Supporting Information

PdCl₂(CH₃CN)₂-catalyzed regioselective C-H olefinations of 2-amino biaryls with vinylsilanes as unactivated alkenes

Qiao-Ying Sun, Zhao Li, Zheng Xu, Zhan-Jiang Zheng, Jian Cao, Ke-Fang Yang, Yu-Ming Cui* and Li-Wen Xu*

Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China

Table of contents

General Information	1
General procedure for the synthesis of substrates 1	2
General procedure for the synthesis of products 3	8
Procedure for the synthesis of 4	19
Procedure for the synthesis of 5	19
Procedure for the synthesis of 6	20
Procedure for the synthesis of 7	21
Procedure for the synthesis of 8	22
Scheme 1	23
X-ray structures of product 3 k	23
References	24
¹ H, ¹³ C NMR Spectra	25

General Information

Unless specifically stated, all reagents were commercially obtained and where appropriate, purified prior to use. For example, Dichloromethane, toluene, were freshly distilled from CaH₂, tetrahydrofuran (THF) and 1,4-dioxane were dried and distilled from metal sodium and benzophenone. Other commercially available reagents and solvents were used directly without purification. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica (300 - 400 mesh). ¹H, ¹³C NMR spectra were recorded on a Bruker 400 MHz or 500 MHz spectrometer in CDCl₃. Multiplicities were given as: s (singlet); d (doublet); dd (doublets of doublet); t (triplet); q (quartet); or m (multiplets). High resolution mass spectra (HRMS) of the products were obtained on a Bruker Daltonics micro TOF-spectrometer.

General procedure for the synthesis of substrates 1.

The reaction flask with 2-bromo-*N*-methylaniline (10 mmol), aryboronic acid (1.2 equiv), K_2CO_3 (3 equiv), and $PdCl_2(PPh_3)_2$ (10 mol%) was evacuated and backfilled with N_2 . DMF/H₂O (40 mL/10 mL) was added under N_2 flow. The tube was closed and the mixture was stirred for 24 h at 90 °C. Then, the reaction was cooled to room temperature, diluted with H₂O and extracted with EtOAc three times. The combined organic layer was washed with brine twice, dried by Na_2SO_4 , evaporated, and purified by flash chromatography (PE/EA).

N-methyl-2-(naphthalen-1-yl)aniline 1a (81% yield)

White solid. m.p. 95-99 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (t, J = 8.6 Hz, 2H), 7.52 (d, J = 8.4 Hz, 1H), 7.50 – 7.44 (m, 1H), 7.41 (t, J = 7.4 Hz, 1H), 7.35 (dd, J = 4.9, 4.3 Hz, 1H), 7.30 (dd, J = 11.2, 6.2, 1.4 Hz, 2H), 7.05 (dd, J = 7.3, 1.3 Hz, 1H), 6.76 (t, J = 7.4 Hz, 1H), 6.70 (d, J = 8.1 Hz, 1H), 3.52 (s, 1H), 2.62 (d, J = 10.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.9, 136.9, 133.9, 131.9, 130.8, 129.0, 128.3, 128.1, 127.9, 126.3, 126.1 (d, J = 1.6 Hz), 125.9, 125.8, 116.8, 109.9, 30.8. HRMS (ESI) m/z: [M+H]⁺calculated for C₁₇H₁₆N: 234.1277, found: 234.1281.

N,5-dimethyl-2-(naphthalen-1-yl)aniline 1b (86% yield)

Colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.79 (dd, J = 11.6, 8.3 Hz, 2H), 7.54 (d, J = 8.4 Hz, 1H), 7.48 – 7.42 (m, 1H), 7.42 – 7.36 (m, 1H), 7.31 (td, J = 7.9, 0.8 Hz, 2H), 6.93 (d, J = 7.5 Hz, 1H), 6.58 (d, J = 7.5 Hz, 1H), 6.51 (s, 1H), 3.40 (s, 1H), 2.62 (s, 3H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.9, 138.9, 136.9, 133.9, 132.2, 130.7, 128.3, 128.1, 127.9, 126.2 (d, J = 1.8 Hz), 125.9 (d, J = 7.7 Hz), 123.0, 117.5, 110.7, 30.8, 21.9. HRMS (ESI) m/z: [M+H]⁺calculated for C₁₈H₁₈N: 248.1434, found: 248.1429.

N,4-dimethyl-2-(naphthalen-1-yl)aniline 1c (88% yield)

Yellow solid. m.p. 88-89 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.77 (m, 2H), 7.53 (d, J = 8.4 Hz, 1H), 7.50 – 7.45 (m, 1H), 7.42 (t, J = 7.4 Hz, 1H), 7.34 (dd, J = 12.5, 6.5 Hz, 2H), 7.11 (dd, J = 8.2, 1.6 Hz, 1H), 6.89 (d, J = 1.5 Hz, 1H), 6.67 (d, J = 8.2 Hz, 1H), 2.62 (s, 3H), 2.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 137.0, 133.8, 131.9, 131.5, 129.4, 128.3, 127.9, 127.8, 126.3 – 125.9 (m), 110.3, 31.2, 20.4. HRMS (ESI) m/z: [M+H]⁺calculated for C₁₈H₁₈N:248.1434, found: 248.1429.

N-methyl-2-(4-methylnaphthalen-1-yl)aniline 1d (74% yield)

White solid. m.p. 102-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.3 Hz, 1H), 7.53 (d, *J* = 8.3 Hz, 1H), 7.45 (t, *J* = 7.4 Hz, 1H), 7.29 (dt, *J* = 17.9, 7.7 Hz, 4H), 7.04 (d, *J* = 7.1 Hz, 1H), 6.75 (t, *J* = 7.2 Hz, 1H), 6.69 (d, *J* = 8.0 Hz, 1H), 3.55 (s, 1H), 2.67 (s, 3H), 2.62 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.9, 135.1, 134.4, 132.9, 131.9, 130.9, 128.9, 127.6, 126.7 (d, *J* =

2.9 Hz), 125.9 (d, *J* = 13.8 Hz), 124.4, 116.8, 109.9, 30.9, 19.6. **HRMS (ESI)** m/z: [M]⁺calculated for C₁₈H₁₇N: 247.1361, found: 247.1363.

