Supporting Information

Contents

2
2
2
3
4
8
9

1. General comments

Chemicals were purchased from Sigma-Aldrich, Strem, Acros, TCI or Alfa Aesar and used as such unless stated otherwise. NMR spectra were recorded on Bruker Avance 300 and Bruker ARX 400 spectrometers. All solvents and reagents were purchased from Sigma-Aldrich and used as received. Chemical shifts (ppm) are given relative to solvent: references for CDCl₃ were 7.26 ppm (¹H NMR) and 77.00 ppm (¹³C NMR). Multiplets were assigned as s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), dd (doublet of doublet), m (multiplet) and br.s (broad singlet). GC-yields were calculated using hexadecane as internal standard. All measurements were carried out at room temperature unless otherwise stated. Electron impact (EI) mass spectra were recorded on AMD 402 mass spectrometer (70 eV). High resolution mass spectra (HRMS) were recorded on Agilent 6210. The data are given as mass units per charge (m/z). Gas chromatography analysis was performed on an Agilent HP-7890A instrument with a FID detector and HP-5 capillary column (polydimethylsiloxane with 5% phenyl groups, 30 m, 0.32 mm i.d. 0.25 µm film thickness) using argon as carrier gas. The products were isolated from the reaction mixture by column chromatography on silica gel 60, 0.063-0.2 mm, 70-230 mesh (Merck).

2. General procedures

2.1 General procedures for the synthesis of start materials.^[1]

Step 1

To a 100 mL three-necked flask was charged with CuI (0.15 equiv), the flask was evacuated and backfilled with nitrogen (3 times). Dry THF (0.5 M) and the acid chloride (1.0 equiv) was added. The solution was cooled to – 78 °C and grignard reagent (1.2 equiv) was added dropwise. Then the mixture was warmed to room temperature for 6 h. The reaction was quenched with an aqueous solution of saturated NH₄Cl. The layers were separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried (Na₂SO₄). Then the solution was filtered, concentrated to give the crude ketones, which were used in the next step without further purification.

Step 2

A mixture of ketone (1.0 equiv), hydroxylamine hydrochloride (1.2 equiv) and pyridine (2.0 equiv) were dissolved in MeOH (0.5 M). The mixture stirred at room temperature for 3 h. Then MeOH was removed by concentration, the residue was diluted with 1M HCl aqueous solution and ethyl acetate. The layers were separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with saturated NaHCO₃ solution, brine, dried (Na₂SO₄), and concentrated to give the crude ketone oximes, which were used in the next step without further purification.

To a mixture of ketone oxime (1.0 equiv), triethylamine (2.0 equiv) and DCM (0.5 M) in a 100 mL three-necked flask was added benzoyl chloride (1.2 equiv) at 0 °C. After addition, the reaction mixture was stirred at same temperature for half hours. The reaction was quenched with an aqueous solution of saturated NaHCO₃. The

layers were separated and the aqueous layer was extracted with DCM. The combined organic layers were washed with brine, dried (Na_2SO_4). Then the solution was filtered, concentrated to give the crude oxime esters. Purification by column chromatography on silica gel (Pentane/ethyl acetate 10:1), gave the corresponding products.

2.2 General procedure for the cabonylation of tertiary carbon radicals

To each screw-cap vial (4 ml) equipped with a septum, a small cannula, and a stirring bar was added oxime esters (0.20 mmol), $Fe(acac)_3$ (7.0 mg, 0.02 mmol) and CH_3CN (3 mL). The vials then were purged with argon three times before placed on an alloy plate and transferred into a 300 mL autoclave of the 4560 series from Parr instruments under air. After flushing the autoclave three times with CO, a pressure of 40 bar CO was set and the reaction was performed for 16 hours at 100 °C. Afterwards, the autoclave was cooled to room temperature and the pressure was released carefully. The solvent was removed under reduced pressure and the crude products were purified by column chromatography on silica gel (eluent: pentane/ethyl acetate = 5:1).

3. Spectroscopic Data of Products

3,3,6-Trimethyl-3,4-dihydropyridin-2(1H)-one

HN

22.5 mg, white solid, yield: 81%. ¹H NMR (300 MHz, CDCl₃) δ 8.09 – 7.77 (br.s, 1H), 4.76 (tt, *J* = 2.9, 1.5 Hz, 1H), 2.11 (dd, *J* = 4.2, 2.0 Hz, 2H), 1.80 (q, *J* = 1.7 Hz, 3H), 1.16 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 178.34, 132.03, 99.93, 36.41, 35.54, 24.60, 18.62. GC-MS (EI, 70ev): m/z (%) = 139 (M⁺, 47), 124 (27), 96 (32), 83 (16), 70 (100), 42 (27). HRMS (ESI) Calc. for C₁₃H₁₃NO (M⁺H⁺): 140.1075; found: 140.1073.

