CH,CH5"), -2.25 (br, 3H,
NCH,CH,CH,CH,’); 3C NMR & 148.05 (C), 145.88 (4-CH), 144.23 (2-CH), 141.50 (ipso-C),
133.77 (0-CH), 129.46 (C), 128.11 (3-CH), 127.71 (p-CH), 126.81 (m-CH), 110.80 (CH), 60.76
(NCH,), 3552 (ArCHAr), 3272 (NCH,CH,), 17.94 (NCH,CH,CH,CH;), 12.89
NCH,CH,CH,CHj); 2°Si NMR 8 -86.17 (br, PhSiOs); HRMS (ESI-, MeOH) m/z caled for
C156H134N4024Sis [M+4BuNC;sHs]> 1307.40018, found 1307.39803.

2. Structural assignment and spectral data

2.1. Structual assignment and spectral data for 4a,b-4HNR;-n(2)-m(anthracene)-1(THF) (HNR; =
HNEt;, HNEt,Bn, HNMe,Bn, HNMe,Bu, TMEDAH (HNMe,CH,CH,NMe,); n=0,2; m=0, 2; 1=
1,2,4)

The 'H and '3C NMR spectra of 4a showed a 1:1 ratio of the 9,10-dimethyl-9,10-¢thano-9,10-
dihydroanthracene and silyl phenyl unit excluding the peaks driving from the HNEt;* counter ions,
complexed 2, and THF (Figure S1 and S2). 2°Si NMR showed a peak at -86.9 ppm, which is
characteristic of an aryl-substituted penta-coordinated anionic silane biscatecholate (Figure S3). On
the basis of the integrals of the peaks in the '"H NMR spectra of Figure S1, a 1:4:2:4 molar ratio of 4a,
HNEt;*, 2, and THF was observed that remained invariant throughout the experimental
procedureand can be attributed to the molecular complex 4a-4HNEt;-2(2)-4THF. The formation of
4a-4HNEt;-2(2)-4THF was also confirmed by ESI-mass spectroscopy (Figure S4). A negative ion
peak of the molecular complex was found at m/z 1147.8, which corresponds to
[M+HNEt;+H+2(2)]*. Pure 4a-4HNEt; was obtained after redissolving the product in DMSO/DMF
followed by precipitation with CH,Cl,/Et,O to remove compound 2.

The 'H, 3C, and DEPT135 NMR spectra of pure 4a consisted of the 9,10-dimethyl-9,10-ethano-
9,10-dihydroanthracene and silyl phenyl unit in a 1:1 ratio without compound 2 (Figure S5, S6 and
S7), while 2°Si NMR showed the same value as that of the molecular complex (Figure S8). The
formation of 4a-4HNEt; was also confirmed by ESI-mass spectroscopy. The negative ion spectrum
showed apparent molecular ions that were consistent with [M+HNEt;+H]* at m/z 849.8 (where M is
the tetraanion core) (Figure S9). All NMR and ESI-mass spectroscopic data were supported the

formation of the cyclic tetramer of silane catecholate 4a-4HNEts;.
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Figure S1. 'H NMR spectrum of 4a-4HNEt;-2(2)-4THF (600 MHz, DMSO-dj).
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Figure S2. 13C NMR spectrum of 4a-4HNEt;-2(2)-4THF (150 MHz, DMSO-dp).
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Figure S3. 2°Si NMR spectrum of 4a-4HNEt;-2(2)-4THF (120 MHz, DMSO-dj).
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Figure S4. ESI-MS spectrum of 4a-4HNEt;-2(2)-4THF (MeOH).
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Figure S5. 'TH NMR spectrum of 4a-4HNEt; (600 MHz, DMSO-dj).

Figure S6. 13C NMR spectrum of 4a-4HNEt; (150 MHz, DMSO-dg).
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Figure S7. 13C and DEPT135 NMR spectra of 4a-4HNEt; (150 MHz, DMSO-d).

8/ ppm

Figure S8. 2°Si NMR spectrum of 4a-4HNEt; (120 MHz, DMSO-d).
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Figure S9. ESI-MS spectrum of 4a-4HNEt; (MeOH).

The replacement of triethylamine with diethylbenzylamine, dimethylbenzylamine,
dimethylbutylamine, and tetramethylethylenediamine (TMEDA) resulted in macrocycle formation,
ie., 4a-4HNEt,Bn-2(2)-4THF, 4a-4HNMe,Bn-2THF, 4a-4HNMe,Bu-2THF, and
4a-4HTMEDA -2THF. These macrocycles with different ammonium cations were fully characterized
by 'H, 13C, and ?°Si NMR as well as ESI-mass spectroscopy (Figure S10-S25).

With regard to molecular complex 4a with reactant 2, it is noteworthy that the addition of
anthracene to the reaction of la and 2 with Et;N produced a macrocycle complex including
anthracene, i.e., 4a-4HNEt;-2(2)-2anthracene- THF (Figure S26-S29). Hence, it can be assumed that

reactant 2 and anthracene may act as template for macrocycle formation.
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Figure S10. 'TH NMR spectrum of 4a-4HNEt,Bn-2(2)-4THF (600 MHz, DMSO-d).
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Figure S11. 13C NMR spectrum of 4a-4HNEt,Bn-2(2)-4THF (150 MHz, DMSO-dg).
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Figure S12. 2°Si NMR spectrum of 4a-4HNEt,Bn-2(2)-4THF (120 MHz, DMSO-dy).
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Figure S13. ESI-MS spectrum of 4a-4HNEt,Bn-2(2)-4THF (MeOH).
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Figure S14. '"H NMR spectrum of 4a-4HNMe,Bn-2THF (600 MHz, DMSO-d).

l‘ . Y e sl

180 160 140 120 100 80 60 40
5/ ppm

Figure S15. 3C NMR spectrum of 4a-4HNMe,Bn-2THF (150 MHz, DMSO-d).
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Figure S16. 2°Si NMR spectrum of 4a-4HNMe,Bn-2THF (120 MHz, DMSO-d).
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Figure S17. ESI-MS spectrum of 4a-4HNMe,Bn-2THF (MeOH).
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Figure S18. '"H NMR spectrum of 4a-4HNMe,Bu-2THF (600 MHz, DMSO-d).