N,2'-dimethyl-[1,1'-biphenyl]-2-amine 1e (72% yield)

White solid. m.p. 46-48 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.15 (m, 4H), 7.14 – 7.07 (m, 1H), 6.91 (dd, J = 7.3, 1.4 Hz, 1H), 6.69 (dd, J = 7.3, 6.9 Hz, 1H), 6.62 (d, J = 8.1 Hz, 1H), 3.46 (s, 1H), 2.70 (s, 3H), 2.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.2, 138.5, 137.3, 130.4 (d, J = 7.4 Hz), 129.6, 128.6, 127.7, 127.3, 126.3, 116.7, 109.6, 30.8, 19.7. HRMS (ESI) m/z: [M+H]⁺calculated for C₁₄H₁₆N: 198.1277, found: 198.1273.

N-methyl-[1,1':2',1"-terphenyl]-2-amine 1f (69% yield)

Purple solid. m.p. 125-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.38 (m, 1H), 7.37 – 7.32 (m, 2H), 7.29 (dt, *J* = 7.4, 2.8 Hz, 1H), 7.14 – 7.05 (m, 6H), 6.86 (dd, *J* = 7.4, 1.4 Hz, 1H), 6.57 (t, *J* = 7.3 Hz, 1H), 6.44 (d, *J* = 8.1 Hz, 1H), 3.54 (s, 1H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.2, 141.4, 140.9, 137.6, 131.4, 130.8, 130.4, 128.9, 128.5, 127.9 (d, *J* = 3.8 Hz), 127.8, 127.2, 126.8, 116.8, 109.9, 30.7. HRMS (ESI) m/z: [M+H]⁺calculated for C₁₉H₁₈N: 260.1434, found: 260.1435.

2'-chloro-N-methyl-[1,1'-biphenyl]-2-amine 1g (69% yield)

White solid. m.p. 40-42 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.55 (m, 1H), 7.48 – 7.36 (m, 4H), 7.14 (dd, J = 7.4, 1.4 Hz, 1H), 6.90 (td, J = 7.4, 0.8 Hz, 1H), 6.83 (d, J = 8.1 Hz, 1H), 3.58 (s, 1H), 2.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.5, 138.0, 134.3, 132.3, 130.1 (d, J = 1.2 Hz), 129.5, 129.2, 127.4, 125.1, 116.7, 110.0, 30.9 (d, J = 5.0 Hz). HRMS (ESI) m/z: [M+H]⁺calculated for C₁₃H₁₃ClN: 218.0731, found: 218.0734.

2'-methoxy-N-methyl-[1,1'-biphenyl]-2-amine 1h (65% yield)

White solid. m.p. 135-138 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (td, J = 8.3, 1.7 Hz, 1H), 7.38 – 7.26 (m, 2H), 7.18 – 7.00 (m, 3H), 6.84 (td, J = 7.4, 0.8 Hz, 1H), 6.78 (d, J = 8.1 Hz, 1H), 3.83 (s, 3H), 2.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.9, 146.9, 132.0, 130.7, 129.0, 128.8, 128.1, 124.7, 121.2, 116.8, 111.4, 110.0, 55.8, 31.0. HRMS (ESI) m/z: [M+H]⁺calculated for C₁₄H₁₆NO: 214.1226, found: 214.1226.

N,2',4'-trimethyl-[1,1'-biphenyl]-2-amine 1i (66% yield)

Colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.39 – 7.31 (m, 1H), 7.17 (dd, *J* = 16.8, 9.2 Hz, 3H), 7.06 (dd, *J* = 7.3, 1.4 Hz, 1H), 6.83 (t, *J* = 7.3 Hz, 1H), 6.76 (d, *J* = 8.1 Hz, 1H), 3.55 (s, 1H), 2.85 (s, 3H), 2.45 (s, 3H), 2.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.5, 137.4, 137.1, 135.6, 131.1, 130.3, 129.8, 128.5, 127.3, 127.0, 116.6, 109.5, 30.7, 21.2, 19.7. HRMS (ESI) m/z: [M+H]⁺calculated for C₁₅H₁₈N: 212.1434, found: 212.1431.

5'-fluoro-N,2'-dimethyl-[1,1'-biphenyl]-2-amine 1j (54% yield)

Colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.38 (t, J = 7.7 Hz, 1H), 7.35 – 7.29 (m, 1H), 7.10 – 6.97 (m, 3H), 6.85 (t, J = 7.4 Hz, 1H), 6.78 (d, J = 8.1 Hz, 1H), 3.52 (s, 1H), 2.87 (s, 3H), 2.17 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 162.6, 160.1, 146.1, 140.4 (d, J = 7.4 Hz), 132.9 (d, J = 3.1 Hz), 131.6 (d, J = 8.0 Hz), 129.5, 129.0, 126.2 (d, J = 1.5 Hz), 117.1 (d, J = 20.6 Hz), 116.7, 114.5 (d, J = 20.7 Hz), 109.7, 30.7, 18.9. **HRMS (ESI)** m/z: [M+H]⁺calculated for C₁₄H₁₅NF: 216.1183, found: 216.1185.

2-(naphthalen-1-yl)aniline 1k (70% yield)

White solid. m.p. 68-70 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.72 (m, 2H), 7.57 (d, J = 8.3 Hz, 1H), 7.41 (ddt, J = 27.6, 14.2, 7.1 Hz, 3H), 7.19 (dd, J = 12.3, 4.7 Hz, 1H), 7.09 (dd, J = 7.5, 1.2 Hz, 1H), 6.88 – 6.72 (m, 2H), 3.35 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 136.9, 133.9, 131.7, 131.3, 128.8, 128.4, 128.1, 127.7, 126.3, 126.2, 126.1, 125.8, 118.7, 115.6. HRMS (ESI) m/z: [M+H]⁺calculated for C₁₆H₁₄N: 220.1121, found: 220.1121.

2-(naphthalen-1-yl)-N-tosylbenzamide 11 (10% yield)

White solid. m.p. 133-135 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.83 (m, 3H), 7.72 (dt, J = 29.7, 8.3 Hz, 2H), 7.55 – 7.49 (m, 1H), 7.49 – 7.27 (m, 5H), 7.20 – 7.14 (m, 2H), 7.08 (d, J = 8.3 Hz, 1H), 6.94 (d, J = 8.1 Hz, 1H), 2.30 (d, J = 17.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 164.9, 144.4, 141.9, 138.2, 136.9, 134.7, 133.7, 132.8, 132.4 – 132.1 (m), 131.6 (d, J = 16.1 Hz), 130.9, 130.0, 129.8, 129.4, 129.2, 128.6 (d, J = 2.5 Hz), 128.0, 127.6 (d, J = 4.7 Hz), 127.3, 126.9, 126.6, 126.4, 126.0, 125.8 – 125.5 (m), 125.1 (d, J = 16.3 Hz), 21.7. HRMS (ESI) m/z: [M+H]⁺calculated for C₂₄H₁₉NNaO₃S: 424.0978, found: 424.0996.

