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1 Basic Real Space Chemical bonding

Real space reasoning uses proper quantum mechanical observables to con-
struct orbital invariant descriptors with chemical meaning. Among them,
all reduced densities and density matrices (RDs, RDMs). An identification
of spatial regions with chemical concepts is also necessary. This is usually
done through spatial partitionings, normally induced by the topology of a
scalar field. For instance, the topology of the electron density, ρ, induces an
atomic partitioning: the Quantum Theory of Atoms in Molecules (QTAIM)
explored by R. F. W. Bader and coworkers.1 Similarly, the topology of Becke
and Edgecombe’s2 electron localization function (ELF) provides a partition
into cores, lone pairs and bonding domains, etc.

Once atoms (or electron-pair domains) are available, chemical bonding
descriptors are built. Both the electron-counting perspective (leading to
populations and bond orders) as well as the energetic view that provides bond
strengths are needed. These are offered by, for instance, electron distribution
functions (EDFs) and the interacting quantum atoms approach (IQA).

1.1 The energetic face of bonding: Interacting Quan-
tum Atoms

Given an atomic spatial partitioning, the interacting quantum atoms (IQA)
energy partition considers the one- and two-domain division of the non-
relativistic Born-Oppenheimer electronic energy3 described in the following
equation,

E =
∑

A

EA
self +

∑
A>B

EAB
int

=
∑

A

TA + V AA
ne + V AA

ee +
∑
A>B

V AB
nn + V AB

ne + V BA
ne + V AB

ee , (1)

wherein EA
self and EAB

int are the IQA self and interaction energies of atom A and
pair AB, while TA denotes the kinetic energy of atom A. Finally, the terms
V AB

ne and V AB
ee stand for (i) the attraction between the nucleus of domain A

and the electrons of atom B and (ii) the repulsion between the electrons in
atom A with those in basin B, respectively.
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We can get further insight about the nature of the interaction between two
atoms by separating the electronic repulsion into its Coulombic and exchange-
correlation components. This splitting allows, in turn, the separation of the
IQA interaction energy of a pair AB as3

EAB
int = V AB

cl + V AB
xc = EAB

ion + EAB
cov . (2)

Usually binding is measured relative to appropriate reference for the quan-
tum fragments A, with EA,0. Then EA

self − EA,0 = EA
def is called the atomic

or fragment deformation energy, which corresponds to a combination of the
traditional promotion energy and other effects, like spin-recoupling, true elec-
tronic deformation, etc.4 We have shown that the IQA interaction energies
behave as in situ bond energies. IQA thus provides an invariant decomposi-
tion of the energy into group deformations and bond contributions in which
covalent and ionic energies acquire rather pure forms.

1.2 The electron-counting face of bonding: Electron
Distribution Functions

Electron counting provides access to the more qualitative view of chemical
bonding in which the number of electrons engaged in sharing or in pure
transfer between atoms gives rise to bonding descriptors like bond orders. In
real space we simply examine the distribution of the electron population in
the atomic regions in which we have divided the space.

EDFs are defined as follow. Given an N–electron molecule and an ex-
haustive partition of the real space (R3) into m arbitrary regions Ω1, Ω2,
. . . , Ωm (Ω1 ∪ Ω2 ∪ · · · ∪ Ωm = R3), an EDF is the distribution function
formed by all the probabilities p(n1, n2, . . . , nm) of finding exactly n1 elec-
trons in Ω1, n2 electrons in Ω2, . . . , and nm electrons in Ωm, {np} being
integers (ni ∈ N ) satisfying n1 + n2 + · · ·+ nm = N . This view is in accord
with considering subsystems as open quantum systems in which number op-
erators do not commute with the subsystem hamiltonian. In this way, Ψ is
not an eigenstate of the operator defining the number of electrons in domain
Ωi, N̂Ωi

. This means that the average number of electrons in Ωi is not an
eigenvalue of N̂Ωi

, so that measuring the number of electrons in the domain
will render values nΩi

ranging from 0 to N , the total number of electrons,
with a defined set of probabilities, p(nΩ1). This is the one-fragment EDF
for domain Ωi. To obtain these probabilities or, in general, the multivariate
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electron distribution functions p(n1, n2, · · · , nm), one needs Ψ(1, . . . , N), Ψ
being the complete wave function,

p(n1, n2, . . . , nm) = N !Λ

∫
D

Ψ?Ψdx1 · · · dxN , (3)

where D is a multidimensional domain in which the first n1 electrons are
integrated over Ω1, the second n2 electrons over Ω2, · · · , and the last nm
electrons over Ωm, and N !Λ = N !/(n1!n2! · · ·nm!) is a combinatorial factor
that accounts for electron indistinguishability. The 3D domains of these inte-
grations can be arbitrary, but when using QTAIM atomic basins, a partition
of the N electrons of the molecule that assigns a given number of electrons
(including possibly 0) to each of these regions will was called a real space res-
onance structure (RSRS)5 and there are NS = (N +m− 1)!/[N !(m− 1)!] of
these for a given N ,m pair. With the notation S(n1, n2, . . . , nm) ≡ S({np}),
or simply (n1, n2, . . . , nm) ≡ {np}, we label the resonance structure having
n1 electrons in Ω1, n2 electrons in Ω2, . . ., and nm electrons in Ωm. If elec-
trons are spin-seggregated, then we come to spin-resolved EDFs, and a set of
probabilities p(nα1 , n

β
1 , n

α
2 , n

β
2 , . . . , n

α
m, n

β
m) which gives extremely fine-grained

information about how electrons and their spins distribute.6

The computation of p(n1, n2, . . . , nm) for all the RSRSs provides all the
statistical moments of the electron populations, including the average number
of electrons in a given region, or its fluctuation. The average population is
obviously given by

Ni = 〈ni〉 =
∑
{np}

ni × p({np}) =
∑
ni

nipi(ni). (4)

It is not difficult to show that the number of shared pairs between two regions
may be obtained directly by counting the number of intra- and interpairs.7

This has given rise to the so-called localization and delocalization indices,
(λii, δij), which determine the number of localized and delocalized pairs. The
latter, which is the covalent bond-order in real space can be obtained from
the p({np}) probabilities as
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δij = −2cov(i, j) = −2 [〈ninj〉 − 〈ni〉〈nj〉] = (5)

−2

∑
{np}

ninj × p({np})− 〈ni〉〈nj〉

 = (6)

−2
∑
ninj

(ni −Ni)(nj −Nj)p(ni, nj) = 2Nij (7)

where the −2 factor has been included to comply with the usual definition of
δ in terms of the exchange-correlation density and to ensure that the bond
order for an ideal single bond is equal to 1,

δij = −2

∫
Ωi

∫
Ωj

dx1 dc2ρxc(1, 2). (8)

