Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Dual dynamic chirality generated in the assembly of three achiral rods through the threefold twisting of a macrocycle

> Ryo Katoono,* Kazuki Sakamoto and Takanori Suzuki Department of Chemistry, Faculty of Science, Hokkaido University

Contents

Supplementary Figures (Fig.S1-Fig.S6)	S2-S9
Experimental (Scheme S1)	S10-S12
¹ H and ¹³ C NMR spectra of new compounds	S12-S17
References	S18

Supplementary Figures

Fig.S1A ¹H NMR spectra (400 MHz) of $(R)_6$ -1a and 1b, measured in chloroform-*d* at room temperature.

Fig.S1B ¹³C NMR spectra (100 MHz) of $(R)_6$ -1a and 1b, measured in chloroform-*d* at room temperature.

Fig.S2a Partial VT-¹H NMR spectra (400 MHz; left: aromatic protons, and right: methylene protons) of $(R)_6$ -1a, measured in dichloromethane- d_2 at 193-293 K.

Fig.S2b Partial VT-¹H NMR spectra (400 MHz; left: aromatic protons, and right: methylene protons) of **1b**, measured in dichloromethane- d_2 at 193-293 K.

Fig.S3A Complexation of **1b** with a chiral guest (*R*,*R*)-**2**: (a) Job plots based on changes in the chemical shifts ($\Delta \delta = \delta_{1b\cdot 2} - \delta_{1b}$) of **1b** (left) and (*R*,*R*)-**2** (right), measured in 1.7vol% acetonitrile-*d*₃/chloroform-*d* at 303 K. [**1b**]+[**2**] = 2 mM. $\chi_{1b} = [1b]/[1b]+[2]$, and (b) fitted with a 1:2 model.¹ [**1b**] = 0.667 mM, [**2**] = 0-7 mM.

Fig.S3B (a) Partial ¹H NMR spectra (aromatic region) of 4² (2 mM) in the presence of (*R*,*R*)-2 [0 (4 only), 0.5, 1 and 1.6 equiv.), and (*R*,*R*)-2. All spectra were measured in 1.7vol% acetonitrile-*d*₃/chloroform-*d* at 303 K; (b) titration curves based on changes in the chemical shifts ($\Delta \delta = \delta_{4\cdot 2} - \delta_4$) for protons H^A-H^K of 4; (c) fitted with a 1:1 model.¹ [4] = 2 mM, [2] = 0-10 mM.

Fig.S4 (a) UV spectra of **1b** $(8.7 \times 10^{-5} \text{ M})$ in the presence of (R,R)-**2** [0 (black broken line), 3, 4, 6 and 9 equiv. (blue solid lines)]; (b) plots of induced molar CD at 382 nm or 327 nm versus equivalents of the guest added. All spectra were measured in dichloromethane at room temperature.

Fig.S5A UV (left) and CD (right) spectra of $(R)_6$ -1a (7.8 × 10⁻⁵ M) in the presence of a ditopic guest [0 (1a only, black broken line), 3, 4, 6 and 9 equiv. (colored solid lines): (a) 3, (b)(c) (*S*,*S*)-2, or (d)(e) (*R*,*R*)-2, measured in dichloromethane at 293 K. Cell length = 0.1 cm.

Fig.S5B A Job plot based on changes in molar CDs ($\Delta \Delta \varepsilon = \Delta \varepsilon_{1a\cdot 2} - \Delta \varepsilon_{1a}$) upon complexation of (*R*)₆-1a with (*R*,*R*)-2, measured in dichloromethane at 293 K. [1a]+[2] = 8 × 10⁻⁵ M. $\chi_{1a} = [1a]/[1a]+[2]$.

Fig.S6 VT-CD spectra of (a) $(R)_6$ -1a, and (b) 1b $(8.7 \times 10^{-5} \text{ M})$ in the presence of (S,S)-2 (9 equiv.), measured in dichloromethane at 263-313 K.