2-(benzo[b]thiophen-3-yl)-N-methylaniline 1m (96% yield)

Colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.82 (d, *J* = 7.5 Hz, 1H), 7.51 – 7.44 (m, 1H), 7.35 – 7.20 (m, 4H), 7.09 (dd, *J* = 7.4, 1.4 Hz, 1H), 6.79 – 6.57 (m, 2H), 3.82 (s, 1H), 2.67 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 147.2, 140.4, 138.4, 134.9, 130.9, 129.4, 124.9, 124.5 (d, *J* = 29.8 Hz), 123.4, 122.8, 120.8, 116.7, 110.1, 30.8. **HRMS (ESI)** m/z: [M+H]⁺calculated for C₁₅H₁₄NS: 240.0841, found: 240.0849.

2-(furan-2-yl)-N-methylaniline 1n (58% yield)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 1.1 Hz, 1H), 7.35 (dd, J = 7.7, 1.4 Hz, 1H), 7.18 – 7.10 (m, 1H), 6.64 (dd, J = 16.5, 8.0 Hz, 2H), 6.45 (d, J = 3.1 Hz, 1H), 6.40 (dd, J = 3.3, 1.8 Hz, 1H), 5.03 (s, 1H), 2.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 145.9, 141.3, 129.3, 127.9, 116.8, 115.9, 111.3, 110.7, 106.6, 30.7. HRMS (ESI) m/z: [M+H]⁺calculated for C₁₁H₁₂NO: 174.0913, found: 174.0919.

General procedure for the synthesis of products 3.

Under air atmosphere, the substrate (0.5 mmol), PdCl₂(CH₃CN)₂ (3.9 mg, 3 mol%), AgOAc(167 mg, 1 mmol, 2 equiv) were added to a reaction tube containing a magnetic stir bar. After which, DCE (5.0 mL) and vinyl silane (1.5 mmol, 3 equiv) were added sequentially using a syringe. The reaction mixture was stirred at 40 °C in an oil bath for 16 hours. The reaction mixture was cooled to room temperature. The solvent was then evaporated *in vacuo* and the residue was purified by using flash silica gel column chromatography with EA and PE as eluent to afford the final products.

(E) -N-methyl-2-(2-(2-(trimethylsilyl)vinyl)naphthalen-1-yl)aniline **3a** (99% yield)

White solid. m.p. 70-74 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.82 (m, 3H), 7.54 (d, J = 8.4 Hz, 1H), 7.51 – 7.33 (m, 3H), 7.09 – 6.96 (m, 1H), 6.93 – 6.70 (m, 3H), 6.56 (d, J = 19.2 Hz, 1H), 3.27 (s, 1H), 2.72 (s, 3H), 0.14 – -0.02 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 148.6, 143.5, 135.9, 135.7, 134.9, 134.3, 132.5(d, J = 4.1 Hz), 130.4, 129.3 (d, J = 10.8 Hz), 128.2 – 127.2 (m), 124.2 (d, J = 8.0 Hz), 117.9, 111.0, 32.1, 0.0 (d, J = 2.9 Hz). HRMS (ESI) m/z: [M+H]⁺calculated for C₂₂H₂₆NSi: 332.1829, found: 332.1836.

(E)-N-methyl-2-(2-(2-(triethylsilyl)vinyl)naphthalen-1-yl)aniline **3b** (71% yield)
Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (dt, J = 8.2, 6.8 Hz, 3H), 7.43 (d, J = 8.4 Hz, 1H), 7.34 (t, J = 7.4 Hz, 1H), 7.26 (q, J = 8.2 Hz, 2H), 6.91 (d, J = 7.3 Hz, 1H), 6.71 (dt, J = 17.8, 7.5 Hz, 3H), 6.37 (d, J = 19.4 Hz, 1H), 3.16 (s, 1H), 2.59 (s, 3H), 0.78 (t, J = 7.9 Hz, 9H), 0.43 (q, J = 7.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 147.2, 143.5, 134.7, 134.5, 133.6, 133.0, 131.1, 129.0, 127.9 (d, J = 10.6 Hz), 127.5, 126.7, 126.5, 126.0, 122.9 (d, J = 17.6 Hz), 116.7, 109.7, 30.7, 7.3, 3.6. HRMS (ESI) m/z: [M+H]⁺calculated for C₂₅H₃₂NSi: 374.2299, found: 374.2306.

(E)-N-methyl-2-(2-(triphenylsilyl)vinyl)naphthalen-1-yl)aniline **3c** (86% yield)

White solid. m.p. 46-50 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.6 Hz, 1H), 7.73 (dd, J = 13.8, 8.5 Hz, 2H), 7.51 – 7.10 (m, 19H), 6.88 (t, J = 12.7 Hz, 2H), 6.79 (d, J = 7.2 Hz, 1H), 6.63 (t, J = 7.2 Hz, 1H), 6.52 (d, J = 8.1 Hz, 1H), 3.05 (s, 1H), 2.59 – 2.28 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.0, 146.9, 135.9, 135.3, 134.7, 134.5, 133.9, 133.0, 131.0, 129.5, 129.1, 128.3, 128.0 (d, J = 8.8 Hz), 126.8, 126.6, 126.4, 124.8, 123.3, 122.8, 116.9, 110.0, 30.7. HRMS (ESI) m/z: [M+H]⁺calculated for C₃₇H₃₂NSi: 518.2299, found: 518.2307.