Figure S19. 3C NMR spectrum of 4a-4HNMe,Bu-2THF (150 MHz, DMSO-d).
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Figure S20. 2°Si NMR spectrum of 4a-4HNMe,Bu-2THF (120 MHz, DMSO-d).
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Figure S21. ESI-MS spectrum of 4a-4HNMe,Bu-2THF (MeOH).
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Figure S22. '"H NMR spectrum of 4a-4TMEDAH-2THF (600 MHz, DMSO-d).

Figure S23. 3C NMR spectrum of 4a-4TMEDAH-2THF (150 MHz, DMSO-d).
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Figure S24. 2°Si NMR spectrum of 4a-4TMEDAH-2THF (120 MHz, DMSO-d).
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Figure S25. ESI-MS spectrum of 4a-4TMEDAH-2THF (MeOH).
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Figure S26. 'TH NMR spectrum of 4a-4HNEt;-2(2)-anthracene-4THF (600 MHz, DMSO-d).

Figure S27. 3C NMR spectrum of 4a-4HNEt;-2(2)-anthracene-4THF (150 MHz, DMSO-dp).
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Figure S28. 2°Si NMR spectrum of 4a-4HNEt;-2(2)-anthracene-4THF (120 MHz, DMSO-dj).
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Figure S29. ESI-MS spectrum of 4a-4HNEt;-2(2)-anthracene-4THF (MeOH).

The replacement of p-tolylSi(OMe); with PhSi(OMe); resulted in the formation of a macrocycle
possessing a p-tolyl group, i.e., 4b-4HNEt;-2(2)-2THF (Figure S30-S33).
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Figure S30. '"H NMR spectrum of 4b-4HNEt;-2THF (600 MHz, DMSO-d).
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Figure S31. 3C NMR spectrum of 4b-4HNEt;-2THF (150 MHz, DMSO-dj).
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Figure S32. 2°Si NMR spectrum of 4b-4HNEt;-2THF (120 MHz, DMSO-dg).
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Figure S33. ESI-MS spectrum of 4b-4HNEt;-2THF (MeOH).

2.2. Structual assignment and spectral data of Sa-f and 6a

" oo

The 'H, 3C, and DEPT135 NMR spectra of both 5a and 6a showed a 2:3:3 molar ratio of
cyclotricatechylene (CTC), silyl phenyl and HNEt;* counter ion (Figure S34, S35, S36, S39, and
S40). The ?°Si NMR spectra of 5a and 6a showed peak at -86.94 ppm and -86.34, -86.85 ppm,

respectively, corresponding to a penta-coordinated anionic silane biscatecholate (Figure S37 and

S41). The ESI mass spectra of 5a and 6a also showed molecular ions that were consistent with
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[M+4HNEt;]> at m/z 1239.4 for 5a (M = hexaanion core) and [M+7HNEt;]> at m/z 1859.6 for 6a
(M = nonaanion core) (Figure S38 and S42).

The spectral results of 5a indicated a tetrameric tetrahedral cage structure of this silane catecholate
compound, where the CTC units are situated at the vertices of the tetrahedron with the silane
catecholate bridging them along each tetrahedral edge.

The spectral data obtained for 6a also confirmed a hexameric prismatic cage structure, which is
concaved inward placing three phenyl groups inside a nanocage. Upon a closer inspection of the 'H
NMR spectrum of 6a (Figure S39), six sets of phenyl protons could be seen at almost the same
chemical shift as those of 5a (Figure S34) at 7.36 ppm (0-CH) and 7.14-7.07 ppm (m-, p-CH). The
remaining three sets of phenyl protons were shifted to higher fields, i.e., at 7.22 ppm (0-CH”), 6.63
ppm (m-CH’), and 6.38 ppm (p-CH’) owing to the three phenyl groups located inside of

magnetically anisotropic nanocage accounting for the eighteen aromatic rings of CTC.
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Figure S34. '"H NMR spectrum of 5a-6HNEt; (600 MHz, DMSO-dj).
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Figure S35. 3C NMR spectrum of 5a-6HNEt; (150 MHz, DMSO-dj).
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Figure S36. 13C and DEPT135 NMR spectra of 5a-6HNEt; (150 MHz, DMSO-dg).
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Figure S37. 2°Si NMR spectrum of 5a-6HNEt; (120 MHz, DMSO-dy).
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Figure S38. ESI-MS spectrum of 5a-6HNEt; (MeOH).
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Figure S39. 'H NMR spectrum of 6a-9HNEt; (600 MHz, DMSO-dy).
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Figure S40. 3C NMR spectrum of 6a-9HNEt; (150 MHz, DMSO-dy).
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Figure S41. 2°Si NMR spectrum of 6a-9HNEt; (120 MHz, DMSO-dy).
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Figure S42. ESI-MS spectrum of 6a-9HNEt; (MeOH).

The replacement of the phenyl group in RSi(OMe); with p-tolyl, methyl, vinyl, and (CH,);SH
resulted in the formation of tetrahedral nanocages, i.e., 5b-6HNEt;, 5¢-6HNEt;, 5d-6HNEt;, and
5e-6HNEL;, respectively (Figure S43-S59). By using NaOH instead of Et;N, the ammonium cation
could also be replaced by Na* affording 5a-6Na and 5¢-6Na (Figure S60-S67).