6-Cyclopropyl-3,3-dimethyl-3,4-dihydropyridin-2(1H)-one

23.1 mg, white solid, yield: 70%. ¹H NMR (300 MHz, CDCl₃) δ 7.04 (br.s, 1H), 4.82 – 4.69 (m, 1H), 2.10 (dd, *J* = 4.5, 1.6 Hz, 2H), 1.41 – 1.28 (m, 1H), 1.14 (s, 6H), 0.75 – 0.63 (m, 2H), 0.56 – 0.45 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 177.07, 137.53, 98.14, 36.77, 35.38, 24.61, 12.75, 4.42. GC-MS (EI, 70ev): m/z (%) = 165 (M⁺, 67), 150 (100), 137 (37), 122 (51), 96 (97), 83 (44), 70 (51). HRMS (ESI) Calc. for C₁₀H₁₅NO (M+H⁺): 166.1232; found: 166.1228.

6-Cyclobutyl-3,3-dimethyl-3,4-dihydropyridin-2(1H)-one

HN

24.3 mg, white solid, yield: 68%. ¹H NMR (400 MHz, CDCl₃) δ 6.82 (br.s, 1H), 4.81 – 4.71 (m, 1H), 3.03 – 2.82 (m, 1H), 2.20 – 2.05 (m, 4H), 2.07 – 1.87 (m, 3H), 1.86 – 1.75 (m, 1H), 1.15 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 177.29, 139.29, 97.23, 36.86, 36.80, 35.39, 26.15, 24.64, 17.94. GC-MS (EI, 70ev): m/z (%) = 179 (M⁺, 81), 164 (16), 151 (100), 136 (65), 123 (42), 109 (45), 82 (46), 70 (35). HRMS (ESI) Calc. for C₁₁H₁₇NO (M+H⁺): 180.1388; found: 180.1389.

6-Cyclopentylidene-3,3-dimethylpiperidin-2-one

HN

20.8 mg, colorless oil, yield: 54%. ¹H NMR (400 MHz, CDCl₃) δ 6.87 (br.s, 1H), 2.49 – 2.34 (m, 2H), 2.25 – 2.06 (m, 4H), 1.76 – 1.61 (m, 6H), 1.24 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.61, 124.68, 117.08, 37.61, 34.07, 29.54, 27.87, 26.88, 26.75, 25.84, 22.23. GC-MS (EI, 70ev): m/z (%) = 193 (M⁺, 100), 178 (48), 165 (42), 152 (46), 122 (30), 96 (27), 41 (27). HRMS (ESI) Calc. for $C_{12}H_{19}NO$ (M+H⁺): 194.1545; found: 194.1553.

Methyl 3-(5,5-dimethyl-6-oxo-1,4,5,6-tetrahydropyridin-2-yl)propanoate

HN

21.1 mg, white solid, yield: 50%. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1H), 4.83 – 4.75 (m, 1H), 3.70 (s, 3H), 2.54 (td, *J* = 7.1, 0.9 Hz, 2H), 2.40 (ddt, *J* = 8.2, 7.0, 1.1 Hz, 2H), 2.11 (d, *J* = 4.4 Hz, 2H), 1.14 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 177.27, 173.30, 135.12, 99.88, 51.89, 36.54, 35.44, 32.06, 27.83, 24.57. GC-MS (EI, 70ev): m/z (%) = 211 (M⁺, 85), 196 (59), 183 (21), 164 (41), 152 (85), 136 (33), 110 (100), 82 (56), 70 (54). HRMS (ESI) Calc. for C₁₁H₁₇NO₃ (M+H⁺): 212.1286; found: 212.1288.