(E)-N-methyl-2-(2-(2-(methyldiphenylsilyl)vinyl)naphthalen-1-yl)aniline 3d (88% yield)

Colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 7.86 – 7.72 (m, 3H), 7.43 – 7.33 (m, 6H), 7.24 (dt, *J* = 20.7, 7.0 Hz, 8H), 6.89 (d, *J* = 7.2 Hz, 1H), 6.82 (d, *J* = 19.2 Hz, 1H), 6.75 (t, *J* = 7.2 Hz, 1H), 6.72 – 6.64 (m, 2H), 2.53 (s, 3H), 0.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.9, 136.4, 134.7 (d, *J* = 13.9 Hz), 134.5, 133.7, 132.9, 131.1, 129.2 (d, *J* = 6.0 Hz), 128.3, 127.9, 127.8, 126.8 – 126.5 (m), 126.3, 123.0, 31.2, -3.9. HRMS (ESI) m/z: [M]⁺calculated for C₃₂H₂₉NSi: 455.2069, found: 455.2073.

(E)-2-(2-((chloromethyl)dimethylsilyl)vinyl)naphthalen-1-yl)-N-methylaniline **3e** (63% yield) White solid. m.p. 61-65 °C. ¹**H NMR (400 MHz, CDCl₃)** δ 7.80 – 7.70 (m, 3H), 7.43 (d, *J* = 8.4 Hz, 1H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.31 – 7.21 (m, 2H), 6.89 (d, *J* = 7.3 Hz, 1H), 6.76 (dd, *J* = 17.5, 10.6 Hz, 2H), 6.67 (d, *J* = 8.1 Hz, 1H), 6.39 (d, *J* = 19.4 Hz, 1H), 3.09 (s, 1H), 2.66 (s, 2H), 2.59 (s, 3H), 0.04 (d, *J* = 1.8 Hz, 6H). ¹³**C NMR (101 MHz, CDCl₃)** δ 146.1, 143.7, 134.1, 132.9, 132.7, 131.8, 130.1, 128.2, 127.1, 126.9, 125.7, 125.5, 125.3, 125.1, 121.6 (d, *J* = 2.6 Hz), 115.7, 108.8, 29.7, 29.4, -5.5 (d, *J* = 5.9 Hz). **HRMS (ESI)** m/z: [M+H]⁺calculated for C₂₂H₂₅ClNSi: 366.1439, found: 366.1447.

(E)-N-methyl-2-(2-(2-phenyl-2-(trimethylsilyl)vinyl)naphthalen-1-yl)aniline **3f** (74% yield)
Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (t, J = 7.2 Hz, 1H), 7.58 (d, J = 8.3 Hz, 1H),
7.46 (dd, J = 17.5, 8.3 Hz, 3H), 7.37 (t, J = 7.6 Hz, 1H), 7.31 (t, J = 7.3 Hz, 2H), 7.23 (t, J = 7.3 Hz, 1H),
7.12 (dd, J = 7.3, 1.2 Hz, 1H), 7.04 (t, J = 7.4 Hz, 3H), 6.94 (t, J = 7.2 Hz, 1H), 6.87 (d, J = 8.1 Hz, 1H), 6.71 (s, 1H), 2.82 (s, 3H), 0.00 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 148.5 (d, J

= 7.9 Hz), 144.2, 138.9, 137.5, 136.4, 134.3 (d, J = 17.3 Hz), 132.5, 130.7, 129.9, 129.5, 128.9, 128.3, 127.8 (d, J = 5.5 Hz), 127.5, 127.3, 125.4, 118.7, 111.6, 32.5, -0.0. HRMS (ESI) m/z: [M+H]⁺calculated for C₂₈H₃₀NSi: 408.2142, found: 408.2149.

(E)-N,5-dimethyl-2-(2-(2-(trimethylsilyl)vinyl)naphthalen-1-yl)aniline 3g (92% yield)
Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, J = 16.0, 8.7 Hz, 3H), 7.50 (d, J = 8.4 Hz, 1H), 7.40 (t, J = 7.3 Hz, 1H), 7.31 (t, J = 7.4 Hz, 1H), 6.85 (d, J = 7.4 Hz, 1H), 6.77 (d, J = 19.2 Hz, 1H), 6.65 (d, J = 7.4 Hz, 1H), 6.58 (s, 1H), 6.50 (d, J = 19.2 Hz, 1H), 3.27 (s, 1H), 2.66 (s, 3H), 2.42 (s, 3H), 0.00 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 148.2, 143.6, 139.9, 135.8 (d, J = 9.6 Hz), 134.8, 134.4, 132.3 (d, J = 4.2 Hz), 129.2 (d, J = 3.2 Hz), 128.0, 127.6, 127.2, 124.1, 121.5, 118.9, 112.0, 32.2, 23.2, -0.0. HRMS (ESI) m/z: [M+H]⁺calculated for C₂₃H₂₈NSi: 346.1986, found: 346.1991.

(E)-N,4-dimethyl-2-(2-(2-(trimethylsilyl)vinyl)naphthalen-1-yl)aniline **3h** (78% yield)
White solid. m.p. 77-80 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (q, J = 8.8 Hz, 3H), 7.50 (d, J = 8.4 Hz, 1H), 7.42 (dd, J = 10.8, 3.9 Hz, 1H), 7.33 (dd, J = 11.1, 4.1 Hz, 1H), 7.16 (dd, J = 8.2, 1.6 Hz, 1H), 6.81 (d, J = 1.7 Hz, 1H), 6.75 (d, J = 19.3 Hz, 1H), 6.70 (d, J = 8.2 Hz, 1H), 6.50 (d, J = 10.8, 1

19.2 Hz, 1H), 2.65 (s, 3H), 2.27 (s, 3H), 0.00 (d, *J* = 3.1 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 146.2, 143.6, 135.9, 135.6, 134.8, 134.2, 133.1, 132.4, 130.7, 129.2 (d, *J* = 4.5 Hz), 128.0, 127.7, 127.3, 124.5, 124.1, 111.6, 32.6, 21.7, 0.0 . **HRMS (ESI)** m/z: $[M+H]^+$ calculated for $C_{23}H_{28}NSi$: 346.1986, found: 346.1991.

(E)-N-methyl-2-(4-methyl-2-(2-(trimethylsilyl)vinyl)naphthalen-1-yl)aniline **3i** (80% yield) White solid. m.p. 54-58 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.3 Hz, 1H), 7.71 (s, 1H), 7.58 – 7.41 (m, 2H), 7.33 (q, J = 6.9 Hz, 2H), 6.97 (d, J = 7.3 Hz, 1H), 6.87 – 6.66 (m, 3H), 6.51 (d, J = 19.2 Hz, 1H), 3.25 (s, 1H), 2.73 (s, 3H), 2.66 (s, 3H), 0.00 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 148.7, 143.5, 135.4, 135.1, 134.5 – 133.9 (m), 132.6, 132.1, 130.2, 128.5, 127.4, 127.2, 125.4, 124.7, 124.4, 117.9, 110.9, 32.1, 20.9, -0.0. HRMS (ESI) m/z: [M+H]⁺calculated for C₂₃H₂₈NSi: 346.1986, found: 346.1991.