The reaction of HNCONH(CH,);Si(OMe);, H,N(CH;)3Si(OMe);, and Me,N(CH,);Si(OMe); with
CTC and Et;N led to a complex mixture of intermediate oligomers, which was insoluble due to the
cation-anion interactions between (CH,);NHR,* and the silane catecholate anions, thus impeding the

further reaction progress. On the other hand, the reaction of Me,N(CH,);Si(OMe); with CTC and
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NaOH yielded tetrameric cage 5f-6Na (Figure S68-S70).
These anionic nanocages with different substituents at the silicon atoms were fully characterized

by 'H, 13C, and ?°Si NMR as well as ESI-mass spectroscopy.
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Figure S43. 'H NMR spectrum of 5b-6HNEt; (600 MHz, DMSO-dg).
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Figure S44. 3C NMR spectrum of 5b-6HNEt; (150 MHz, DMSO-dy).
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Figure S45. 2°Si NMR spectrum of 5b-6HNEt; (120 MHz, DMSO-d).
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Figure S46. ESI-MS spectrum of 5b-6HNEt; (MeOH).
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Figure S47. '"H NMR spectrum of 5¢:6HNEt; (600 MHz, DMSO-d).
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Figure S48. 3C NMR spectrum of 5¢:6HNEt; (150 MHz, DMSO-d).
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Figure S49. 2°Si NMR spectrum of 5¢:6HNEt; (120 MHz, DMSO-d).
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Figure S50. ESI-MS spectrum of 5¢-6HNEt; (MeOH).
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Figure S51. '"H NMR spectrum of 5d-6HNEt; (600 MHz, DMSO-dg).
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Figure S52. 3C NMR spectrum of 5d-6HNEt; (150 MHz, DMSO-dj).
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Figure S53. 13C and DEPT135 NMR spectra of 5d-6HNEt; (150 MHz, DMSO-dy).
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Figure S54. 2°Si NMR spectrum of 5d-6HNEt; (120 MHz, DMSO-d).
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Figure S55. ESI-MS spectrum of 5d-6HNEt; (MeOH).
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Figure S56. 'H NMR spectrum of 5e-:6HNEt; (400 MHz, DMSO-dj).
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Figure S57. 13C NMR spectrum of 5e-6HNEt; (150 MHz, DMSO-dp).
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Figure S58. 2°Si NMR spectrum of 5e:6HNEt; (120 MHz, DMSO-d).
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Figure S59. ESI-MS spectrum of 5e-6HNEt; (MeOH).
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Figure S60. 'H NMR spectrum of 5a-6Na (600 MHz, DMSO-d).
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Figure S61. 3C NMR spectrum of 5a-6Na (150 MHz, DMSO-d).

S49



-20 -40 -60 -80 -100 -120 -140
3/ppm

Figure S62. 2°Si NMR spectrum of 5a-6Na (120 MHz, DMSO-dj).

100 P4205476
1145.68796
1146.18508

80 -

20

7 114660599
70~ 74545748

&0 -
114520624

B0 520.39975 T 1912
1 384.02826

40

114568796

114763800

' 148

407 65687033 5 “

1146

20 4

10 4 l l
i 92890168
0 I ". BN ‘||“|| i h | ||Mhh L
500

— —1 "¢ e §
mfz

' QDhI]

Figure S63. ESI-MS spectrum of 5a-6Na (MeOH).
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Figure S65. 3C NMR spectrum of 5¢-6Na (150 MHz, DMSO-dg).
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Figure S64. '"H NMR spectrum of 5¢-6Na (600 MHz, DMSO-dg).
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Figure S66. 2°Si NMR spectrum of 5¢-6Na (120 MHz, DMSO-d).
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Figure S67. ESI-MS spectrum of 5¢-6Na (MeOH).
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Figure S68. 'H NMR spectrum of 5f-6Na (600 MHz, DMSO-dy).
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Figure S69. 13C NMR spectrum of 5f-6Na (150 MHz, DMSO-dy).
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Figure S70. 2°Si NMR spectrum of 5f-6Na (120 MHz, DMSO-d).

2.3. Structual assignment and spectral data of Sa-6R4N (R4yN = MeyN, Et;N, MePy and BuPy)

The cation exchange of 5a-6HNEt; with Mey,NCI, Et;NCI, MePyl and BuPyCl resulted in the
formation of 5a-6MeyN, 5a-6Et,N, Sa-6MePy and 5a-6BuPy respectively. These cation-exchanged
nanocages were fully characterized by 'H, 13C, and 2°Si NMR as well as ESI-mass spectroscopy

(Figure S71-S86).
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Figure S71. '"H NMR spectrum of 5a-6 MeyN (600 MHz, DMSO-dp).
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Figure S72. 3C NMR spectrum of 5a-6 MeyN (150 MHz, DMSO-dp).
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Figure S73. 2°Si NMR spectrum of 5a-6 MeyN (120 MHz, DMSO-d).
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Figure S74. ESI-MS spectrum of 5a-6MesN (MeOH).
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Figure S75. '"H NMR spectrum of 5a-6Et,N (600 MHz, DMSO-d).
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Figure S76. 3C NMR spectrum of 5a-6Et,N (150 MHz, DMSO-d).
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Figure S77. 2Si NMR spectrum of 5a-6Et;N (120 MHz, DMSO-dj).
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Figure S78. ESI-MS spectrum of 5a-6Et;N (McOH).
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Figure S79. 'TH NMR spectrum of 5a-6MePy (600 MHz, DMSO-dj).
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Figure S80. 3C NMR spectrum of 5a-6MePy (150 MHz, DMSO-dj).
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Figure S81. 2°Si NMR spectrum of 5a-6MePy (120 MHz, DMSO-dy).
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Figure S83. 'H NMR spectrum of 5a-6BuPy (600 MHz, DMSO-d).
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Figure S84. 3C NMR spectrum of 5a-6BuPy (150 MHz, DMSO-dy).
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Figure S85. 2°Si NMR spectrum of 5a-6BuPy (120 MHz, DMSO-dj).
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Figure S86. ESI-MS spectrum of 5a-6BuPy (MeOH).