3-Methyl-2-azaspiro[5.5]undec-3-en-1-one

18.3 mg, white solid, yield: 51%. ¹H NMR (300 MHz, CDCl₃) δ 6.66 (s, 1H), 4.73 (tt, *J* = 4.5, 1.5 Hz, 1H), 2.26 - 2.16 (m, 2H), 1.84-1.71 (m, 5H), 1.66 - 1.52 (m, 3H), 1.53 - 1.30 (m, 5H). ¹³C NMR (75 MHz, CDCl₃) δ 177.08, 131.78, 99.16, 39.59, 31.62, 29.84, 25.89, 21.31, 18.70. CC NG (FL 70m): π/ℓ (ℓ/ℓ) = 170 (ℓ/ℓ (ℓ/ℓ) = 120 (ℓ/ℓ (27) = 120 (ℓ/ℓ (72) = 120

GC-MS (EI, 70ev): m/z (%) = 179 (M⁺, 97), 162 (37), 150 (70), 136 (72), 123 (100), 110 (35), 94 (37), 70 (61). HRMS (ESI) Calc. for $C_{11}H_{17}NO_2$ (M+H⁺): 180.1388; found: 180.1389.

3-(p-Tolyl)-2-azaspiro[5.5]undec-3-en-1-one

27.0 mg, white solid, yield: 53%.

¹H NMR (300 MHz, CDCl₃) δ 7.34 – 7.24 (m, 2H), 7.23 – 7.13 (m, 2H), 6.96 (br.s, 1H), 5.33 (td, *J* = 4.9, 1.8 Hz, 1H), 2.42 (d, *J* = 4.8 Hz, 2H), 2.36 (s, 3H), 1.90 – 1.76 (m, 2H), 1.71 – 1.35 (m, 8H).

¹³C NMR (75 MHz, CDCl₃) δ 177.11, 138.59, 136.03, 132.15, 129.53, 124.52, 100.37, 39.85, 31.59, 30.35, 25.92, 21.41, 21.18.

GC-MS (EI, 70ev): m/z (%) = 255 (M⁺, 57), 227 (100), 212 (29), 199 (37), 170 (17), 146 (45), 118 (22).

(S)-3,6-Dimethyl-3-(4-methylpentyl)-3,4-dihydropyridin-2(1H)-one

23.4 mg, colorless oil, yield: 56%.

¹H NMR (300 MHz, CDCl₃) δ 6.68 (s, 1H), 4.72 (tp, J = 4.6, 1.4 Hz, 1H), 2.28 – 2.12 (m, 1H), 2.14 – 1.99 (m, 1H), 1.77 (q, J = 1.7 Hz, 3H), 1.60 – 1.41 (m, 3H), 1.32 – 1.22 (m, 2H), 1.21 – 1.08 (m, 5H), 0.86 (d, J = 6.6 Hz, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 176.69, 131.65, 99.54, 39.90, 39.49, 37.04, 33.13, 27.86, 22.64, 22.62, 22.60, 21.67, 18.77.

GC-MS (EI, 70ev): m/z (%) = 209 (M⁺, 26), 166 (11), 125 (71), 97 (100), 70 (17), 41 (16). HRMS (ESI) Calc. for C₁₃H₂₃NO (M+H⁺): 210.1858; found: 210.1855.

(S)-3-Methyl-3-(4-methylpentyl)-6-(p-tolyl)-3,4-dihydropyridin-2(1H)-one

35.3 mg, white solid, yield: 62%.

¹H NMR (300 MHz, $CDCl_3$) δ 7.35 – 7.27 (m, 2H), 7.18 (dt, J = 8.0, 0.7 Hz, 2H), 7.02 (s, 1H), 5.32 (ddd, J = 5.1, 4.4, 1.8 Hz, 1H), 2.46 – 2.22 (m, 5H), 1.65 – 1.45 (m, 3H), 1.36 – 1.25 (m, 2H), 1.20 (s, 3H), 1.18 – 1.06 (m, 2H), 0.85 (d, J = 6.6 Hz, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 176.68, 138.60, 135.97, 132.23, 129.55, 124.55, 100.77, 40.20, 39.46, 36.89, 33.55, 27.83, 22.65, 22.57, 22.42, 21.73, 21.17.

GC-MS (EI, 70ev): m/z (%) = 285 (M⁺, 25), 242 (7), 201 (62), 186 (13), 173 (100), 146 (12), 118(11), 41 (8).