(E)-N,2'-dimethyl-6'-(2-(trimethylsilyl)vinyl)-[1,1'-biphenyl]-2-amine **3j** (99% yield) White solid. m.p. 41-43 °C. ¹**H NMR (400 MHz, CDCl₃)** δ 7.59 (d, J = 7.6 Hz, 1H), 7.28 (dt, J = 16.5, 7.2 Hz, 3H), 6.91 (d, J = 6.6 Hz, 1H), 6.80 (t, J = 7.3 Hz, 1H), 6.73 (d, J = 8.1 Hz, 1H), 6.57 (d, J = 19.2 Hz, 1H), 6.38 (d, J = 19.2 Hz, 1H), 3.29 (s, 1H), 2.77 (s, 3H), 2.09 (s, 3H), -0.02 (d, J = 14.5 Hz, 9H). ¹³**C NMR (101 MHz, CDCl₃)** δ 147.8, 143.7, 139.1 (d, J = 1.7 Hz), 138.4, 131.7, 131.2, 131.1, 129.9, 128.9, 125.9, 123.9, 118.2, 110.9, 32.2, 21.6, -0.0. **HRMS (ESI)** m/z: [M+H]⁺calculated for C₁₉H₂₆NSi: 296.1829, found: 296.1836.

(E)-N-methyl-6'-(2-(trimethylsilyl)vinyl)-[1,1':2',1"-terphenyl]-2-amine **3k** (81% yield) White solid. m.p. 92-94 °C. ¹**H NMR (400 MHz, CDCl₃)** δ 7.72 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.48 – 7.35 (m, 2H), 7.16 – 7.10 (m, 6H), 6.71 (dd, *J* = 7.8, 1.5 Hz, 1H), 6.63 (d, *J* = 19.2 Hz, 1H), 6.56 (t, *J* = 7.1 Hz, 2H), 6.43 (d, *J* = 19.2 Hz, 1H), 2.66 (s, 3H), 0.04 – -0.03 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 148.4, 144.1, 143.8, 142.7, 139.6, 137.2, 132.5 (d, *J* = 7.7 Hz), 131.3, 130.4, 129.8, 129.2, 128.8, 128.7, 127.8, 125.8, 118.0, 111.0, 32.2, -0.0. HRMS (ESI) m/z: [M+H]⁺calculated for C₂₄H₂₈NSi: 358.1986, found: 358.1991.

(E)-2'-methoxy-N-methyl-6'-(2-(trimethylsilyl)vinyl)-[1,1'-biphenyl]-2-amine **31** (60% yield) Colorless oil. ¹H NMR (**400** MHz, CDCl₃) δ 7.48 – 7.29 (m, 3H), 7.01 (dd, *J* = 14.6, 7.1 Hz, 2H), 6.91 – 6.76 (m, 2H), 6.63 (d, *J* = 19.2 Hz, 1H), 6.47 (d, *J* = 19.2 Hz, 1H), 3.81 (s, 3H), 3.45 (s, 1H), 2.84 (s, 3H), 0.03 (d, *J* = 28.2 Hz, 9H). ¹³C NMR (**101** MHz, CDCl₃) δ 158.9, 148.4, 143.3, 140.5, 132.4 (d, *J* = 7.8 Hz), 130.0 (d, *J* = 15.1 Hz), 127.7, 122.9, 118.9, 118.0, 111.9, 111.2, 57.3, 32.3, -0.0. HRMS (ESI) m/z: [M+H]⁺calculated for C₁₉H₂₆NOSi: 312.1778, found: 312.1787.

(E)-2'-chloro-N-methyl-6'-(2-(trimethylsilyl)vinyl)-[1,1'-biphenyl]-2-amine 3m (87% yield)
Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.7 Hz, 1H), 7.49 (d, J = 7.3 Hz, 1H),
7.38 (ddd, J = 12.8, 10.0, 4.6 Hz, 2H), 6.99 (dd, J = 7.4, 1.1 Hz, 1H), 6.87 (t, J = 7.3 Hz, 1H), 6.81

(d, J = 8.1 Hz, 1H), 6.51 (q, J = 19.2 Hz, 2H), 2.84 (s, 3H), 0.04 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 142.8, 141.6, 137.4, 136.5, 133.9, 131.7, 130.8, 130.4, 130.2, 125.2, 124.2, 118.4, 111.5, 32.4, 0.0. HRMS (ESI) m/z: [M+H]⁺calculated for C₁₈H₂₃ClNSi: 316.1283, found: 316.1291.

(E)-N,2',4'-trimethyl-6'-(2-(trimethylsilyl)vinyl)-[1,1'-biphenyl]-2-amine **3n** (88% yield)
Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.33 (dd, *J* = 14.8, 7.1 Hz, 1H), 7.13 (s, 1H), 6.94 (d, *J* = 7.3 Hz, 1H), 6.83 (t, *J* = 7.2 Hz, 1H), 6.76 (d, *J* = 8.1 Hz, 1H), 6.59 (d, *J* = 19.2 Hz, 1H), 6.41 (d, *J* = 19.2 Hz, 1H), 3.38 (s, 1H), 2.81 (s, 3H), 2.45 (s, 3H), 2.09 (s, 3H), 0.04 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 147.9, 143.8, 138.9, 138.4, 135.5, 132.1, 131.4 (d, *J* = 7.6 Hz), 129.8, 125.9, 124.6, 118.2, 110.9, 32.2, 22.6, 21.4, 0.0. HRMS (ESI) m/z: [M+H]⁺calculated for C₂₀H₂₈NSi: 310.1986, found: 310.1991.