The localization index is given by

λii = Ni − cov(i, i) = Ni − var(i) = Ni −
∑
ni

(ni −Ni)
2p(ni) = Nii (9)

From equations 5-9 it is clear that Nii = Ni if the variance is zero and that
Nij = 0 if the covariance is cero. This is the starting point for a complete
theory of chemical bonding based on the fluctuation of electron populations.
There is chemical bonding between two regions if their electron populations
are not statistically independent. A sum rule, that classifies electrons into
localized and delocalized sets appears:

N =
∑
Ωi

Ni =
∑
Ωi

λii +
1

2

∑
Ωi 6=Ωj

δij. (10)

Suitable generalizations in the case of multi-center bonding exist.8

1.3 Natural Adaptive Orbitals

We have shown in the last years that the use of further order reduced density
matrices (RDMs) and real space partitions can be used to derive a hierarchi-
cal set of general bonding indices.9 The key objects are found to be the n-th
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order cumulant density matrices (nCDMs), which convey information about
true n-body correlations.

As in statistics, it is legitimate to extract from the n-th order RDMs
those parts that contain true n-particle correlations, i.e., those parts that
cannot be written in terms of lower order RDMs. This is provided by the
so-called cumulant densities or cumulant density matrices. With them, n-
center chemical bonding is the result of simultaneous n-center fluctuation of
electron populations.

In this general scheme, n-center bonding indices and a set of one electron
functions for each, that we called natural adaptive orbitals (NAdOs), are ob-
tained by domain-averaging appropriate CDMs. General n-NAdOs describe
n-center bonds in real space (or cores and lone pairs, if n = 1). NAdOs are
adaptively localized or delocalized orbitals over the n centers in which they
have been computed, and only those which are at least partly localized in
the chosen n-center regions contribute to n-center bonding. Coming from
invariant RDMs, NAdOs are also invariant under orbital transformations, as
standard natural orbitals.

Domain averaging nCDMs provides the entry point to introducing chem-
ical bonding descriptors that are generalizations of those used in standard
MO theory. If all but one electron coordinate in the nCDM is averaged over
a domain, an n-center decomposition of the electron density, ρ = ρ1

C , appears
as

ρ(r) =
∑
ab...n

ρ1
ab...n = (11)

∑
ab...n

∫
Ωa

dr2

∫
Ωb

dr3· · ·
∫

Ωn

drn+1 ρ
n+1
C (r, r2, . . . , rn+1), (12)

where ρnC is the nCD. It can be shown8 that ρ1
ab...n may be written in

terms of the occupied MOs of the system as

ρ1
ab...n = φ(r)Dab...nφ†(r), (13)

where φ is a vector comprising all the occupied orbitals and D a hermitian
matrix. Upon diagonalization of the above expression,

ρ1
ab...n =

∑
i

nab...ni |ψab...ni |2, (14)
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we obtain the multi-center NAdOs ψab...n and their natural adaptive occu-
pation numbers (NAdOccs). The NAdOccs fulfil the sum rule

∑
i n

ab...n
i =

〈Nab...n〉, so that NAdOs induce a one-electron decomposition of any multi-
center delocalization index. In the n = 2 case, the covalent bond order is
partitioned into a set of eigencomponents.

NAdOs and NAdOccs can be immediately interpreted. If a 2-NAdO is
completely localized its occupation (contribution to the bond order) van-
ishes, and when it is equally shared it peaks to 1 if the link is uncorrelated.
NAdOccs may easily be used to uncover both polarity and covalency. We
also refer to them as eigencomponens of the delocalization index.

1.4 2c-2e bonds

The statistical link between the fluctuation of electron populations and the
standard energetic and bond order descriptors allows to map all coarse-
grained (i.e. condensed at the atomic level) possible (2c−2e) bonds through
simple models. In a two-center, two-electron system there are only three
RSRSs: (2, 0), (1, 1), (0, 2), where we label how many electrons lie in each of
the a, b domains. The EDF space is two-dimensional, since p(2, 0) +p(1, 1) +
p(0, 2) = 1, and all bond indices become fully mapped in this 2D space. A
convenient coordinate system can be built with the probability that any of
the electrons lie in one of the basins, e.g. the left one, which we call p and
provides a measure of heteropolarity, and a correlation factor −1 ≤ f ≤ 1
that determines how the electronic motion is correlated. f = 1 means that
an electron is completely excluded from one domain if the other is already in
it (positive correlation) and f = −1 implies that the two electrons are always
found together within the same domain (negative correlation). The correla-
tion factor here defined plays the same role as that used in density matrix
theory, where ρ2(r1, r2) = ρ(r1)ρ(r2)(1− f). The (p, f) pair describes fully a
2c,2e link at this level: p(2, 0) = p2 − p(1 − p)f , p(1, 1) = 2p(1 − p)(1 + f)
and p(0, 2) = (1− p)2 − p(1− p)f .10

If we use these p, f parameters, the covalent bond order becomes δ =
4p(1− p)(1− f). An ionic bond order ι = −QaQb where Q is the net charge
of a center has also been defined.11 In standard weakly correlated bonds
with positive f ∼ 0, the EDF is close to binomial, and δ peaks at δ = 1
for a purely covalent homopolar link with p = 1/2. As electron correlation,
f , or polarity, p, increases δ decreases. Moreover, for non-correlated links
with f = 0 ι = 1 − δ so, in agreement with standard wisdom, the ionic and
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covalent bond orders are inversely correlated.
When f deviates from zero, the model describes positively or negatively

correlated bonds. The latter case implies a bosonization of the link. Electrons
try to delocalize together, giving rise to very large fluctuations. The most
extreme 2c,2e case with δ = 2 occurs when p(0, 2) = p(2, 0) = 1/2 and
p(1, 1) = 0, i.e. when there is a resonance between the two non-orthogonal
valence bond (NOVB) ionic structures. Thus, f < 0 serves to separate
cleanly, in real space, large fluctuations from the standard bonding regime.