3,3-Dimethyl-6-phenyl-3,4-dihydropyridin-2(1*H*)-one^[2]

28.1 mg, white solid, yield: 70%. ¹H NMR (300 MHz, CDCl₃) δ 7.49 – 7.31 (m, 5H), 7.32 – 7.21 (br.s, 1H), 5.39 (td, *J* = 4.7, 1.9 Hz, 1H), 2.34 (d, *J* = 4.7 Hz, 2H), 1.23 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 177.20, 136.31, 135.00, 128.87, 128.63, 124.74, 101.68, 36.83, 35.97, 24.55. CC MC (FL 70m): π/π (9() = 201 (Mt + 100) 18((95) - 172 (25) - 158 ((5) - 122 (84) - 104 (27) - 77 (22))

GC-MS (EI, 70ev): m/z (%) = 201 (M⁺, 100), 186 (85), 173 (35), 158 (65), 132 (84), 104 (37), 77 (33). HRMS (ESI) Calc. for $C_{13}H_{15}NO_2$ (M+H⁺): 202.1232; found: 202.1230.

3,3-Dimethyl-6-(p-tolyl)-3,4-dihydropyridin-2(1H)-one

HN

37.4 mg, white solid, yield: 87%.

¹H NMR (300 MHz, CDCl₃) δ 7.30 (d, J = 8.2 Hz, 2H), 7.23 – 7.16 (m, 2H), 7.13 (br.s, 1H), 5.35 (td, J = 4.7, 1.8 Hz, 1H), 2.36 (s, 3H), 2.33 (d, J = 4.7 Hz, 2H), 1.23 (s, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 177.28, 138.66, 136.13, 132.17, 129.56, 124.57, 100.97, 36.88, 35.94, 24.54, 21.18.

GC-MS (EI, 70ev): m/z (%) = 215 (M⁺, 96), 200 (100), 187 (32), 172 (66), 146 (67), 133 (18), 118 (33), 91 (20), 70 (16).

6-(4-(tert-Butyl)phenyl)-3,3-dimethyl-3,4-dihydropyridin-2(1H)-one

HN t-Bu

38.0 mg, white solid, yield: 74%. ¹H NMR (300 MHz, CDCl₃) δ 7.44 – 7.38 (m, 2H), 7.37 – 7.31 (m, 2H), 7.00 (s, 1H), 5.37 (td, *J* = 4.7, 1.8 Hz, 1H), 2.33 (d, *J* = 4.7 Hz, 2H), 1.33 (s, 9H), 1.23 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 177.10, 151.91, 136.04, 132.12, 125.84, 124.35, 101.08, 36.90, 35.96, 34.67, 31.24, 24.53. GC-MS (EI, 70ev): m/z (%) = 257(M⁺, 81), 242 (100), 229 (37), 214 (56), 200 (38), 172 (24), 132 (27), 70 (7).

6-(4-Methoxyphenyl)-3,3-dimethyl-3,4-dihydropyridin-2(1H)-one

41.6 mg, white solid, yield: 90%.

¹H NMR (300 MHz, $CDCl_3$) δ 7.41 – 7.29 (m, 2H), 7.25 (s, 1H), 6.96 – 6.84 (m, 2H), 5.27 (td, J = 4.7, 1.8 Hz, 1H), 3.82 (s, 3H), 2.31 (d, J = 4.7 Hz, 2H), 1.22 (s, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 177.27, 159.89, 135.92, 127.63, 126.05, 114.19, 100.13, 55.36, 36.87, 35.92, 24.53.

GC-MS (EI, 70ev): m/z (%) = 231 (M⁺, 94), 216 (100), 203 (27), 188 (67), 162 (36), 134 (35), 77 (14). HRMS (ESI) Calc. for $C_{14}H_{17}NO_2$ (M+H⁺): 232.1337; found: 232.1340.

3,3-Dimethyl-6-(*m*-tolyl)-3,4-dihydropyridin-2(1*H*)-one

30.5 mg, white solid, yield: 71%. ¹H NMR (300 MHz, CDCl₃) δ 7.31 – 7.07 (m, 5H), 5.38 (td, *J* = 4.7, 1.8 Hz, 1H), 2.37 (s, 3H), 2.33 (d, *J* = 4.7 Hz, 2H), 1.23 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 177.13, 138.63, 136.33, 134.97, 129.39, 128.79, 125.40, 121.85, 101.44, 36.86, 35.96, 24.54, 21.44. GC-MS (EI, 70ev): m/z (%) = 215 (M⁺, 96), 200 (100), 187 (32), 172 (66), 146 (67), 133 (18), 118 (33), 91 (20), 70 (16).