Experimental

Scheme S1. Synthesis of 1. Reagents and yields: (a) 6a/b, Pd(PPh₃)₄, CuI, ^{*n*}tetrabutylammonium fluoride (TBAF), THF, Et₃N (7a: 72%, 7b: 72%); (b) i) NaH, MeOH, THF (7a': 87%, 7b': 96%); ii) terephthaloyl chloride, Et₃N, toluene (1a: 57%, 1b: 76%).

Preparation of $(R)_6$ -7a [X = (R)-C*HMe(cHex)]

To a solution of 5^3 (779 mg, 0.600 mmol), (*R*)- $6a^2$ (2.30 g, 5.41 mmol), Pd(PPh₃)₄ (210 mg, 0.182 mmol) and CuI (35 mg, 0.18 mmol) in THF (27 mL) and Et₃N (53 mL) was added a diluted solution of TBAF (3.8 mL, 3.8 mmol) in THF (5 mL) at 50 °C via a syringe pump over 80 min under an argon atmosphere, and the mixture was further stirred for 10 min. After removal of a solid by filtration through a Celite pad, the filtrate was concentrated. The residue was dissolved in ethyl acetate, and which was washed with 1M aq. HCl and brine, dried over magnesium sulfate, and then concentrated. The resulting solid was dissolved in dichloromethane (5 mL) containing Et₃N (0.75 mL), which was treated with trifluoroacetic anhydride (TFAA, 0.65 mL), followed by satd. aq. NaHCO₃. The organic layer was separated, washed with brine, dried over magnesium sulfate, and then concentrated. The crude product was purified by column chromatography on SiO₂ (ethyl acetate/dichloromethane) to give $(R)_6$ -7a (967 mg) as a yellow solid in 72% yield. An analytic sample was obtained as a yellow solid by further purification through GPC (chloroform; JAIGEL-2H & 2.5H, Japan Analytical Industry Co., Ltd., Japan), HPLC with a standard normal-phase column (methanol/dichloromethane; YMC-Pack SIL, SIL-06, YMC Co., Ltd., Japan), followed by washing in refluxed ethanol. (R)₆-7a: mp 164-180 °C (dec); $[\alpha]_D^{25} = -3.2$ (c = 0.0898 gdL⁻¹ in chloroform); IR (KBr) v_{max}/cm^{-1} 3047, 2979, 2931, 2853, 2202, 1698, 1509, 1208, 1148; ¹H NMR $\delta_{\rm H}(400 \text{ MHz}; \rm CDCl_3; Me_4Si)/ppm 7.50$ (6H, s), 7.35 (br.d), 7.33 (br.d), 7.00 (12H, 6r.m), 4.34 (br.dq), 1.93 (6H, br.d), 1.79-0.93 (60H, br.m), 1.06 (18H, d, J = 6.8Hz); ¹³C NMR $\delta_{C}(100 \text{ MHz}; \text{CDCl}_{3})/\text{ppm}$ 156.7 (C(=O)CF₃), 136.2, 132.8, 132.4, 132.0, 130.1, 129.5, 128.8, 125.9, 123.6, 116.5 (CF₃), 96.6, 95.4, 89.4, 60.2, 40.2, 30.7, 29.8, 26.1, 26.0, 25.7, 16.3; FD-LRMS *m/z* 2227.0 (M⁺, 72%), 2228.0 ([M+1]⁺, 100), 2229.0 ([M+2]⁺, 81), 2230.0 ([M+3]⁺, 44), 2231.0 ([M+4]⁺, 18), 2232.0 ([M+5]⁺, 6); FD-HRMS Found: 2226.89788, Calc. for C₁₃₂H₁₂₀F₁₈N₆O₆: 2226.89819.