3. Crystallographic data

Single crystals of 4a-4HNEt;-8MeOH, 5a-6Na-7THF-2DMF-2C¢Hg-23H,0, and 8@4a-14DMSO
-5H,0 suitable for X-ray diffraction analysis were mounted on a Rigaku VariMax with Saturn CCD
diffractometer equipped with a Mo-K, (graphite monochromated, A = 0.71073) radiation. Crystal
data and data statistics are summarized in Table S1. The structures were solved by direct methods
(SHELXS-97 ® and SIR 2004 ?) using WinGX v1.70.01 as interface.!® The non-hydrogen atoms
were refined anisotropically by the full-matrix least-square method (SHELXL-97).® Hydrogen
atoms were placed at calculated positions and kept fixed. In a subsequent refinement, the function
Sw (F?— F2.)*> was minimized, where |F,| and |F,| are the observed and calculated structure factor
amplitudes, respectively. The agreement indices are defined as R; = X (||F,|-|F¢||)/Z|F,| and wR, =
[T (F2— F2)%/Z(wF*,)]V2.

The crystallographic data reported in this manuscript have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication no. CCDC-1892127 for
4a-4HNEt;-8MeOH, 1892128 for 5a-6Na-7THF-2DMF-2C¢H¢'23H,0, and 1892129 for
8@4a-14DMSO-5H,0. Copies of these data can be obtained free of charge via the CCDC Website.
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Table SI.

Crystal

data and data

collection parameters

5a-6Na-7THF-2DMF-2C¢Hg-23H,0 and 8@4a-14DMSO-5H,0.

of 4a-4HNEt;-8MeOH,

4a-4HNEt;-8MeOH

5a-6Na-7THF-2DMF-

2C6H623H20

8@4a-14DMSO

Empirical formula
Formula weight
Temperature (K)
Wavelength (A)
Crystal system
Space group
a(A)

b (A)

c(A)

a (deg)

B (deg)

Y (deg)
Volume (A3%)
Z

Density
(g/em’)
Absorption
(mm)

F (000)
Crystal size (mm)

Crystal color and habit

Solvent system

Diffractometer

Theta range for Data

collection (deg)

Indexes

Reflections collected

Independent

(calculated)

coefficient

reflections

Ci2sH17:N40,4814

2263.06
120 (2)
0.71073
Monoclinic
C2

43.040 (48)
9.038 (9)
20.978 (22)
90.00
114.772 (14)
90.00

7409 (14)
2

1.014

0.099

2432

0.38x0.31x0.16
Colorless, Block

MeCN/MeOH, MeOH

vapor

Rigaku Mercury CCD

3.05 to 27.45

55 <h =55
8§=k=11
27 =125
21709

11432 (0.1466)

S63

Ci66H20sN2NagOs6Sis
3431.81
120 (2)
0.71073
Monoclinic
P21/c
19.998 (4)
34.746 (6)
24.908 (5)
90.00
101.563 (3)
90.00
16956 (5)
4

1.344

0.152

7256
0.18x0.16x0.12
Colorless, Prism

THF/Benzene

Rigaku Mercury CCD

3.05 to 27.45

25=<h=22
45 <k < 44
32=1=32

188131

38521 (0.1104)

CsoH101N2017557S1>
1651.23
120 (2)
0.71073
Monoclinic
P21/c
15.993 (7)
21.486 (9)
27.205 (11)
90.00
107.14 (2)
90.00

8934 (7)

4

1.228

0.266

3500
0.23x0.20%0.10
Black, Prism
DMSO

Rigaku
CCD
3.01 to 27.43

Mercury

20=h =20
27 =k =27
35<1=35

128180

20240 (0.1023)



(Rint)

Completeness to theta 93.6 % 99.4 % 99.3 %

(%)

Absorption correction None None None

Solution method SHELXS-97 SHELXS-97 SHELXS-97
(Sheldrick, 2008) (Sheldrick, 2008) (Sheldrick, 2008)

Refinement method Full-matrix Full-matrix Full-matrix
least-squares on F? least-squares on F? least-squares on F?
(SHELXS-97) (SHELXS-97) (SHELXS-97)

Data / restraints / 11432/31/698 38521/77/2608 20240/6/1106

parameters

Goodness of Fit Indicator 1.345 1.082 1.784

Final R indices R1 = 0.1748, wR2 = RI1 = 0.0964, wR2 = RI =0.1894, wR2 =

[[>2sigma(I)] 0.4365 0.2547 0.4934

R indices (all data) Rl = 0.2062, wR2 = RI1 = 0.1253, wR2 = R1=0.2191, wR2 =
0.4671 0.2819 0.5169

Largest diff peak and 1.069 and -0.473 0.733 and -0.622 0.995 and -0.876

hole (eA-3)

The X-ray crystal structure of 4a-4HNEt;-8MeOH showed an anionic macrocycle stack on top of
one another cemented by ammonium cations to produce a tubular aggregate structure. Pyridinium
cations were encapsulated inside the anionic macrocycle in 8@4a-14DMSO-5H,0, whereas the
windows of the tetrahedral cage were closed outside by Na(H,O)s" in

5a-6Na-7THF-2DMF-2C¢Hg 23H,0, based on X-ray crystallographic analysis.