(E)-3'-fluoro-N,6'-dimethyl-2'-(2-(trimethylsilyl)vinyl)-[1,1'-biphenyl]-2-amine **30** (66% yield) Colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.40 – 7.30 (m, 1H), 7.20 (dd, J = 8.3, 5.4 Hz, 1H), 7.06 (dd, J = 11.0, 8.5 Hz, 1H), 6.91 (d, J = 6.3 Hz, 1H), 6.84 (t, J = 7.3 Hz, 1H), 6.77 (d, J = 8.1Hz, 1H), 6.43 (d, J = 5.8 Hz, 2H), 3.40 (s, 1H), 2.82 (s, 3H), 2.07 (s, 3H), -0.00 (s, 9H). ¹³**C NMR (101 MHz, CDCl₃)** δ 162.6, 160.2, 147.6, 140.6 (d, J = 3.1 Hz), 138.7 (d, J = 8.7 Hz), 138.1, 134.8 (d, J = 3.5 Hz), 131.5 (d, J = 9.1 Hz), 131.3, 130.4, 127.4 (d, J = 10.1 Hz), 126.1, 118.7, 116.6 (d, J = 22.9 Hz), 111.5, 32.4, 21.3, -0.0. **HRMS (ESI)** m/z: [M+H]⁺calculated for C₁₉H₂₅FNSi: 314.1735, found: 314.1741.

(E)-N-methyl-2'-(2-(triethylsilyl)vinyl)-[1,1'-biphenyl]-2-amine **3p** (46% yield)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 7.2 Hz, 1H), 7.32 – 7.11 (m, 4H), 6.92 (d, J = 6.6 Hz, 1H), 6.74 – 6.52 (m, 3H), 6.28 (d, J = 19.4 Hz, 1H), 2.65 (s, 3H), 0.77 (t, J = 7.9 Hz, 9H), 0.41 (q, J = 7.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 146.3, 143.2, 137.7, 137.4, 130.9, 130.3, 128.8, 128.3, 127.8, 127.2, 126.1, 125.2, 116.7, 109.5, 30.7, 7.3, 3.5. HRMS (ESI) m/z: [M]⁺calculated for C₂₁H₂₉NSi: 323.2069, found: 323.2071.

(E)-4'-methoxy-N-methyl-2'-(2-(trimethylsilyl)vinyl)-[1,1'-biphenyl]-2-amine **3q** (28% yield) Colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.27 (dd, *J* = 12.6, 5.3 Hz, 1H), 7.22 (d, *J* = 2.4 Hz, 1H), 7.16 (d, *J* = 8.4 Hz, 1H), 7.01 – 6.95 (m, 1H), 6.90 (dd, *J* = 8.4, 2.6 Hz, 1H), 6.75 (t, *J* = 7.3 Hz, 1H), 6.68 (d, *J* = 8.0 Hz, 1H), 6.62 (d, *J* = 19.2 Hz, 1H), 6.40 (d, *J* = 19.2 Hz, 1H), 3.87 (s, 3H), 2.74 (s, 3H), -0.00 (s, 9H). ¹³**C NMR (101 MHz, CDCl₃)** δ 160.6, 147.9, 143.2, 139.5, 133.3, 132.1 (d, *J* = 6.8 Hz), 131.7, 130.0, 127.1, 118.1, 115.9, 111.0, 56.7, 32.1, 0.0. **HRMS (ESI)** m/z: [M]⁺calculated for C₁₉H₂₅NOSi: 311.1705, found: 311.1707.

(E)-2-(2-(2-(trimethylsilyl)vinyl)naphthalen-1-yl)aniline **3r** (48% yield)

Colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.83 (dd, J = 17.8, 9.3 Hz, 3H), 7.48 (d, J = 8.4 Hz, 1H), 7.41 (t, J = 7.3 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.23 (dd, J = 15.6, 8.3 Hz, 1H), 7.00 (d, J = 7.4 Hz, 1H), 6.91 – 6.73 (m, 3H), 6.52 (d, J = 19.2 Hz, 1H), 3.24 (s, 2H), -0.00 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 143.3, 135.8, 135.6, 134.8, 133.9, 132.9, 132.6, 130.2, 129.3 (d, J = 9.6 Hz), 127.9 (d, J = 10.0 Hz), 127.4, 124.7, 124.2, 119.8, 116.7, 0.0. HRMS (ESI) m/z: [M+H]⁺calculated for C₂₁H₂₄NSi: 318.1673, found: 318.1685.

6',6'''-((1E,1'E)-(propane-1,3-diylbis(dimethylsilanediyl))bis(ethene-2,1-diyl))bis(N,2'-dimethyl-[1,1'-biphenyl]-2-amine) **3s** (66% yield) Colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.64 (d, *J* = 7.4 Hz, 2H), 7.40 – 7.31 (m, 6H), 6.96 (dd, *J* = 5.0, 2.3 Hz, 2H), 6.86 (t, *J* = 7.2 Hz, 2H), 6.79 (d, *J* = 8.0 Hz, 2H), 6.60 (d, *J* = 19.2 Hz, 2H), 6.40 (d, *J* = 19.2 Hz, 2H), 3.41 (s, 2H), 2.82 (s, 6H), 2.15 (s, 6H), 1.33 – 1.25 (m, 2H), 0.68 – 0.45 (m, 4H), 0.06 – -0.07 (m, 12H). ¹³**C NMR (101 MHz, CDCl₃)** δ 146.3, 142.6, 137.8 (d, *J* = 10.0 Hz), 136.9, 129.8 (d, *J* = 19.0 Hz), 128.6, 127.7, 124.7, 122.7, 117.0, 109.8, 30.9, 20.1 (d, *J* = 18.6 Hz), 18.3, -2.9 (d, *J* = 5.1 Hz). **HRMS (ESI)** m/z: [M]⁺calculated for C₃₉H₅₀N₂Si₂: 602.3513, found: 602.3498.

N,4'-dimethyl-2',6'-bis((E)-2-(trimethylsilyl)vinyl)-[1,1'-biphenyl]-2-amine **3t** (30% yield) Colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.49 (s, 2H), 7.34 – 7.27 (m, 1H), 6.88 (d, *J* = 7.3 Hz, 1H), 6.79 (t, *J* = 7.2 Hz, 1H), 6.72 (d, *J* = 7.9 Hz, 1H), 6.58 (d, *J* = 19.2 Hz, 2H), 6.39 (d, *J* = 19.2 Hz, 2H), 2.75 (s, 3H), 2.44 (s, 3H), -0.02 (d, *J* = 12.9 Hz, 18H). ¹³**C NMR (101 MHz, CDCl₃)** δ 143.6, 139.2, 138.5, 134.7, 132.4, 131.7, 130.1, 126.9, 32.4, 31.1, 0.0. **HRMS (ESI)** m/z: [M]⁺calculated for C₂₄H₃₅NSi₂: 393.2308, found: 393.2309.