Several rigorous bond-energy bond-order (BEBO)11 relations can be un-
covered using these real space descriptors. Under the IQA perspective a
multipolar expansions shows that the first order ionic and covalent energies
are immediately related to their corresponding bond orders. For an interac-
tion between atoms A and B,

EAB
ion ∼ −

ιAB

Rij

EAB
cov ∼ −

1

2

δAB

RAB

. (15)

2 The two-state model

A two-center (A,B) homonuclear electron-pair link is assumed, both in Heitler-
London-like and orthogonal descriptions. Two localized functions a and b
with 〈a|b〉 = S are used. In the VB framework, the basis is

Ψcov =
1√

2(1 + S2)
(a(1)b(2) + b(1)a(2))

1√
2

(↑↓ + ↓↑),

Ψion =
1√

2(1 + S2)
(a(1)a(2) + b(1)b(2))

1√
2

(↑↓ + ↓↑). (16)

Similarly, the MO basis is formed from the gerade and ungerade combinations

g =
1√

2(1 + S)
(a+ b), u =

1√
2(1− S)

(a− b), (17)

so that two independent, orthogonal MO states are:

Ψgg = ΨHF = |gḡ|, Ψuu = |uū|. (18)

Inactive electrons are added as needed to form a proper antisymmetric multi-
electron function. In general,

Ψ = cΨcov + iΨion = λΨgg + µΨuu. (19)
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Figure 1: Pictorial representation of the parameters of the λ, µ model. The
ω angle at which the c, i structures are met depends on the overlap S. If
S = 0, ω = π/2.

HF=|gḡ| ≡ c + i

c

|uū| ≡ c− i

i
λ

ω

λ = + cos(ω/2)
µ = − sin(ω/2)

−µ

The λ2 +µ2 = 1 condition allows to map easily the full spectrum of the two-
state model by using a ω-angle polar representation such that λ = cos(ω/2),
µ = − sin(ω/2), ω ∈ [−π, π]. Moreover, if the coefficients α = λ/(2+2S) and
β = µ/(2−2S) are defined, then it is easily shown that α+β ∝ i, α−β ∝ c,
and that the HL covalent structure is obtained when α = −β and the ionic
one when α = β, implying that the VB ionic structure is found in the (λ, µ)
map by simply changing the sign of either λ or µ from their values at the VB
covalent structure: (λi, µi) = (λc,−µc), for instance. If a positive λ value is
forced, then it is usually found that the minimum energy CAS[2,2] solution
has negative µ. Being this normally closer to the VB covalent structure,
the state that mimics the VB ionic structure has positive µ value. In the
following, as shown in the main paper, the CAS solution is found and its
orbitals are fixed. The approximate (λ, µ) pairs for the covalent and ionic
structures are obtained from the orbital overlap, since λ2 = (1+S)2/(2+2S2).
The map is sketched in Fig. 1

Working in the orthogonal λ, µ representation provides direct easy access
to all reduced density matrices. Since the |gḡ| and |uū| determinants differ
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in two spinorbitals, only the 2RDM has coupling terms,

ρ(r; r′) = 2λ2g(r)g(r′) + 2µ2u(r)u(r′)

ρ2(r1, r2) = 2λ2g2(r1)g2(r2) + 2µ2u2(r1)u2(r2) + 2λµ gu(r1)gu(r2).(20)

All one-electron properties vary linearly with λ2 between the Hartree-Fock
and the |uū| values. At the bond critical point (bcp) which lies at the center
of the internuclear axis, both ρ,∇2ρ = λ2G + (1 − λ2)U , where G,U are
their values in the gg and uu determinants. Since for any scalar function f ,
∇2f 2(r) = 2∇f(r) ·∇f(r) + 2f(r)∇2f(r), and ubcp = 0, gbcp 6= 0,

∇2g2
bcp = 2gbcp∇2gbcp ≈ 8abcp∇2abcp,

∇2u2
bcp = 2|∇ubcp|2 ≈ 8|∇abcp|2 > 0. (21)

At the bcp, ρ decreases linearly with µ2 = 1 − λ2 from 2g2
bcp to 0. Using an

exponential ansatz, a ≈ Ne−ζr, ∇2g2
bcp ≈ 8N2e−2ζr(ζ2−2ζ/r), and ∇2u2

bcp ≈
8N2e−2ζrζ2, so ∇2ρ increases with λ, µ mixing. Since standard homolytic
dissociation increases mixing, the laplacian tends to be more positive for a
proto-covalent bond. Moreover, at large distances, the ∇2a term tends also
to a positive value. Positive laplacians appear necessarily upon homolytic
bond dissociation.

2.1 The two-state model (TSM) in the H2 molecule

The dihydrogen molecule is hereby used as an example. A calculation in the
minimal STO-6G basis set provides λ2 = 0.987, S = 0.681, so that for the VB
covalent structure with CAS fixed orbitals, λ2

c = 0.965. A straightforward
calculation gives V uu

ee = 0.699 au, V gg
ee = 0.675 au, so that 〈gu|r−1

12 |gu〉 =
0.182. Fig. 2 shows how the total one-electron energy components favor the
HF solution, so that (with fixed orbitals) it is the too large electron repulsion
of the HF state the term responsible for λ, µ mixing. Given the scales of the
1e and 2e energy variations with the ω angle, the CAS solution is very close
to the HF one. From the VB point of view, the covalent and ionic states
share the same 1e-terms, and only differ in the Vee repulsion. The covalent
state displays a not stabilizing enough 1e energy (too large kinetic energy
in standard reasoning) and the mixing decreases it at the expense of rising
the total Vee. Notice that it is the electron repulsion which puts a brake
on the degree of mixing. Without it, the system would collapse onto the
Hartree-Fock state.

11



Figure 2: Variation of the 2e-energy (top) and of the 1e and total energy
(bottom) of the STO-6G dihydrogen molecule with CAS[2,2] fixed orbitals.
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Table 1: Total energy components for several 6-31G* states in H2 with fixed
CAS[2,2] orbitals at Re = 1.40 au. All data in au. λc ≈ 0.98 estimated from
S.

Ψ E T Vne Vee
uu 0.413 3.050 -4.036 0.697
ion -1.012 1.202 -3.367 0.721
gg -1.131 1.133 -3.622 0.655

CAS -1.150 1.156 -3.619 0.619
cov -1.139 1.202 -3.367 0.594

A still simple 6-31G* calculation in H2 in which the λc is estimated from
the overlap integral S ≈ 0.70 provides the following parameters, gathered
in Table 1. All the insights previously commented are fully supported. If
we take the λ, µ point of view, then a non-zero µ value decreases Vee while
increasing the 1e energy. From the VB one, mixing the covalent with the ionic
structure decreases the too large 1e energy until Vee puts a stop. Notice how
the interpretation can be rather different depending on the starting point. If
we begin with a mean-field HF solution, the gg determinant displays too large
Vee and (λ, µ) mixing decreases it at the expense of increasing the kinetic
energy. The contrary occurs when our starting point is the VB covalent
structure. In both cases, it is the non-linear behavior of Vee which acts as a
controlling factor.