4. MeCN-promoted DCC conditions for the formation of 4a, 5a and 6a

In order to simulate the formation of macrocycle 4a and nanocage 5a, oligomers were grown in a
stepwise fashion to generate key intermediates A-1-A-3 and B-1, B-2 as shown in Scheme S1 and S3.
Once intermediates A-1 and B-1 are formed, they can cyclize into 4a and 5a respectively.
Conformer A-1 leads to 4a, which can give rise to a tubular aggregate together with ammonium
cations and/or template molecules and precipitate from the reaction mixture as the main product. In
contrast, conformers A-2 and A-3 are assumed to lead to the formation of polymers. At this stage,
MeCN can promote the conformational conversion among A-1, A-2, and A-3 by accelerating the

bond exchange equilibrium and pseudo-rotation (Scheme S2).
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Similarly, conformer B-1 leads to the formation of nanocage Sa, while B-2 results in the formation
of 6a. Addition of MeCN as well as heating induces the conformational conversion between B-1 and
B-2, thus yielding Sa as the exclusive product. In particular, although the time course NMR
experiment of PhSi(OMe); (1a) and EAT (2) was unsuccessful due to the precipitation of 4a, that of
1a and CTC (3) provided data to support that the first equilibrium can be reached with MeCN (see
Figure S87-S90).
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Scheme S3
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FigureS87. '"H NMR spectra of the reaction mixture consisting of PhSi(OMe); (1a), triscatechol (3),

and NEt; without MeCN in DMF at 100 °C (600 MHz, DMSO-d).
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FigureS88. Time course of the reaction of PhSi(OMe); (1a), triscatechol (3) and NEt; without
MeCN in DMF at 100 °C.
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Figure S89. 'TH NMR spectra of the reaction mixture consisting of PhSi(OMe); (1a), triscatechol (3),
and NEt; with MeCN in DMF at 100 °C (600 MHz, DMSO-d).
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FigureS90. Time course of the reaction of PhSi(OMe); (1a), triscatechol (3) and NEt; with MeCN
in DMF at 100 °C.

In order to datermine the temperature and solvent effects on the yields of 5a and 6a, the following
reactions were performed.

Cyclotricatechylene (CTC) (3) (2.00 mmol, 0.733 g), PhSi(OMe); (3.30 mmol, 0.614 g, 0.616 mL)
and EtN (9.00 mmol, 0.911 g, 1.25 mL) were dissolved in a solvent (THF, THF/MeCN (3:1),
THF/MeCN/MeOH (3:1:1), DMF, and DMF/MeCN (2:1), and the mixture was heated at a
temperature lower than 100 °C. When THF, THF/MeCN (3:1), and THF/MeCN/MeOH (3:1:1) were
used as solvent, various oligomeric intermediates precipitated after several hours (Figure S91). In
contrast, when the reaction was conducted in DMF or DMF/MeCN (2:1), a homogeneous solution
was obtained. In these cases, the formation of 5a and 6a within the reaction mixture was monitored
by 'H NMR, as shown in Figure S92 and S93. The isolation of 5a and 6a was carried out as
described above (section 1.10), followed by removal of the solvent under reduced pressure. Table S2
shows the reaction conditions and isolated yields of 5a and 6a. Upon a closer inspection of Table S2,
it can be seen that the usage of MeCN and higher reaction temperatures increased the yield of 5a

compared to that of 6a.
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Figure S91. 'TH NMR spectra of the precipitates obtained from the reaction mixtures of PhSi(OMe);,
CTC, and Et;N in THF, THF/MeCN (3:1), and THF/MeCN/MeOH (3:1:1) under reflux (600 MHz,
DMSO-d).
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Figure S92. 'H NMR spectra of the reaction mixtures of PhSi(OMe);, CTC and Et;N in various
solvents and temperatures (600 MHz, DMSO-dj).
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Figure S93. 'H NMR spectra (6-9 ppm range)of the reaction mixtures of PhSi(OMe)s, CTC, and
Et;N in various solvents and at different temperatures (600 MHz, DMSO-dj).
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Table S2. Solvent and temperature-dependent synthesis of silane catecholate nanocage 5a and 6a.

solvent temp. (°C)  time?d

- 6HNEt;" - 9HNEt,*

5a -6HNEt;? 6a-9HNELt; ®

DMF 100 19h 59.4 36.3
DMEF/MeCN (2:1) 100 18 h 94.6 0.0
DMF/MeCN (2:1) 80 2 days 77.4 152
DMF/MeCN (2:1) 70 2 days 73.9 20.2
DMF/MeCN (2:1) 60 3 days 55.8 41.1

a) Reaction was performed until complete disappearance of the starting material and intermediates as determined

by 'H NMR analysis. b) Yields were calculated based on the starting CTC molecule.

5. TH NMR titrations
5.1. Titration of 5a-6HNEt; with NBu,Cl

Compound Sa-6HNEt; (8.06 mg, 3.00 umol) was dissolved in 6 mL of CD3;OD to afford a host
solution (3 mM based on HNEt;). NBuyCl (33.4 mg, 120 umol) was dissolved in 2 mL of CD;0D to
give a guest solution (60 mM). Next, 600 puL of host solution was added to a NMR tube by using a
microsyringe, and the corresponding 'H NMR spectrum was recorded. The host solution was titrated
by adding 5.00 pL incremental amounts (molar ratio) of the guest solution, as shown in Table S3.

Gradual changes in resonance were monitored as shown in Figure S94.
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Table S3. Added amounts (molar ratio) of NBuy-Cl to 5a-6HNEt; and chemical shift changes of
CTC, HNEt;*, and NBu,* (600 MHz, CD;0D).