Preparation of $(R)_6$ -1a [X = (R)-C*HMe(cHex)]

To an ice-cooled solution of $(R)_6$ -7a (600 mg, 0.269 mmol) in THF (32 mL) were added 60% NaH in oil (1.29 g, 32.3 mmol) and MeOH (2.1 mL), and the mixture was stirred at room temperature for 20 min, diluted with dichloromethane, and then quenched with water in an ice water bath. The organic layer was separated, washed with brine, dried over magnesium sulfate, and then concentrated. The resulting solid was purified by column chromatography on SiO₂ (dichloromethane) to give (R)₆-7a' (388 mg) as a yellow solid in 87% yield. (R)₆-7a': ¹H NMR $\delta_{\rm H}(400 \text{ MHz}; \text{CDCl}_3; \text{ Me}_4\text{Si})/\text{ppm 7.33}$ (6H, s), 7.07 (12H, d, J = 8.8 Hz), 6.24 (12H, d, J = 8.8 Hz), 3.54 (6H, br.s), 3.28-3.25 (6H, m), 1.80-1.00 (66H, br.m), 1.09 (18H, d, J = 6.4 Hz).

To a refluxed solution of (R)₆-7a' (388 mg, 0.234 mmol) in toluene (94 mL) containing Et₃N (0.25 mL) were added several portions of terephthaloyl chloride (158+155+160+154 mg, total 3.09 mmol) at an interval of 20 min. The mixture was diluted with dichloromethane, which was washed with 1M aq. NaOH. The organic layer was separated, dried over magnesium sulfate, and then passed through an Al₂O₃/Celite pad. The filtrate was concentrated and purified by column chromatography on Al_2O_3/SiO_2 (tetrahydrofuran/dichloromethane) to give (R)₆-1a (273 mg) as a yellow solid in 57% yield. An analytic sample was obtained as a yellow solid by further purification through GPC (chloroform), HPLC with a standard normal-phase column (methanol/dichloromethane), followed by washing in refluxed ethanol. (*R*)₆-1a: mp >300 °C; $[\alpha]_D^{25} = -318$ (*c* = 0.209 gdL⁻¹ in chloroform); IR (KBr) ν_{max}/cm^{-1} 3065, 3040, 2970, 2925, 2850, 2196, 1657, 1598, 1509; ¹H NMR $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si)/ppm 7.51 (6H, s), 7.44 (12H, d, J = 8.0 Hz), 6.96 (12H, s), 6.84 (br.s), 6.75 (br.s), 4.51 (6H, br.dq), 2.09 (6H, br.d), 1.79-1.49 (30H, br.m), 1.25-0.93 (30H, br.m), 1.10 (18H, br.d); ¹³C NMR &(100 MHz; CDCl₃)/ppm 170.4, 141.3, 137.8, 133.0, 132.5, 130.9 (br.), 128.7, 127.1, 126.1, 121.4, 96.4, 95.4, 89.7, 57.8, 41.2, 30.9, 30.1, 26.2, 26.0, 26.0, 16.8; FD-LRMS m/z 1821.8 ([(M+2)-CHMe(cHex)×2]⁺, 7%), 1931.9 ([(M+2)-CHMe(cHex)]⁺, 37), 2041.1 (M⁺, 26), 2042.0 ([M+1]⁺, 74), 2043.0 ([M+2]⁺, 100), 2044.0 ([M+3]⁺, 73), 2045.0 ([M+4]⁺, 64); FD-HRMS Found: 2041.02076, Calc. for $C_{144}H_{132}N_6O_6$: 2041.02083; UV λ_{max} (CH₂Cl₂)/nm (log ε) 380 (sh. 4.98), 351 (5.29), 330 (sh. 5.12); CD λ (CH₂Cl₂)/nm $(\Delta \varepsilon)$ 427 (+3), 381 (-65), 336 (+35), 328 (+35), 274 (-59), 252 (+26).