2.2 TSM in the F2, N2 and O2 molecules

A CAS[2,2]//6-31G* calculation in difluorine with an active space composed
of the 2pz σ, σ

∗ set provides Re ≈ 1.49 Å. and De ≈ 16 kcal/mol. A much
smaller S leads to λc ≈ 0.80. As stated in the main text (Table 2), now the 1e
electron energy is smaller in the uu than in the gg determinant. This implies
that the slope of the linear part in the bottom panel of Fig. 2 is reversed.
The reversal is not due to the kinetic energy part, that is obviously minimum
at the gg determinant, but to the electron-nucleus attraction, which becomes
strongly stabilizing as the density is compacted by (λ, µ) mixing. As shown
in the main text, it is again Vee, actually the active-core repulsion, which
avoids the collapse onto the uu solution.

We have performed similar σ, σ∗ CAS[2,2] 6-31G* calculations in N2 and
O2. In the former, Re = 1.08 Å with λ = 0.9986, while in the latter Re = 1.18
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Table 2: Total energy components for several 6-31G* states in N2 and O2

with fixed CAS[2,2] orbitals at the theoretical equilibrium geometry. All data
in au.

N2 E T Vne Vee O2 E T Vne Vee
gg -108.944 108.555 -303.343 61.895 gg -149.597 149.102 -411.924 84.401

CAS -108.956 108.578 -303.361 61.878 CAS -149.622 149.790 -411.990 84.467
uu -105.076 116.559 -309.510 63.926 uu -147.199 155.712 -418.569 86.925

Table 3: Relevant IQA data in 6-31G* F2 at R = 1.2 au with λc ≈ 0.8. All
data in au and all orbitals fixed to those in the CAS.

F2 EA
def TA V AA

ee EAB
int EAB

cov V AB
ee δAB

cov 0.254 100.481 41.164 -0.072 -0.225 33.015 0.633
CAS 0.138 99.491 40.846 -0.245 -0.388 32.884 1.128

HF 0.191 98.421 40.885 -0.307 -0.450 32.825 1.366
ion 0.707 100.481 41.617 -0.443 -0.595 32.644 2.148

Å. with λ = 0.9950. Table 2 summarizes the results. It can be readily
checked that dinitrogen belongs to the H2 family, so that the 1e energy is
minimum for the mean-field solution, while in O2 and F2 the contrary is true.
As explained in the main text, it is the core-active interelectron repulsion
which increases steeply from the gg to the uu determinants, pointing toward
traditional LPBWE.

2.3 The role of the internuclear distance in F2

In order to understand why larger than expected internuclear distances are
found in CSB we have also analyzed our model upon compression. Table 3
gathers 6-31G* IQA results for difluorine at R = 1.2 au, and should be
compared with Table 3 in the main text. At this compressed distance, all the
effects become magnified: the covalent solution has now larger deformation
energy than even the Hartree-Fock one, with a kinetic energy 1 Eh in excess
with respect to the CAS solution. Moving from either the covalent or the HF
states to the CAS minimum decreases considerably the deformation energy
as well as V AA

ee , exactly as at the equilibrium geometry.
We think it is rather relevant to point out that even at this compressed

distance the covalent structure is rather unable to delocalize effectively its
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Table 4: Non-negligible EDF probabilities in 6-31G* F2 with orbitals and
distances fixed to those in the CAS solution. CAS(2e) refers to the active
orbital subsystem.

RS cov CAS CAS(2e) ion
(9,9) 0.735 0.684 0.748 0.175

(10,8) 0.135 0.151 0.126 0.374

electrons. The delocalization index is only 0.63. This lies at the root of the
large NOVB covalent-ionic mixing: the compact localized VB orbitals lead
to small delocalization and large LPBWE repulsion which is ameliorated by
mixing. As previously noticed,12 a similar mixing effect can be forced in
dihydrogen if too compact orbitals are used. Shifting to the CAS solution δ
increases to 1.13. Nevertheless, the c, i mixing does not lead to the purported
electron-pair fluctuation, as shown by the small p(2, 0) probability. Table 4
shows the EDF for the covalent, CAS, and ionic TSM structures in difluorine.
Both the CAS and covalent results show smaller fluctuation than a standard
link.

Notice that the full EDF is related to the VB structure weights, although
the non-zero overlap of the VB covalent and ionic structures introduces some
non-linearity. Overall, the VB-covalent and VB-ionic weights in dihydrogen
and difluorine are rather similar,12 and disregarding non-linearities, so are
their EDFs. This clearly shows (high level calculations below do not change
the scenario) that electron-pair fluctuations in CSB systems like difluorine are
not larger than in normal covalently linked moieties. The CSB literature12

substantiates part of the CSB singularity in these fluctuations, which have
computed through the variance of the electron population in ELF basins.
As commented in the main text, these data are unreliable since they were
obtained using DFT pseudo second-order densities. In our opinion, even
trusting these numbers beyond what it should be acceptable, the variances of
ELF basins in CSBs are not larger than those found in other systems: they are
simply comparable to the total ELF basin populations, which are very small
in CSBs. This behavior is interesting (and needs to be corroborated through
exact variance calculations), but does not provide an absolute measure of
larger than normal fluctuation, it just shows that the relative fluctuation is
larger. Moreover, if the pair fluctuates, it is necessary that its two-electrons
be located at some point in one of the atomic regions, something that should
impact the EDF.
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We have recently shown13 that care has to be taken to understand the
meaning of VB structure coefficients in real space. Very succinctly, electron
delocalization, that drives covalent interactions, is related to the amount
of (2, 0) and (0, 2) EDF weights, i.e. to the amount of VB-like ionic con-
tributions. Without them, there is no homonuclear bonding. Due to the
compactness of the electron distributions in many CSB systems, the VB co-
valent structure has not sufficient real-space ionic (2, 0)−(0, 2) contributions,
as Table 4 shows, and does not bind due to the large intra-atomic deforma-
tions. This problem is overcome after the VB-cov mixes with the VB-ion
structure.

In the end, a similar EDF is found both in dihydrogen and difluorine,
with similar interatomic IQA energetics and very different IQA (intra-atomic)
deformation energies.

3 Beyond the TSM

Although we think that the two-state model contains the basic physics behind
the large NOVB covalent-ionic resonance energies found in CSB, the real
space artillery can be actually applied to high-level correlated calculations,
from perturbative approaches like MP2, to CCSD(T).14 To obtain EDFs,
however, a determinant based approach is needed, so that we have decided
to perform large-space multiconfigurational calculations on a series of already
reported CSB molecules, see Tables 5 and 6.