N-methyl-2',6'-bis((E)-2-(trimethylsilyl)vinyl)-[1,1'-biphenyl]-2-amine **3u** (43% yield) Colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.65 (d, *J* = 7.8 Hz, 2H), 7.40 – 7.26 (m, 2H), 6.88 (d, *J* = 7.3 Hz, 1H), 6.78 (t, *J* = 7.3 Hz, 1H), 6.71 (d, *J* = 8.2 Hz, 1H), 6.60 (d, *J* = 19.2 Hz, 2H), 6.39 (d, *J* = 19.2 Hz, 2H), 3.33 (s, 1H), 2.74 (d, *J* = 3.7 Hz, 3H), 0.04 – -0.05 (m, 18H). ¹³**C NMR** (101 MHz, CDCl₃) δ 148.1, 143.6, 139.4, 137.5, 132.2, 132.0, 130.2, 129.1, 126.1, 124.6, 118.0, 111.0, 32.2, 0.0. HRMS (ESI) m/z: [M+H]⁺calculated for C₂₃H₃₄NSi₂: 380.2224, found: 380.2236.

(E)-2-(2-methyl-6-(2-(trimethylsilyl)vinyl)phenyl)acetic acid **3v** (56% yield) (*E*/*Z*=2:1) Colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.50 (d, *J* = 8.5 Hz, 1H), 7.15 (t, *J* = 6.7 Hz, 6H), 5.23 (d, *J* = 14.5 Hz, 1H), 4.85 (d, *J* = 8.5 Hz, 1H), 3.68 (s, 1H), 3.66 (s, 2H), 2.30 (s, 3H), 2.28 (s, 1H), 0.06 (s, 9H), 0.00 (s, 5H). ¹³**C NMR (101 MHz, CDCl₃)** δ 169.6(d, *J* = 5.0 Hz), 147.2, 144.8, 137.9 (d, *J* = 9.8 Hz), 132.9 (d, *J* = 6.8 Hz), 131.5, 131.3, 128.7 (d, *J* = 6.0 Hz), 127.3 (d, *J* = 5.0 Hz), 111.2, 109.9, 40.3, 40.0, 20.6 (d, *J* = 5.1 Hz), 0.4, 0.0. **HRMS (ESI)** m/z: [M+Na]⁺calculated for C₁₄H₂₀NaO₂Si: 271.1125, found: 271.1131.

(E)-2-phenyl-2-(2-(trimethylsilyl)vinyl)phenyl)acetic acid **3w** (62% yield) (*E*/*Z*=1:1) Colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.50 (d, *J* = 8.4 Hz, 1H), 7.22 (t, *J* = 6.1 Hz, 14H), 7.20 – 7.15 (m, 4H), 7.13 (s, 1H), 5.20 (d, *J* = 14.5 Hz, 1H), 4.96 (s, 2H), 4.81 (d, *J* = 8.4 Hz, 1H), -0.00 (s, 9H), -0.11 (s, 7H). ¹³**C NMR (101 MHz, CDCl₃)** δ 170.7 (d, *J* = 2.0 Hz), 147.2, 144.8, 139.1, 138.9, 129.8 – 129.6 (m), 128.5 (d, *J* = 2.6 Hz), 111.6, 110.5, 58.2, 57.9, 0.4, 0.0. **HRMS** (**ESI**) m/z: [M+Na]⁺calculated for C₁₉H₂₂NaO₂Si: 333.1281, found: 333.1284.

(E)-2-(2-(trimethylsilyl)vinyl)naphthalen-1-yl)benzoic acid **3x** (54% yield) (*E*/*Z*=3:1) Colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 8.19 (d, *J* = 7.7 Hz, 1H), 8.11 (d, *J* = 7.6 Hz, 1H), 7.90 (t, *J* = 8.5 Hz, 3H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.60 – 7.51 (m, 3H), 7.46 (dd, *J* = 13.5, 7.2 Hz, 4H), 7.41 – 7.32 (m, 3H), 7.00 (d, *J* = 14.4 Hz, 1H), 4.83 (d, *J* = 8.6 Hz, 1H), 4.67 (d, *J* = 14.4 Hz, 1H), 0.13 (s, 3H), 0.00 (s, 9H). ¹³**C NMR (101 MHz, CDCl₃)** δ 165.1 (d, *J* = 9.7 Hz), 147.6, 144.6, 143.5 (d, *J* = 7.5 Hz), 140.8, 140.2, 134.5, 134.4, 133.5, 133.4 – 133.2 (m), 131.8, 131.2, 131.12, 129.5, 129.4, 128.9, 128.8 (d, *J* = 10.5 Hz), 127.2 (d, *J* = 6.3 Hz), 126.9, 126.8 (d, *J* = 5.9 Hz), 126.7, 126.5, 126.3 (d, *J* = 8.9 Hz), 111.3, 109.7, 0.7, 0.0. **HRMS (ESI)** m/z: [M+H]⁺calculated for C₂₂H₂₂NaO₂Si: 369.1281, found: 369.1289.

Procedure for the synthesis of 4.

3a (66.2 mg, 0.2 mmol) and NIS (1.5 equiv) was added in MeCN (2 mL). The resulting mixture were degassed, purged with N₂ (3 times) and then stirred at room temperature for 24 h. The mixture was filtered through Celite plug and the Celite was washed with EA. The combined organic layers were concentrated under reduced pressure. The crude material was purified by silica gel column chromatography (eluent: PE/EA = 50:1) to give **4** (55.5 mg, 72% yield)^[1].

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (t, J = 7.5 Hz, 2H), 7.60 – 7.50 (m, 2H), 7.44 – 7.24 (m, 4H), 7.23 – 7.11 (m, 2H), 6.86 (d, J = 14.9 Hz, 1H), 6.46 (d, J = 8.6 Hz, 1H), 2.59 (d, J = 9.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 140.6, 136.6, 135.7, 131.7, 131.2, 130.1, 129.9, 126.6, 125.8, 124.8, 124.4, 124.1, 122.6, 120.3, 109.9, 76.7, 28.3. HRMS (ESI) m/z: [M]⁺calculated for C₁₉H₁₆NI: 385.0322, found: 385.0317.