Preparation of **7b** $[X = {}^{n}Bu]$

To a solution of **5** (806 mg, 0.620 mmol), **6b**² (2.10 g, 5.66 mmol), Pd(PPh₃)₄ (217 mg, 0.187 mmol) and CuI (37 mg, 0.19 mmol) in THF (27 mL) and Et₃N (55 mL) was added a diluted solution of TBAF (3.9 mL, 3.9 mmol) in THF (5 mL) at 50 °C via a syringe pump over 80 min under an argon atmosphere, and the mixture was further stirred for 10 min. After removal of a solid by filtration through a Celite pad, the filtrate was concentrated. The residue was dissolved in ethyl acetate, and which was washed with 1M aq. HCl, dried over magnesium sulfate, and then concentrated. The resulting solid was dissolved in dichloromethane (8 mL) containing Et₃N (0.75 mL), which was treated with trifluoroacetic anhydride (TFAA, 0.7 mL), followed by satd. aq. NaHCO₃. The organic layer was separated, washed with brine, dried over magnesium sulfate, and then concentrated. The crude product was purified by column chromatography on SiO₂ (ethyl acetate/dichloromethane) to give **7b** (853 mg) as a yellow solid in 72% yield. An analytic sample was obtained as a yellow solid by further purification through GPC (chloroform), HPLC with a standard normal-phase column (methanol/dichloromethane), followed by washing in refluxed ethanol.

7b: mp 255-258 °C (dec); IR (KBr) ν_{max} /cm⁻¹ 3069, 3046, 2960, 2935, 2874, 2201, 1698, 1510, 1208, 1147; ¹H NMR $\delta_{\text{H}}(400 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$ /ppm 7.50 (6H, s), 7.34 (12H, d, J = 8.4 Hz), 7.00 (12H, d, J = 8.4 Hz), 3.67 (12H, t, J = 7.2 Hz), 1.53-1.46 (12H, m), 1.37-1.28 (12H, m), 0.92 (18H, t, J = 7.2 Hz); ¹³C NMR $\delta_{\text{C}}(100 \text{ MHz}; \text{CDCl}_3)$ /ppm 156.3 (<u>C</u>(=O)CF₃), 138.9, 133.1, 132.0, 129.4, 127.8, 125.9, 123.5, 116.4 (<u>C</u>F₃), 96.6, 95.3, 89.3, 51.7, 28.9, 19.8, 13.7; FD-LRMS *m*/*z* 1902.6 (M⁺, 83%), 1903.6 ([M+1]⁺, 100), 1904.6 ([M+2]⁺, 64), 1905.6 ([M+3]⁺, 29), 1906.6 ([M+4]⁺, 13); FD-HRMS Found: 1902.61527, Calc. for C₁₀₈H₈₄F₁₈N₆O₆: 1902.61649.

Preparation of $1b [X = ^{n}Bu]$

To an ice-cooled solution of **7b** (502 mg, 0.263 mmol) in THF (32 mL) were added 60% NaH in oil (168 mg, 4.20 mmol) and MeOH (2.1 mL), and the mixture was stirred at room temperature for 15 min, diluted with dichloromethane, and then quenched with water in an ice water bath. The organic layer was separated, washed with brine, dried over magnesium sulfate, and then concentrated. The resulting solid was purified by column chromatography on SiO₂ (dichloromethane) to give **7b'** (336 mg) as a yellow solid in 96% yield. **7b'**: ¹H NMR $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si)/ppm 7.34 (6H, s), 7.11 (12H, d, *J* = 8.8 Hz), 6.28 (12H, d, *J* = 8.8 Hz), 3.66 (6H, br.s), 3.07 (12H, t, *J* = 7.2 Hz), 1.62-1.55 (12H, m), 1.47-1.38 (12H, m), 0.97 (18H, t, *J* = 7.2 Hz).