Calculations were done as follows. For all systems we have used CASSCF
selecting as configuration interaction solver the heat bath method.22–24 Al-
though some dynamical correlation is still lacking in such a description, this
provides a limited set of determinants to perform EDF calculations, without
affecting seriously the conclusions. In all cases a criterion of 8× 10−5H was
used for the selection criteria. In the case of Au2 and Hg +

2 , scalar relativis-
tic corrections were used at the X2C level,25 using the totally decontracted
basis. The active space was selected using a modified AVAS26 procedure,
where a defined set of core orbitals are excluded from the projection step
and a splitting of the threshold for the occupied and virtual sets, 0.1, 10−5

respectively for non metals and 0.01, 10−5 for the rest was implemented in
order to achive better active spaces. Details of geometries and active spaces
are found in table 5. In all cases the Sapporo-QZP-2012 basis set18 with dif-
fuse basis functions was used, and the corresponding relativistic bases when

16



Table 5: AVAS active space and details for molecules studied in this work.
A threshold of 0.1 au was used for the occupied space and 1 × 10−5 au for
the virtual space.

Molecule Distance(Å) State Core Impurities Active Space

H2 0.741415 1Σ+
g 0 1s,2s,2p 2e,11o

C2 1.242515 1Σ+
g 2 2s,2p,3s,3p 8e,20o

N2 1.097615 1Σ+
g 2 2s,2p,3s,3p 10e,21o

N2H4 1.445915 1Σ+ 2 2s,2p,3s,3p 14e,23o
O2 1.207515 3Σ−g 2 2s,2p,3s,3p 12e,23o

H2O2 1.474915 1Σ+ 2 2s,2p,3s,3p 14e,23o
F2 1.411915 1Σ+

g 2 2s,2p,3s,3p 14e,23o

S2 1.889915 3Σ−g 10 3s,3p,4s,4p 12e,23o

Cl2 1.987915 1Σ+
g 10 3s,3p,4s,4p 14e,23o

Br2 2.281015 1Σ+
g 28 4s,4p,5s,5p 14e,23o

Cu2 2.220016 1Σ+
g 18 4s,4p,5s,5p 10e,21o

Ag2 2.530016 1Σ+
g 36 5s,5p,6s,6p 10e,21o

Au2 2.470016 1Σ+
g 54 6s,6p,7s,7p 16e,24o

Hg +
2 2.698817 1Σ+

g 54 6s,6p,7s,7p 12e,22o

Propellane 1.596015 1A1 5 C1,C5,2s,2p,3s,3p 20e,26o
HF 0.916815 1Σ+

g 1 H-1s,2s,2p, F-2s,2p,3s,3p 8e,17o

SiH3F 1.6001∗ 1A1 6 H-1s,2s,2p, Si-3s,3p,4s,4p 14e,27o
CH3F 1.364615 1A1 2 C,F,2s,2p,3s,3p 14e/23o
XeF2 1.9684∗ 1Σ+

g 25 Xe-5s,5p,6s,6p, F-2s,2p,3s,3p 22e,35o

* Geometry optimized at the PBE0 level with the Sapporo-TZP basis.18
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Table 6: Binding energy of some of the computed molecules, in Kcal/mol.

Molecule DE Exp. DE Calc.
H2 109.519 108.0
C2 145.3 148.3
N2 228.5 228.6
O2 120.120 117.4
F2 38.319 33.0
S2 102.5 -
Cl2 58.0 -
Br2 - -
Cu2 47.721 29.0
Ag2 38.321 23.3
Ag2* 38.321 30.3
Au2* 52.821 42.0

* With scalar relativistic corrections.

scalar effects were applied. All the electronic structure calculations were
performed using PySCF27.

Promolden28 was used to obtain the atomic overlap matrices and the
interacting quantum atoms (IQA) quantities. IQA integrations were per-
formed using β-spheres with radii between 0.1 and 0.3 bohr. Restricted an-
gular Lebedev quadratures with 3074 points and 451 points Gauss-Chebyshev
mapped radial grids were used inside the β-spheres, with L expansions cut
at l = 8. Outside the β-spheres, extended 5810-point Lebedev, 551 mapped
radial point Gauss-Legendre quadratures, and L expansions up to l = 10
were selected. Electron distribution functions were obtained with the in-
house code EDF29 and the natural adaptive orbitals with denmat30, another
in-house code.

3.1 Difluorine

Table 8 shows the multireference data in F2. At R ≈ 4 Å the atomic limit
is basically recovered. The deformation energy at equilibrium is 0.0782 au,
very similar to the value obtained at the simple CAS level commented in the
main text. This 49 kcal/mol deformation has to be compared with that in
H2 from a FCI calculation, which is about 8 kcal/mol per H atom. Notice
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Table 7: Relevant real space parameters for the plausible CSB interaction
in some of the compounds studied. Total value of δ, main components of
the CSB interaction energy, number of eigen-contributions to δ, n, and value
of the dominant eigenvalue, δi. Some selected IQA data are also presented.
Atomic units used throughout.

Molecule δ Ecov Eion n δi
H2 0.8474 -0.2388 0.0417 1 0.8321

C2 1.8119 -0.5374 0.1419 4 0.6732
N2 2.0057 -0.7025 0.2276 3 0.7836

NH2−NH2 1.1981 -0.3482 0.0460 1 0.8190
O2 1.5493 -0.5115 0.1447 3 0.7185

HO−OH 0.9455 -0.2971 0.0286 1 0.7260
F2 0.8854 -0.2594 0.0503 1 0.6125

S2 1.6503 -0.3977 0.0620 3 0.7344
Cl2 1.1522 -0.2776 0.0455 1 0.7541
Br2 1.1144 -0.2387 0.0316 1 0.7335

Cu2 1.0558 -0.1710 0.0037 1 0.7885
Ag2 1.2046 -0.1667 0.0022 1 0.9631
Ag2* 1.1877 -0.1739 0.0036 1 0.9338
Au2* 1.5043 -0.2271 0.0100 1 0.9904
Hg +

2 * 1.2143 -0.1792 0.1542 1 0.9670

* With scalar relativistic corrections.

A-B groups TA TB EAself EBself EABint Ecov Eion QA QB

CH3−F 100.0784 39.4115 -99.4460 -39.3142 -0.6547 -0.2614 -0.3933 -0.7164 0.7169
SiH3−F 100.0891 290.5504 -99.5219 -290.2868 -0.7145 -0.1443 -0.5702 -0.9020 0.9025
XeF−F 7229.8926 99.8638 -7231.1413 -99.5210 -0.5418 -0.1864 -0.3554 1.3802 -0.6904