HNEt; : NBuy cTC HN(CH,CH;)s* N(CH,CH,CH,CHj),*
ArH NCH, CHs NCH, CH, CH, CH;
NBuj-Cl 3.239 1.664 1.419 1.030
(SiPh)s(CTC), -
6.671 2.802 0.952
BHNEt,
6:1 6.664 2.860 1.005 3.136 1.544 1.284 0.827
6:2 6.657 2.901 1.042 3.145 1.554 1.287 0.847
6:3 6.651 2.933 1.072 3.154 1.562 1.290 0.867
6:4 6.648 2.957 1.092 3.162 1.572 1.295 0.890
6:5 6.645 2.978 1.110 3.170 1.580 1.307 0.905
6:6 6.643 2.996 1.124 3.178 1.593 1.333 0.928

(SiPh)g(CTC)4-6HNEt; (5a)

NBu,ClI
A
HNEt; : NBuy
6:1 ‘ il
6:2 L L h

=

6:3 JL
PPV )
PR

&/ ppm

Figure S94. 'H NMR titration of 5a-6HNEt; with NBuyCl; circles indicate HNEt;*, while rhomboids
stand for NBuy" (600 MHz, CD;0D).
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5.2. For the titration of 5a-6HNEt; with NEt,Cl

Compound Sa-6HNEt; (8.06 mg, 3.00 umol) was dissolved in 6 mL of CD3;0D to afford a host
solution (3 mM based on HNEt;3). NEt,Cl (19.9 mg, 120 pmol) was dissolved in 2 mL of CD;0D to
give a guest solution (60 mM). Next, 600 puL of host solution was added to a NMR tube by using a
microsyringe, and the corresponding '"H NMR spectrum was recorded. The host solution was titrated

by adding 5.00 pL incremental amounts (molar ratio) of the guest solution, as shown in Table S4.

Gradual changes in resonance were monitored as shown in Figure S95.

Table S4. Added amounts (molar ratio) of NEt4-Cl to Sa-6HNEt; and
chemical shift changes of CTC, HNEt;*, and NEt;* (600 MHz, CD;0D).

HNEt; : NEt, CTC HN(CH,CHs)s* N(CH,CHs),*
ArH NCH, CHj NCH, CH;s
NBu,-Cl 3.299 1.293
(SIPMS(CTC) 6.671 2.802 0.952

6HNEt,
6:1 6.673 2.939 1.063 2.581 0.773
6:2 6.672 3.005 1.120 2.745 0.877
6:3 6.672 3.043 1.157 2.859 0.953
6:4 6.671 3.077 1.186 2.947 1.015
6:5 6.670 3.093 1.203 3.002 1.054
6:6 6.670 3.108 1.219 3.048 1.088
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Figure S95. 'TH NMR titration of 5a-6HNEt; with NEt,Cl; circles indicate HNEt;*, while
rhomboids stand for NEt;* (600 MHz, CD;0D).

5.3. For the titration of 5a-6HNEt; with MePyl

Compound 5a-6HNEt; (26.9 mg, 10.0 umol) was dissolved in 2 mL of DMSO-d; to afford a host
solution (30 mM based on HNEt;). MePyI (33.2 mg, 150 pmol) was dissolved in 250 uL. of DMSO-
de to give a guest solution (600 mM). Next, 600 uL of host solution was added to a NMR tube by
using a microsyringe, and the corresponding 'H NMR spectrum was recorded. The host solution was
titrated by adding 5.00 pL incremental amounts (molar ratio) of the guest solution, as shown in

Table S5. Gradual changes in resonance were monitored as shown in Figure S96.
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Table S5. Added amounts (molar ratio) of MePy-I to 5a-6HNEt; and chemical
shift changes of CTC, HNEt;", and MePy* (600 MHz, DMSO-d).

HNEt3 . C5H5NMe CTC HN(ﬁgﬁg)\f CsHsNC_H§+
ArH NCH. CHs NCH3; NCH;@5a
CsHsNMe" 4340
(SiPh)s(CTC), -
6.492 2.733 0.939
6HNEt;
6:1 6.584 2.720 0.948 4.318 2.506

6:2 6.666 2.744 0.969 4.252 2.514
6:3 6.689 2.769 0.985 4.225 2.535
6:4 6.707 2.801 0.999 4.200 2.589
6:5 6.721 2.821 1.019 4.199 2.635
6:6 6.728 2.843 1.033 4.202 2.682

e ‘ o
1O = HNEt;* < = MePy™:
®=MePy'@5a |

(SiPh)g(CTC)4-6HNEt; (5a) ‘ o |

[ 2 'I\ | ‘
P S A0 AN N .‘: /-l A
HNEt; : CsHsNMe | =} 1
6:1 Al\ N\ﬂ[ AW
' i
6:2 t ) JJ ! \
AL e WL A
6:3 ] |
A_,J\ /\NJ\Q 1 (VY
6:4 I\LN
L} _/M{ " i Aufln
6:5 '\
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Figure S96. 'TH NMR titration of 5a-6HNEt; with MePyI; circles indicate HNEt;*, while rhomboids
stand for MePy™ (600 MHz, DMSO-d).

5.4. For the titration of 5a-6HNEt; with BuPyCl
Compound 5a-6HNEt; (26.9 mg, 10.0 umol) was dissolved in 2 mL of DMSO-d; to afford a host
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solution (30 mM based on HNEt;). BuPyClI (103 mg, 600 umol) was dissolved in 250 pL. of DMSO-
de to give a guest solution (600mM). Next, 600 pL. of host solution was added to a NMR tube by
using a microsyringe, and the corresponding 'H NMR spectrum was recorded. The host solution was
titrated by adding 5.00 pL incremental amounts (molar ratio) of the guest solution, as shown in

Table S6. Gradual changes in resonance were monitored as shown in Figure S97.

Table S6. Added amounts (molar ratio) of BuPy-Cl to Sa-6HNEt; and chemical shift changes of
CTC, HNEt;*, and BuPy* (600 MHz, DMSO-d).