Procedure for the synthesis of 5.

3a (66.2 mg, 0.2 mmol) and Pd/C (20 wt%) (5 mol%) were added in MeOH/EA (1.75 mL: 0.25 mL). The resulting mixture was degassed, purged with hydrogen (3 times) and then stirred at room temperature overnight. The mixture was filtered through Celite plug and the Celite was washed with EA. The combined organic layers were concentrated under reduced pressure. The crude

material was purified by silica gel column chromatography (eluent: PE/EA = 50:1) to give 5 (65 mg, 98% yield).

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.93 (m, 2H), 7.62 (d, *J* = 8.5 Hz, 1H), 7.50 (ddd, *J* = 17.5, 15.7, 7.9 Hz, 4H), 7.14 (d, *J* = 7.2 Hz, 1H), 6.97 (t, *J* = 7.3 Hz, 1H), 6.90 (d, *J* = 8.2 Hz, 1H), 3.38 (s, 1H), 2.83 (s, 3H), 2.68 – 2.51 (m, 2H), 0.92 – 0.81 (m, 2H), -0.00 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 149.1, 144.6, 135.2, 135.0, 134.3, 132.8, 130.8, 130.1, 129.9, 129.7, 128.2, 127.9, 127.1, 126.0, 32.8, 30.1, 21.2, 0.0. HRMS (ESI) m/z: [M+H]⁺calculated for C₂₂H₂₈NSi: 334.1986, found: 334.1980.

Procedure for the synthesis of 6.

3a (66.2 mg, 0.2 mmol) was dissolved in THF (2 mL) in a round bottom flask equipped with a stir bar. Concentrated sulfuric acid (6 equiv) was added and the flask was fitted with a reflux condenser and placed in an oil bath at 80 °C and refluxed for 12 h. Upon cooling, the reaction mixture was quenched with water and extracted with diethyl ether. The combined organic layers were concentrated in *vacuo* and then purified by column chromatography on silica gel with 7% EtOAc in hexanes to afford **6** (29 mg, 56% yield)^[2].

Colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.77 (d, *J* = 6.8 Hz, 3H), 7.40 – 7.34 (m, 2H), 7.30 (d, *J* = 18.3, 8.2 Hz, 2H), 6.93 (d, *J* = 7.3 Hz, 1H), 6.78 (t, *J* = 7.3 Hz, 1H), 6.71 (d, *J* = 8.1 Hz, 1H), 6.54 (dd, *J* = 17.6, 11.0 Hz, 1H), 5.74 (d, *J* = 17.6 Hz, 1H), 5.14 (d, *J* = 11.0 Hz, 1H), 3.20 (s, 1H), 2.62 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.1, 134.1, 133.3, 132.7, 132.4, 131.8, 130.1,

128.0, 127.1, 126.9, 125.5 (d, J = 2.1 Hz), 125.0, 122.1, 121.6, 115.9, 114.0, 108.9, 29.8. **HRMS** (ESI) m/z: [M+H]⁺calculated for C₁₉H₁₈N: 260.1434, found: 260.1429.

Procedure for the synthesis of 7.

3a (66.2 mg, 0.2 mmol), MeI (2 equiv) and K₂CO₃ (2.5 equiv) were added in DMF (2 mL). The resulting mixture was degassed, purged with N₂ (3 times) and then stirred at 70 °C overnight. The mixture was filtered through Celite plug and the Celite was washed with EA. The combined organic layers were concentrated under reduced pressure. The crude material was purified by silica gel column chromatography (eluent: PE/EA = 50:1) to give **7** (47.7 mg, 69% yield).

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.7 Hz, 1H), 7.78 (dd, J = 8.1, 3.8 Hz, 2H), 7.57 (d, J = 8.4 Hz, 1H), 7.35 (ddd, J = 17.5, 14.6, 7.0 Hz, 3H), 7.12 – 6.96 (m, 3H), 6.76 (d, J = 19.2 Hz, 1H), 6.48 (d, J = 19.2 Hz, 1H), 2.39 (s, 6H), -0.00 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.9, 144.5, 138.9, 134.7, 134.4 (d, J = 6.4 Hz), 134.0, 131.4, 130.8, 129.8, 129.1, 128.5 (d, J = 10.6 Hz), 127.1, 126.8, 123.9, 121.9, 118.8, 44.2, -0.0. HRMS (ESI) m/z: [M+H]⁺calculated for C₂₃H₂₈NSi: 346.1986, found: 346.1978.

Procedure for the synthesis of 8.

3c (73.2 mg, 0.2 mmol) and 1,2,4-Triazolylsodium (1 equiv) was added in DMF (2 mL). The resulting mixture were degassed, purged with N₂ (3 times) and then stirred at 100 °C overnight. The mixture was filtered through Celite plug and the Celite was washed with EA. The combined organic layer was concentrated under reduced pressure. The crude material was purified by silica gel column chromatography (eluent: PE/EA = 10:1) to give **8** (35.9 mg, 45% yield).

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 7.6 Hz, 5H), 7.39 (d, J = 8.4 Hz, 1H), 7.34 – 7.18 (m, 3H), 6.88 – 6.83 (m, 1H), 6.80 – 6.69 (m, 2H), 6.66 (d, J = 8.1 Hz, 1H), 6.31 (d, J = 19.4 Hz, 1H), 3.59 (s, 2H), 3.18 (s, 1H), 2.55 (s, 3H), -0.00 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 151.3, 147.1, 145.2, 143.1, 135.3, 133.8 (d, J = 6.5 Hz), 132.8, 131.2, 129.3, 128.3, 128.0, 126.7 (d, J = 12.6 Hz), 126.5, 125.6, 122.7 (d, J = 4.0 Hz), 116.9, 109.9, 40.4, 30.8, -3.8. HRMS (ESI) m/z: [M]⁺calculated for C₂₄H₂₆N₄Si: 398.1927, found: 398.1928.

Scheme 1 Unsuitable biaryls and silanes.

X-ray structures of product 3k

(CCDC 1882245)

References

- [1] C.-B Reddy, A.-K. Shil, N.-R. Guha, D. Sharma and P. Das. *Catalysis Letters*. 2014, 144, 1530.
- [2] B.-H. Lipshutz, Z.-V. Boskovic and D.-H. Aue. Angew. Chem. Int. Ed. 2008, 47, 10183.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