To a solution of **7b'** (386 mg, 0.253 mmol) in toluene (101 mL) containing Et₃N (0.25 mL) was added terephthaloyl chloride (168 mg, 0.827 mmol) at 100 °C. The mixture was further stirred at that temperature for 18 min, diluted with dichloromethane, which was washed with 1M aq. NaOH. The organic layer was separated, dried over magnesium sulfate, and then passed through an Al₂O₃/Celite pad. The filtrate was concentrated and purified by column chromatography on Al₂O₃/SiO₂ (tetrahydrofuran/dichloromethane) to give **1b** (328 mg) as a yellow solid in 76% yield. An analytic sample was obtained as a yellow solid by further purification through GPC (chloroform), HPLC with a standard normal-phase column (methanol/dichloromethane), followed by washing in refluxed ethanol. **1b**: mp >300 °C; IR (KBr) ν_{max}/cm^{-1} 3064, 3037, 2955, 2927, 2860, 2196, 1652, 1598, 1510; ¹H NMR $\delta_{\text{fl}}(400 \text{ MHz}; \text{CDCl}_3; \text{ Me}_4\text{Si})/\text{ppm 7.50}$ (6H, s), 7.43 (12H, d, *J* = 8.8 Hz), 7.00 (12H, s), 6.81 (12H, br.d), 3.83 (12H, t, *J* = 7.2 Hz), 1.56-1.49 (12H, m), 1.38-1.29 (12H, m), 0.88 (18H, t, *J* = 7.2 Hz); ¹³C NMR $\delta_{c}(100 \text{ MHz}; \text{CDCl}_3)/\text{ppm 169.9}, 143.3, 137.2, 133.0, 132.9, 128.6, 128.5, 127.4, 126.1, 121.3, 96.5, 95.3, 89.4, 49.2, 29.8, 20.1, 13.8; FD-LRMS$ *m/z* $1716.9 (M⁺, 60%), 1717.9 ([M+1]⁺, 100), 1718.9 ([M+2]⁺, 82), 1719.9 ([M+3]⁺, 44), 1720.9 ([M+4]⁺, 19), 1721.9 ([M+5]⁺, 6); FD-HRMS Found: 1716.73879, Calc. for C₁₂₀H₉₆N₆O₆: 1716.73913; UV <math>\lambda_{max}(\text{CH}_2\text{Cl}_2)/\text{nm}$ (log ε) 380 (sh. 5.00), 351 (5.32), 330 (sh. 5.16).

¹H and ¹³C NMR spectra of new compounds

¹H NMR spectrum (400 MHz) of (R)₆-1a, measured in chloroform-d at room temperature.

¹³C NMR spectrum (100 MHz) of (R)₆-1a, measured in chloroform-d at room temperature.

¹H NMR spectrum (400 MHz) of **1b**, measured in chloroform-*d* at room temperature.

 13 C NMR spectrum (100 MHz) of **1b**, measured in chloroform-*d* at room temperature.

¹H NMR spectrum (400 MHz) of $(R)_6$ -7a, measured in chloroform-*d* at room temperature.

¹³C NMR spectrum (100 MHz) of (R)₆-7a, measured in chloroform-d at room temperature.

¹H NMR spectrum (400 MHz) of **7b**, measured in chloroform-*d* at room temperature.

 13 C NMR spectrum (100 MHz) of **7b**, measured in chloroform-*d* at room temperature.

¹H NMR spectrum (400 MHz) of (R)₆-7a', cont. residual solvents (dichloromethane, acetone and hexane), measured in chloroform-*d* at room temperature.

¹H NMR spectrum (400 MHz) of **7b'**, cont. residual solvents (dichloromethane, acetone and hexane), measured in chloroform-d at room temperature.

References

- 1 S. Akine, TitrationFit, program for analyses of host-guest complexation, Kanazawa University, Kanazawa, Japan, 2013.
- 2 R. Katoono, Y. Tanaka, K. Fujiwara and T. Suzuki, J. Org. Chem., 2014, 79, 10218–10225.
- 3 C. Eickmeier, H. Junga, A. J. Matzger, F. Scherhag, M. Shim and K. P. C. Vollhardt, *Angew. Chem. Int. Ed. Engl.*, 1997, **36**, 2103–2108.