HNEt; : PyBu CTC HN(CH,CH3)3* CsHsNCH,CH,CH,CH3*@5a
ArH NCH, CH; NCH, CH, CH, CHj
CsHsNBu-Cl 4.621 1.895 1.286 0.911
(SiPh)s(CTC)4
6HNER, 6.492 2.733 0.939
6:1 6.609 2.777 0.987 -0.389 -1.569 -2.125 -2.244
6:2 6.719 2.854 1.047 -0.388 -1.571 -2.113 -2.240
6:3 6.743 2.896 1.080 -0.388 -1.572 -2.113 -2.242
6:4 6.763 2.933 1.110 -0.388 -1.576 -2.117 -2.245
6:5 6.775 2.948 1.125 -0.389 -1.574 -2.122 -2.244
6:6 6.781 2.958 1.136 -0.398 -1.578 -2.124 -2.246

(SiPh)g(CTC), 6HNE; (5a)

CsHsNBu-Cl <l> PR Lo
L L

HNEt3 . CsHsNBU

4 __ ’ = R

Slppr?l
Figure S97. 'TH NMR titration of 5a-6HNELt; with BuPyCl; circles indicate HNEt;*, while rhomboids
stand for BuPy* (600 MHz, DMSO-d).
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5.5. For the titration of 4a-4TMEDAH with 7-2PF

Compound 4a-4TMEDAH (20.7 mg, 10.0 umol) was dissolved in 2 mL of DMSO-d; to afford a
host solution (20 mM based on TMEDAH). 7-2PF¢ (53.0 mg, 75.0 pmol) was dissolved in 250 pL of
DMSO-d; to give a guest solution (600 mM based on Pyridinium moiety). Next, 600 uL of host
solution was added to a NMR tube by using a microsyringe, and the corresponding 'H NMR
spectrum was recorded. The host solution was titrated by adding 10.0 pL incremental amounts
(molar ratio) of the guest solution, as shown in Table S7. Gradual changes in resonance were

monitored as shown in Figure S98.

Table S7. Added amounts (molar ratio) of 7-2PF4 to 4a-4TMEDAH and chemical shift
changes of 7>, and TMEDAH * (600 MHz, DMSO-d).

HN(CH3),CHz CeHa(CH2NCsH4CsHN),?*
4a:72 EAT
CH,N(CHs),*

ArH NCH, NCH; CH,N 3CH 2CH 2-CH 3-CH
7-2PF¢ 5866 9.320 8.628 7.992 8.859
(SiPh),(EAT), -
4TMEDAH
1:1(4:2) 6.421 2.733 2405 4116 7.785 7.467 8.079 8.915
1:2(4:4) 6.423 2.793 2450 4954 8.341 8.160 8.018 8.877
1:3(4:6) 6.422 2792 2449 5269 8.680 8322 8.005 8.867
1:4(4:8) 6.421 2793 2450 5429 8.839 8399 7.998 8.863

a) Molar ratio of 4a and 7. The values in parentheses represent the ratio of TMEDAH and pyridinium

6.410 2.586 2.296

moiety in the 7.
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Figure S98. 'H NMR titration of 4a-4TMEDAH with 7-2PFg; circles indicate TMEDAH®, while
rhomboids stand for 72" (600 MHz, DMSO-d).

5.6. For the titration of 4a-4TMEDAH with 8-4PF

Compound 4a-4TMEDAH (20.7 mg, 10.0 umol) was dissolved in 2 mL of DMSO-d; to afford a
host solution (20 mM based on TMEDAH). 8-4PF (33.0 mg, 30.0 pmol) was dissolved in 200 puL of
DMSO-d; to give a guest solution (600 mM based on Pyridinium moiety). Next, 600 uL of host
solution was added to a NMR tube by using a microsyringe, and the corresponding 'H NMR
spectrum was recorded. The host solution was titrated by adding 5.00 pL incremental amounts
(molar ratio) of the guest solution, as shown in Table S8. Gradual changes in resonance were

monitored as shown in Figure S99.
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Table S8. Added amounts (molar ratio) of 8-4PF to 4a-4TMEDAH and chemical shift changes
of 8", and TMEDAH * (600 MHz, DMSO-dg).

HN(CH3),CHy (CeHa)2(CHoNCsH4CsHaN) 4
4a:82 EAT
CHyN(CH3),*
ArH NCH, NCH3 CeHa4 CHyLN 3-CH 2-CH
8-4PF¢ 7.707 5.797 9.447 8.644
(SiPh),(EAT), -

6.410 2.586 2.296
4TMEDAH

1:025(4:1) 6.445 2.71 2.390 6.845 5.989 8.634 7.584
1:050(4:2) 6.446 2.788 2.447 6.936 5.848 8.459 7.427
1:075(4:3) 6.536 2.788 2.447 6.998 5.785 8.442 7.383
1:1.00(4:4) 6.623 2.788 2.447 7.042 5.757 8.426 7.404
1:125(4:5) 6.695 2.788 2.446 7.068 5.747 8.418 7.449
1:150(4:6) 6.736 2.788 2.447 7.094 5.747 8.415 7.478

a) Molar ratio of 4a and 8. The values in parentheses represent the ratio of TMEDAH and pyridinium

moiety in the 8.
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igure S99. 'TH NMR titration of 4a-4TMEDAH with 8-4PFg; circles indicate TMEDAH®, while
rhomboids stand for 8*" (600 MHz, DMSO-d).
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5.7. For the titration of 5a-6HNEt; with 7-2PF4

Compound 5a-6HNEt; (13.4 mg, 5.00 umol) was dissolved in 1 mL of DMSO-d; to afford a host
solution (30 mM based on HNEt;). 7-2PF¢ (53.0 mg, 75.0 umol) was dissolved in 250 puL of DMSO-
de to give a guest solution (600 mM based on Pyridinium moiety). Next, 600 uL of host solution was
added to a NMR tube by using a microsyringe, and the corresponding '"H NMR spectrum was
recorded. The host solution was titrated by adding 10.0 puL incremental amount (molar ratio) of the
guest solution, as shown in Table S9. Gradual changes in resonance were monitored as shown in

Figure S100.