A-B groups TA EAself EABint Ecov Eion Vintra
ee Vinter

ee

H2 0.5866 -0.4876 -0.1971 -0.2388 0.0417 0.1515 0.2867
C2 37.8706 -37.6630 -0.3956 -0.5375 0.1419 13.5090 13.2890
C-Cb, C5H6 37.8529 -37.5228 -0.0765 -0.1091 0.0326 14.4025 11.0876
N2 54.6448 -54.4021 -0.4749 -0.7026 0.2277 20.6203 20.1699
NH2−NH2 55.7798 -55.6221 -0.3022 -0.3483 0.0461 27.5177 24.8703
O2 75.0063 -74.8178 -0.3668 -0.5115 0.1447 29.1182 25.2505
HO−OH 75.6147 -75.4757 -0.2685 -0.2971 0.0286 33.2100 26.5017
F2 99.5883 -99.4803 -0.2089 -0.2602 0.0513 39.9570 28.8515
S2 397.8323 -397.4808 -0.3357 -0.3977 0.0620 152.9100 69.0588
Cl2 459.8126 -459.4931 -0.2320 -0.2776 0.0456 176.0752 74.7267
Br2 2571.6871 -2572.3995 -0.2071 -0.2387 0.0316 1010.6629 280.8390
Cu2 1638.1732 -1638.9298 -0.1673 -0.1710 0.0038 651.1557 199.4370
Ag2

∗ - - -0.1702 -0.1739 0.0037 2018.2755 461.1527
Au2 28037.8885 -14796.6130 -0.2171 -0.2272 0.0100 7061.8686 1334.6029

Hg +2
2 29308.2546 -15051.2177 -0.0250 -0.1792 0.1542 7247.0955 1227.1356

* With relativistic corrections.
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that all quantities evolve smoothly with distance. Covalent parameters are
typical of a single bond, with a delocalization index at equilibrium close to
that in dihydrogen. The EDF evolves as shown in Fig. 3. Only one electron
pair is clearly being exchanged during bond formation and, at equilibrium
the distribution is that of a normal correlated link. δAB shows a very shallow
inflection point close to R = 1.7 Å with δ ≈ 0.5. This has been suggested as
a measure of bond formation.31 In this sense, difluorine reaches equilibrium
soon after bond formation, as expected from a proto-bond. At variance
with H2 and other full-bonds, Eself displays an exponential-like behavior
with decreasing distance, with no clear hint of the plateau that is usually
found. Eint displays a minimum which is extrapolated to occur at about
R ≈ 1.15 Å, a much shorter distance than the equilibrium value. This points
again to the large Eself as the reason behind the anomalously large Re. As
evidenced throughout this paper, this is linked to the LPBWE. We have
also performed a CCSD(T) calculation with the aug-cc-pVTZ basis set at
the experimental15 geometry. This provides an improved binding energy of
−36.4 kcal/mol. The IQA data do not change appreciably. The total DI
decreases slightly to 0.8763. EAB

clas = 0.0516 au remains almost constant, so it
is the covalent contribution which accounts for the extra binding, increasing
to EAB

cov = −0.2667 au. Notice that the proto-bond character of the F-F link
can also be sensed through other real space properties, like the localization or
spread tensor (LT).32 The LT of difluorine shows a considerably large peak
which is usually associated to a bond-breaking process.

3.2 Dioxygen

Tables 9 and 10, together with Fig. 4 summarize the IQA and EDF results
for dioxygen. The deformation energy of each O atom is larger than in F2,
62 kcal/mol, but dioxygen is a clearly double-bonded system with a consid-
erably smaller Re. Edef of each F atom at R = 1.20 Å is larger than the
value reported in O2 by 18 kcal/mol. A second clear difference is found in the
evolution of Edef with distance. A very clear shoulder is found in dioxygen,
with two inflection points at about 2.1 and 1.4 Å. Thus a continuous change
from the well-known behavior of Edef in full-bonded systems like H2 or N2,
in which Edef shows a maximum and a minimum toward the exponential
behavior of difluorine passing through the shoulder in dioxygen is observed.
A minimum in V AA

ee is also found. The covalent energy in the O2 molecule
is characteristic of a double bonded system, with δ considerably larger than
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Table 8: Some IQA quantities in F2. Distances in Å energies in au.

R T EAself V AA
ee V AB

ee EABint EABcov EABclas δAB

1.20 99.8512 -99.4191 50.6462 33.2515 -0.2588 -0.3969 0.1381 1.1297
1.30 99.6874 -99.4460 50.3718 31.1712 -0.2409 -0.3264 0.0854 1.0164

1.41 99.5741 -99.4681 50.1455 29.0871 -0.2091 -0.2594 0.0503 0.8854

1.50 99.5218 -99.4816 50.0186 27.6052 -0.1806 -0.2140 0.0334 0.7789
1.60 99.4901 -99.4945 49.9164 26.0684 -0.1474 -0.1688 0.0214 0.6574
1.70 99.4788 -99.5054 49.8490 24.6695 -0.1167 -0.1307 0.0140 0.5401
1.80 99.4806 -99.5141 49.8100 23.3998 -0.0906 -0.0999 0.0093 0.4341
1.90 99.4872 -99.5220 49.7842 22.2323 -0.0682 -0.0748 0.0065 0.3402
2.00 99.4966 -99.5279 49.7716 21.1692 -0.0509 -0.0555 0.0046 0.2633
2.20 99.5130 -99.5360 49.7617 19.3022 -0.0275 -0.0301 0.0026 0.1540
2.40 99.5235 -99.5406 49.7597 17.7259 -0.0148 -0.0164 0.0015 0.0898
2.60 99.5294 -99.5431 49.7601 16.3840 -0.0081 -0.0091 0.0010 0.0536
2.80 99.5324 -99.5445 49.7601 15.2279 -0.0045 -0.0052 0.0006 0.0326
3.00 99.5339 -99.5453 49.7601 14.2231 -0.0025 -0.0030 0.0004 0.0204
3.20 99.5346 -99.5457 49.7601 13.3419 -0.0014 -0.0018 0.0003 0.0131
3.40 99.5349 -99.5460 49.7599 12.5629 -0.0008 -0.0011 0.0002 0.0086
3.60 99.5352 -99.5461 49.7599 11.8696 -0.0005 -0.0007 0.0001 0.0059
3.80 99.5352 -99.5462 49.7599 11.2484 -0.0003 -0.0004 0.0001 0.0042
4.00 99.5354 -99.5463 49.7600 10.6889 -0.0002 -0.0003 0.0001 0.0031
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Figure 3: Evolution of the EDF in F2. The weight of the ionic structures has
been multiplied by a factor of two for convenience
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Table 9: Some IQA quantities in O2. Distances in Å energies in au.