6-(2-Methoxyphenyl)-3,3-dimethyl-3,4-dihydropyridin-2(1H)-one

24.5 mg, white solid, yield: 53%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (br.s, 1H), 7.41 – 7.28 (m, 2H), 7.03 – 6.86 (m, 2H), 5.26 (td, *J* = 4.7, 1.8 Hz, 1H), 3.85 (s, 3H), 2.32 (d, *J* = 4.7 Hz, 2H), 1.23 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 176.38, 156.34, 135.78, 129.98, 129.48, 123.90, 121.08, 111.12, 103.72, 55.59, 36.51, 36.11, 24.56.

GC-MS (EI, 70ev): m/z (%) = 231 (M⁺, 94), 216 (100), 203 (27), 188 (67), 162 (36), 134 (35), 77 (14).

6-(2-Bromophenyl)-3,3-dimethyl-3,4-dihydropyridin-2(1H)-one

44.4 mg, white solid, yield: 79%.

¹H NMR (400 MHz, CDCl₃) δ 7.59 (dt, J = 7.9, 0.8 Hz, 1H), 7.35 – 7.30 (m, 2H), 7.22 (dt, J = 7.9, 4.6 Hz, 1H), 6.81 (s, 1H), 5.12 (td, J = 4.5, 1.9 Hz, 1H), 2.33 (d, J = 4.5 Hz, 2H), 1.28 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 176.17, 136.54, 136.25, 133.36, 131.07, 130.27, 127.64, 122.26, 104.72, 36.57, 35.87, 24.53.

GC-MS (EI, 70ev): m/z (%) = 281 (M⁺,⁸¹Br, 98), 279 (M⁺,⁷⁹Br, 100), 266 (70), 253 (51), 236 (54), 210 (41), 181 (27), 157 (29), 131 (68), 83 (67), 70 (62).

HRMS (ESI) Calc. for C₁₃H₁₄NOBr (M+H⁺): 280.0337; found: 280.0335.

6-(2-Fluorophenyl)-3,3-dimethyl-3,4-dihydropyridin-2(1H)-one

27.2 mg, white solid, yield: 62%.

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.28 (m, 2H), 7.20 – 7.07 (m, 2H), 7.03 (br.s, 1H), 5.38 (tdd, *J* = 4.7, 1.9, 0.8 Hz, 1H), 2.35 (d, *J* = 4.7 Hz, 2H), 1.25 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 176.47, 159.50 (d, J = 248 Hz), 131.91, 130.19 (d, J = 8 Hz), 128.61 (d, J = 3 Hz), 124.56 (d, J = 3 Hz), 122.92 (d, J = 12 Hz), 116.30 (d, J = 22 Hz), 105.17 (d, J = 3 Hz), 36.58, 36.02, 24.53. GC-MS (EI, 70ev): m/z (%) = 219 (M⁺, 100), 204 (72), 191 (27), 176 (70), 150 (87), 122 (24), 70 (29). HRMS (ESI) Calc. for C₁₃H₁₄NOF (M+H⁺): 220.1137; found: 220.1141.

6-(4-Bromo-3-methylphenyl)-3,3-dimethyl-3,4-dihydropyridin-2(1H)-one

30.1 mg, white solid, yield: 51%.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.52 (d, *J* = 8.3 Hz, 1H), 7.33 – 7.28 (m, 1H), 7.25 (br.s, 1H), 7.10 (ddd, *J* = 8.3, 2.4, 0.6 Hz, 1H), 5.38 (td, *J* = 4.7, 1.8 Hz, 1H), 2.41 (q, *J* = 0.5 Hz, 3H), 2.32 (d, *J* = 4.7 Hz, 2H), 1.22 (s, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 177.12, 138.49, 135.56, 134.14, 132.76, 126.99, 125.01, 123.67, 101.99, 36.79, 35.93, 24.52, 22.97.

GC-MS (EI, 70ev): m/z (%) = 295 (M⁺,⁸¹Br, 98), 293 (M⁺,⁷⁹Br, 100), 280 (85),265 (45), 250 (60), 224 (26), 198 (26), 145 (75), 130 (71), 115 (2), 83 (57), 70 (63).