Table S9. Added amounts (molar ratio) of 7-2PF to 5a-6HNEt; and chemical shift changes of
7%*, and HNEt;* (400 MHz, DMSO-dp).
5a:72 CTC HN(CH,CHs)s* CeHa(CHoNCsH,CsH4N)2>*

ArH NCH, CH;s CHyN 3-CH 2-CH 2-CH 3’-CH

7-2PFs 5868 9.322 8.628 7.993 8.859
(SiPh)s(CTC)s
6.482 2.765 0.940
- 6HNEt;
1:1(6:2) 6.468 2.905 1.034 -—-- 9.038 7.868 7.355 8.002

1:2(6:4) 6.465 2964 1.076 5238 8.925 7903 7.360 8.247
1:3(6:6) 6.463 2989 1.097 5551 8.883 7920 7.356 8.375

a) Molar ratio of 5a and 7. The values in parentheses represent the ratio of HNEt; and pyridinium

moiety in the 7.
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5.8. For the titration of 5a-6HNEt; with 8-4PF4

Compound 5a-6HNEt; (13.4 mg, 5.00 umol) was dissolved in 1 mL of DMSO-d; to afford a host
solution (30 mM based on HNEt;). 8-4PF¢ (33.0 mg, 30.0 umol) was dissolved in 200 pL of DMSO-
ds. 20 L of this solution was diluted with 80 uL. of DMSO-d; to give a guest solution (120 mM
based on Pyridinium moiety). Next, 120 pL of host solution and 480 pL of DMSO-d was added to a
NMR tube by using a microsyringe, and the corresponding '"H NMR spectrum was recorded (6 mM
of host solution based on HNEt;). The host solution was titrated by adding 10.0 pL incremental
amounts (molar ratio) of the guest solution, as shown in Table S10. Gradual changes in resonance

were monitored as shown in Figure S101.
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Table S10. Added amounts (molar ratio) of 8-4PF¢ to 5a-6HNEt; and chemical shift changes of
8+ and HNEt;* (600 MHz, DMSO-dj).

5a:82 CTC HN(CH,CHs)s* (CeHa)2(CHoNCsH4CsH4N)o**
ArH NCH, CHs; CeHas CH3;N 3-CH 2-CH
8-4PF; 7.707 5.797 9.448 8.645
(SiPh)e(CTC)s

6.474 2775 0.947
- 6HNEt;

1:05(6:2) 6.513 2.846 1.009 7.492 5.841 9.030 8.243
1:1.0(6:4) 6.599 2.874 1.045 7.502 5.842 9.031 8.240
1:1.5(6:6) 6.743 2.895 1.068 7.509 5.847 9.048 8.242

a) Molar ratio of 5a and 8. The values in parentheses represent the ratio of HNEt; and pyridinium

moiety in the 8.
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Figure S101. "H NMR titration of 5a-6HNEt; with 8-4PF; circles indicate HNEt;*, while rhomboids
stand for 8*" (600 MHz, DMSO-d).

6. Attempts to achieve gas-adsorption within 4a-4HNEt;, Sa-6Na, and 5a-1.5(8)
Based on the X-ray analysis of Sa-6HNEt;, four significant electrom density peaks were observed

inside the cage, which were tentatively assigned to four HNEt; cations (Figure S102 (left)). The ESI-
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MS spectrum of 5a-6HNEt; also exhibited a molecular ion that was consistent with [M+4HNEt;]* at
m/z 1239.4 (Figure S102 (right)). Therefore, the N, gas adsorption-desorption analysis of
5a-6HNEt; resulted in no porosity (Figure S103).

In the case of the X-ray analysis of 5a-6Na, five or six water molecules were associated with each
Na* (Figure S104 (left)). Since 6Na(H,0)," (n = 5,6) is too large to enter the window of the
tetrahedral cage, six Na(H,0)," were located outside the negatively charged silicon centers to create
an empty cavity. The ESI-MS spectrum of 5a-6Na showed a molecular ion corresponding to
[M+4Na+4MeOH]* at m/z 1145.2 (Figure S104 (right)). Unfortunately, N, gas adsorption-
desorption was not observed (Figure S105).

Finally, owing to of the poor solubility and crystallinity of 5a-1.5(8) for X-ray analysis purposes,
the molecular structure of 5a-1.5(8) was not disclosed. However, since the 'H NMR titration
experiment showed no inclusion of 8 into Sa leading to the generation of an empty cavity, N, gas
adsorption-desorption analysis was also conducted. As a result, 5a-1.5(8) did not show any porosity
(Figure S106) in analogy to Sa-6Na most likely due to a tight interaction between the cage anions
and counter cations, as shown by NMR titration results. In addition, the disordered arrangement of

5a-1.5(8) could disconnect the path of N, gas dispersion into the material.

" [M+4HNEt;]>
m/z 1239.4

-

m:

121735875

1 ey JL iraial | OO

‘ 12'20 N ) 1240 1280

Figure S102. X-ray molecular structure (left) and ESI-MS spectrum (right) of 5a-6HNEt;. See also
Figure S38 for the full range ESI-MS spectrum of 5a-6HNEt;.
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Figure S103. N, gas adsorption of Sa-6HNEt;.
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Figure S104. X-ray molecular structure (left) and ESI-MS spectrum (right) of 5a-6Na. See also

Figure S63 for the full range ESI-MS spectrum of 5a-6Na.
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Figure S106. N, gas adsorption of 5a-1.5(8)
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