R T EAself V AA
ee V AB

ee EABint EABcov EABclas δAB

1.10 75.2365 -74.7991 37.6474 27.6547 -0.3802 -0.6140 0.2338 1.7044

1.21 75.0063 -74.8178 37.2984 25.7620 -0.3668 -0.5115 0.1447 1.5493

1.30 74.8848 -74.8274 37.0670 24.3119 -0.3407 -0.4360 0.0953 1.4188
1.40 74.8046 -74.8337 36.8766 22.9053 -0.3062 -0.3666 0.0603 1.2841
1.50 74.7577 -74.8388 36.7315 21.6277 -0.2688 -0.3069 0.0381 1.1532
1.60 74.7351 -74.8430 36.6275 20.4685 -0.2320 -0.2559 0.0239 1.0265
1.70 74.7307 -74.8475 36.5571 19.4094 -0.1964 -0.2114 0.0150 0.9001
1.80 74.7418 -74.8530 36.5170 18.4387 -0.1623 -0.1718 0.0095 0.7711
1.90 74.7666 -74.8598 36.5046 17.5450 -0.1295 -0.1356 0.0061 0.6367
2.00 74.8019 -74.8686 36.5145 16.7166 -0.0983 -0.1023 0.0040 0.4986
2.20 74.8726 -74.8960 36.5498 15.2377 -0.0494 -0.0517 0.0022 0.2683
2.40 74.8968 -74.9056 36.5629 13.9992 -0.0266 -0.0279 0.0012 0.1538
2.60 74.9029 -74.9105 36.5628 12.9450 -0.0156 -0.0164 0.0007 0.0967
2.80 74.9044 -74.9132 36.5602 12.0352 -0.0096 -0.0101 0.0004 0.0645
3.00 74.9048 -74.9148 36.5580 11.2425 -0.0061 -0.0064 0.0003 0.0449
3.20 74.9050 -74.9158 36.5568 10.5467 -0.0040 -0.0042 0.0002 0.0327
3.40 74.9052 -74.9163 36.5562 9.9311 -0.0027 -0.0029 0.0001 0.0249
3.60 74.9053 -74.9167 36.5557 9.3828 -0.0020 -0.0021 0.0001 0.0199
3.80 74.9054 -74.9169 36.5555 8.8916 -0.0014 -0.0015 0.0000 0.0166
4.00 74.9054 -74.9170 36.5555 8.4490 -0.0011 -0.0012 0.0000 0.0144
4.20 74.9054 -74.9171 36.5554 8.0483 -0.0009 -0.0010 0.0000 0.0130
4.40 74.9055 -74.9171 36.5554 7.6838 -0.0008 -0.0008 0.0000 0.0121
4.60 74.9055 -74.9172 36.5554 7.3508 -0.0007 -0.0007 0.0000 0.0114
4.80 74.9055 -74.9172 36.5555 7.0454 -0.0006 -0.0006 0.0000 0.0110
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Table 10: Relevant EDF structures in O2

Dist (8,8) (7,9) (6,10)

1.10 0.4256 0.2435 0.0421

1.21 0.4482 0.2402 0.0345

1.30 0.4702 0.2355 0.0282
1.40 0.4978 0.2285 0.0222
1.50 0.5285 0.2184 0.0169
1.60 0.5641 0.2052 0.0125
1.70 0.6051 0.1883 0.0089
1.80 0.6525 0.1674 0.0062
1.90 0.7071 0.1425 0.0040
2.20 0.8712 0.0635 0.0000
2.40 0.9254 0.0368 0.0000
2.60 0.9531 0.0231 0.0000
2.80 0.9689 0.0153 0.0000
3.00 0.9784 0.0106 0.0000
3.20 0.9845 0.0076 0.0000
3.40 0.9883 0.0056 0.0000
3.60 0.9908 0.0044 0.0000
3.80 0.9924 0.0036 0.0000
4.00 0.9935 0.0030 0.0000
4.20 0.9942 0.0027 0.0000
4.40 0.9947 0.0025 0.0000
4.60 0.9950 0.0023 0.0000
4.80 0.9952 0.0022 0.0000
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Table 11: Laplacian of the density for the asymmetric (A6=B) and symmetric
molecules (A=B) at the bond critical point. Data in au.

Molecule ∇2ρ(bcp) Molecule ∇2ρ(bcp)
CH3F(C−F) 0.0582 H2 -1.3676
LiOH(Li−O) 0.6480 C-Cb C5H6 0.1556
SiH3F(Si−F) 1.1087 N2 -3.1734
XeF2(Xe−F) 0.2418 N2H4(N−N) -0.5212

O2 -0.8396
H2O2(O−O) 0.0356
F2 0.4964
S2 -0.3082
Cl2 -0.0841
Br2 -0.0375
Cu2 0.2352
Ag2 0.1813
Au2 0.2352
Hg +2

2 0.0960
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Figure 4: Evolution of the EDF in O2. The weight of the ionic structures
has been multiplied by a factor of two for convenience

1. The EDF shows clearly that the 0.5 intersection of the one-electron ex-
changes occurs at a distance larger than equilibrium, a notorious landmark
of multiple bonding. Notice that the laplacian at the bond critical point is
largely negative, as shown in Table 11.

3.3 Some transition metal diatomics

CSB has also been invoked to appear in many TM diatomics like Cu2, Ag2

and Au2. As shown in Table 7, in all these systems the Ecov values are
typical of rather standard covalent bonds, and the main eigencontribution to
δ is only slightly low in dicopper. Relativistic effects have been gauged in
Ag2 through the X2C25 approach. As the Table uncovers, these effects do
not alter the bonding analysis significantly in Ag2, but play a significant role
in gold an mercury.

In the X2C approach, the electronic and positronic states are decoupled
from the one electron Dirac equation
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(
V̂ c(~σ · ~p)

c(~σ · ~p) V̂ − 2c2

)(
φL

φS

)
= E

(
φL

φS

)
(22)

where φL and φS are the large and small component of the four-component
Dirac spinor, ~p is the standard momentum operator, ~σ the vector of Dirac
matrices and V̂ is the external potential. The Dirac equation is represented
in terms of a kinetically balanced basis set33, which yields the equation(

V̂ T̂

T̂ 1
4c2
Ŵ − T̂

)(
φL

φS

)
= E

(
Ŝ 0

0 1
2c2
T̂

)(
φL

φS

)
(23)

where Ŝ,T̂ ,V̂ are standard operators over spinors and Ŵ is a relativistic
operator with matrix elements given by

Wµν = 〈χµ|(~σ · ~p)V̂ (~σ · ~p)|χν〉 (24)

The four-component Hamiltonian in its matrix form can be block-diagonalized
using a single matrix transformation

U †DU =

(
h+ 0
0 h−

)
(25)

D =

(
V T
T 1

4c2
W − T

)
(26)

so that the electrons-only two-component equation is,

h+C
2c = ESC2c. (27)

In the X2c one- electron scheme, or X2C-1e, h+ is combined with untrans-
formed two-electron interactions for subsequent Hartree-Fock and electron-
correlated calculations. This scheme possesses the computational advantage
that no relativistic two-electron integrals are required, while the underlying
approximation is equivalent to the neglect of picture-change effects for the
two-electron interactions. Furthermore, since only the W matrix is spin-
dependent, spin separation for X2c-1e can be achieved by applying the Dirac
identity to W