6-(4-Bromo-2-methylphenyl)-3,3-dimethyl-3,4-dihydropyridin-2(1H)-one

33.0 mg, white solid, yield: 56%.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.43 – 7.33 (m, 2H), 7.08 (dd, J = 8.7, 0.7 Hz, 1H), 6.65 (br.s, 1H), 5.03 (dd, J = 4.5, 1.8 Hz, 1H), 2.33 (d, J = 4.5 Hz, 2H), 2.30 (dt, J = 0.4 Hz, 3H), 1.27 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 176.30, 137.28, 135.31, 134.98, 132.27, 131.75, 131.69, 119.42, 104.06, 36.60, 35.90, 24.57, 19.38. GC-MS (EI, 70ev): m/z (%) = 295 (M⁺,⁸¹Br, 98), 293 (M⁺,⁷⁹Br, 100), 278 (60), 252 (34), 224 (26), 211 (38), 145

GC-MS (EI, 70ev): m/z (%) = 295 (M⁺, °¹Br, 98), 293 (M⁺, ⁷Br, 100), 278 (60), 252 (34), 224 (26), 211 (38), 145 (55), 130 (71), 115 (31), 83 (50), 70 (57).

3,3-Dimethyl-6-(naphthalen-1-yl)-3,4-dihydropyridin-2(1H)-one

¹H NMR (300 MHz, Chloroform-*d*) δ 8.11 – 8.01 (m, 1H), 7.92 – 7.81 (m, 2H), 7.57 – 7.44 (m, 4H), 6.91 (br.s, 1H), 5.25 (td, *J* = 4.5, 1.8 Hz, 1H), 2.43 (d, *J* = 4.5 Hz, 2H), 1.35 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 176.36, 135.69, 133.75, 133.47, 130.88, 129.29, 128.58, 126.71, 126.57, 126.20, 125.29, 124.85, 104.55, 36.74, 36.14, 24.71. 20.1 mg, white solid, yield: 40%. GC-MS (EI, 70ev): m/z (%) = 251 (M⁺, 100), 236 (26), 223 (10), 208 (13), 180 (71), 154 (25), 127 (27).

3,3-Dimethyl-6-(thiophen-3-yl)-3,4-dihydropyridin-2(1H)-one

29.4 mg, white solid, yield: 81%. ¹H NMR (300 MHz, CDCl₃) δ 7.38 (br.s, 1H), 7.34 (dd, J = 5.1, 2.9 Hz, 1H), 7.29 (dd, J = 2.9, 1.4 Hz, 1H), 7.20 (dd, J = 5.0, 1.4 Hz, 1H), 5.42 (td, J = 4.7, 1.8 Hz, 1H), 2.32 (d, J = 4.7 Hz, 2H), 1.23 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 177.14, 136.41, 132.03, 126.77, 124.72, 119.31, 101.02, 37.00, 35.76, 24.62. GC-MS (EI, 70ev): m/z (%) = 207 (M⁺, 100), 192 (80), 179 (36), 164 (52), 138(82), 125 (13), 110 (37), 83 (32), 70 (32).

3-Methyl-6-phenyl-3,4-dihydropyridin-2(1H)-one [3]

н

16.8 mg, white solid, yield: 45%. ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.49 (br.s, 1H), 7.45 – 7.30 (m, 5H), 5.44 (ddd, J = 5.5, 3.7, 1.7 Hz, 1H), 2.66 – 2.47 (m, 2H), 2.32 – 2.18 (m, 1H), 1.27 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.92, 136.87, 135.02, 128.85, 128.65, 124.84, 102.26, 34.64, 28.89, 15.33. GC-MS (EI, 70ev): m/z (%) = 187 (M⁺, 100), 172 (77), 158 (47), 144 (39), 132 (28), 116 (21), 104 (50), 77 (27). HRMS (ESI) Calc. for C₁₂H₁₃NO (M+H⁺): 188.1075; found: 188.1075.

4. References

- [1] a) Z. Y. Ma, L. N. Guo, Y. R. Gu, L. Chen, X. H. Duan, Adv. Synth. Catal. 2018, 360, 4341-4347;
- b) W. Shu, C. Nevado, Angew. Chem., Int. Ed. 2017, 56, 1881-1884; c) E. M. Dauncey, S. P. Morcillo,
- J. J. Douglas, N. S. Sheikh, D. Leonori, Angew. Chem., Int. Ed. 2018, 57, 744-748.
- [2] M. Pawlowski, J. K. Maurin, A. Leniewski, Heterocycles 2005, 65, 9-22.
- [3] C. Chuit, R. Corriu, R. Perz, C. Reye, Tetrahedron 1986, 42, 2293-2301.

200 190

180 170

160

150

140 130

120

110 100 f1 (ppm) 90 80

70

60 50

40 30

20

10 0

- -100 - -200

210 200

190 180 170 160 150

140 130 120

110 100 f1 (ppm) 90

80 70 60

50 40 30 20

-500

Ó

10