Wνµ = W SF
νµ +W SO

νµ (28)

W SF
νµ = 〈χν |~p · (V̂ ~p)|χµ〉 (29)
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W SO
νµ = 〈χν |i~σ · (~p× V̂ ~p)|χµ〉 (30)

the spin free version of X2c-1e which is used in this work is obtained by leav-
ing out W SO, the spin-orbit one electron term, from 23 at the beginning of
the procedure. The decoupling transformation matrix U obtained during the
Hamiltonian construction procedure is necessary for a later picture-change
transformation of any monoelectronic property integral, like the density oper-
ator. The neglect of picture-change introduces errors in the electron density
near the nucleus and small or negligible ones in the valence region that domi-
nate the contructuction of the interatomic surface. Thus if one constructs the
density in the usual way neglecting the transformation, the error is very small.
Moreover as in this case the systems are homodiatomic, symmetry rules en-
force the surface at the bisection plane between both nucleus, which is the
surface obtained in the calculation. The atomic overlap matrices (AOM) are
also affected by this error also only near the nuclei, but we expect that these
zones do not contribute to bonding or other properties derived from AOMs.
Otherwise n-th order matrices are not affected by our approximations, so no
error should be expected neither from the NAdOs nor the EDFs.

3.4 N2H4 and H2O2

Two other systems with well known LPBWE that have also been reported
as CSB are hydrazine and hydrogen peroxide. As shown in Table 7 there is
a very clear decrease in the first eigen-component of the delocalization index
on going from hydrazine to hydrogen peroxide to difluorine that is followed
by Ecov. The EDFs show a well-defined electron-pair bond. In N2H4, using
the NH2−NH2 partition, we find p(9, 9) = 0.510 and p(8, 10) = 0.227. A
second electron exchange is residual (with p(11, 7) = 0.017). This leads
to a rather standard link with f = 0.02. In H2O−OH2 the residual two-
electron exchange is even less important (p(11, 7) = 0.012) and the electron-
pair gives p(9, 9) = 0.552, p(8, 10) = 0.211, corresponding to f = 0.11. We
must recall that in F2 f = 0.22. The laplacians at bcps follow the expected
trends (Tab. 11) and become positive, although only slightly, in H2O2. Notice
also that as we increase the importance of CSB, we simply move to more
positively correlated, i.e. more dissociated, standard bonds. Importantly,
we corroborate that the larger the CSB contribution, the smaller the pair
fluctuation, in flagrant contradiction with the basic tenets of VB-CSB.
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3.5 Polar CSB: HF, XeF2, CH3F and SiH3F

Not only non-polar bonds have been related to CSB. Many other electron-
pair links that include F, for instance, have been shown to display very large
NOVB covalent-ionic resonance energies. Among them the HF, and partic-
ularly the SiH3F molecules, as well as many of the C-F bonds of well-known
organic moieties. SiH3F is reported to display covalent chemical behavior,12

with much larger static polarity, while the chemistry of CH3F, which is ex-
pected to be less polar, is more typically ionic. As briefly discussed in the
main text, our calculations show clear signs of proto-bonding situations in
all these cases, in agreement with Sanderson’s insight that uncovers LPBWE
as an atomic feature.

The methyl–fluorine or silyl-fluorine interactions display relatively large
covalent energies, −0.261 and −0.144 au, respectively. The net QTAIM
charges of the fluorine follow the electronegativity differences, being equal to
−0.716 and −0.902 au, in line with other very polar systems. This implies
that the ionic energy contributions are also large, −0.393 and −0.571 au,
respectively. However, by no means a big ionic energy, related to a static
charge distortion, is to be directly related to the absence of pair-electron
sharing. As noted in the main text, the delocalization indices are 0.896, 0.591
for the C-F and Si-F links, and the EDF analysis shows two rather correlated
bonds with f = 0.22, 0.60. We emphasize that in none of the compounds
examined we have found negative correlation factors that would clearly signal
a real space anomalous fluctuation of the pair density.

The hydrogen fluoride molecule is found to display one of the largest
NOVB covalent-ionic resonance energies, about 85 kcal/mol.12 The F QTAIM
charge is −0.745 au, quite compatible with that in CH3F given the similar
electronegativities of H and C. Its covalent and ionic energies turn out to
be −0.136,−0.343 au, respectively. The latter is similar to the value in
CH3F, but the former is almost half of the exchange-correlation energy in
methylfluoride, a value compatible with a much smaller δ = 0.424. This
difference is due to the inability of H to provide more than one electron to the
fluorine atom, a limitation that does not exist in C. An analysis of the EDF,
with p(0, 10) = 0.756, p(1, 9) = 0.233 gives f = 0.05. It is interesting that
the value of the Laplacian of the density at the bcp is extremely negative,
∇2ρ(rbcp) = −4.319 au, a fact that definitively shows that the connection
between laplacians and CSB is not one to one.

XeF2 does also display a rather polar link. The F QTAIM charge is−0.690
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au, with Ecov − 0.1864 and Eion = −0.355 au. The Xe-F delocalization
index is large, 0.780, and the EDF shows clear indication of futher than
single bonding, with non-negligible three-center contributions. If these are
neglected, the XeF-F EDF displays a correlation factor f ≈ 0.20.

3.6 [1.1.1]Propellane

We end the presentation with a brief discussion of propellane. Its bridge C-C
bond has been described as CSB. It is definitely longer (1.596 versus 1.524
Å for the non-bridging links) than a standard single C-C bond. Only two
non-equivalent C atoms exist: the bridging C’s, Cb, and the non-bridging
C’s, Cnb. The former are negatively charged (Qb = −0.081) and the latter
wear a positive charge of about 0.042 au, being more deformed by about 50.8
kcal/mol than the bridging atoms. Aside from some multicenter features,
for instance the non-bonded Cnb-Cnb DI is very large (about 0.086), the Cb-
Cb E

b
cov = −0.109 au and δb = 0.410. These values are to be compared

with Enb
cov = −0.257 au, δnb = 0.803. Special care has to be taken with

the interpretation of EDFs in cyclic systems. A full analysis (which will be
presented elsewhere) shows a symmetric 2c,2e link with large f . The main
NAdO for the C-C bridge is clearly σ-like, between two heavily hybridized
functions, and ∇2ρ = 0.155 au at the Cb-Cb bcp. Fig. 5 shows the main
NAdO of the system.
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Figure 5: Critical points (with ∇2ρ) in propellane (left), together with the
main bonding natural adaptive orbital (right, δi = 0.352) for its bridging
bond.
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