Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting information

Iridium(III)-catalysed annulation of pyrazolidinones with propiolates:

a facile route to pyrazolo [1,2-a] indazoles.

Zi Yang, Zhenyu Song, Lianghua Jie, Lianhui Wang, Xiuling Cui*

Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China

E-mail: cuixl@hqu.edu.cn

Table of Contents

1.	General information	S2
2.	General procedure for synthesis of 3	S2
3.	Procedure for the synthesis of 3aa on large scale	S2
4.	Mechanism Experiments	S3
5.	Characterization of compounds 3	S5
6.	X-ray Crystallographic data of 3la	S20
7.	References	S25
8.	Copies of ¹ H, ¹³ C, and ¹⁹ F NMR of the Products	S26

1. General Information

All chemicals were analytically pure and used directly after purchased. All solvents were used without any particular precautions to extrude moisture. ¹H NMR spectra were recorded on 400 MHz spectrometer, and ¹³C NMR spectra were recorded on a 100 MHz spectrometer. All spectra were referenced to the solvent peaks (¹H: residual CDCl₃ = 7.26 ppm, ¹³C: CDCl₃ = 77.00 ppm). High-resolution mass spectra (HRMS) were equipped with an ESI source and a TOF detector. Column chromatography was performed on silica gel (70-230 mesh ASTM) using the reported eluents. Thin-layer chromatography (TLC) was carried out on 4×15 cm plates with a layer thickness of 0.2 mm (silica gel 60 F254). Pyrazolidiones^[1] and aryl but-2-ynoates^[2] were synthesized according to the previously reported procedure.

2. General procedure for synthesis of 3

To a tube equipped with magnetic stir bar, pyrazolidiones (1, 0.20 mmol), propiolates (2, 0.50 mmol), $[IrCp*Cl_2]_2$ (0.005 mmol, 2.5 mmol %), $Zn(OAc)_2$ (0.30 mmol, 1.5 equiv) and HOAc (0.40 mmol, 2.0 equiv) in toluene (2.0 mL) was stirred at 80 °C for appropriate time under air atmosphere. After removal of the solvent under reduced pressure, purification was performed by flash column chromatography on silica gel with petroleum ether/ethyl acetate (gradient mixture ratio from 10:1 to 4:1) as eluent to afford corresponding products.

3. Procedure for the synthesis of 3aa on lage scale:

The mixture of pyrazolidione **1a** (1.0 mmol, 1.0 equiv), ethyl but-2-ynoates **2a** (5.0 mmol, 5.0 equiv), $[IrCp*Cl_2]_2$ (0.025 mmol, 0.025 equiv), $Zn(OAc)_2$ (1.5 mmol, 1.5 equiv), HOAc (2.0 mmol, 2.0 equiv) and toluene (6 mL) was stirred at 80 °C for 1 h. Afterwards, the solvent was removed under reduce pressure, and the resulted mixture was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (gradient mixture ratio from 10:1 to 4:1) as eluent to furnish the desired compound **3aa** (352 mg) in 85% yield.

4. Mechanism Experiments

(1) H/D exchange

To a tube equipped with magnetic stir bar, pyrazolidiones (**1a**, 0.20 mmol), ethyl but-2-ynoates (**2a**, 0.50 mmol), [IrCp*Cl₂]₂ (0.005 mmol, 2.5 mmol %), Zn(OAc)₂ (0.30 mmol, 1.5 equiv) and CH₃COOD (2.0 mmol, 10.0 equiv) in toluene (2.0 mL) was stirred at 80 °C for 30 min under air atmosphere. After removal of the solvent under reduced pressure, purification was performed by flash column chromatography on silica gel with petroleum ether/ethyl acetate (gradient mixture ratio from 10:1 to 4:1) as eluent to afford the corresponding products.

(2) General procedure for estimation of the KIE:

A two separated tube containing pyrazolidiones (1a, 0.20 mmol) or D₅-1a (0.20 mmol), ethyl but-2-ynoates (2a, 0.50 mmol), [IrCp*Cl₂]₂ (0.005 mmol, 2.5 mmol %), Zn(OAc)₂ (0.30 mmol, 1.5 equiv), HOAc (0.4 mmol, 2.0 equiv) in toluene (2.0 mL) was stirred at 80 °C for 15 min under air atmosphere. After removal of the solvent under reduced pressure, purification was performed by flash column chromatography on silica gel with petroleum ether/ethyl acetate (gradient mixture ratio from 10:1 to 4:1) as eluent to afford the corresponding products.

(222)

5. Characterization of products 3

Ethyl (E)-3-(9-(2-ethoxy-2-oxoethyl)-2,2,9-trimethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo [1,2-a]indazol-5-yl)but-2-enoate (3aa)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 71.2 mg, 86% yield, yellow oil. Reaction time is 30 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.04 (td, J = 7.5, 1.2 Hz, 2H), 6.96 (t, J = 7.6 Hz, 1H), 6.03 (d, J = 1.4 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.93 (qd, J = 7.2, 3.5 Hz, 2H), 3.60 (d, J = 15.4 Hz, 1H), 3.36 – 3.28 (m, 2H), 2.82 (d, J = 15.4 Hz, 1H), 2.50 (d, J = 1.3Hz, 3H), 1.77 (s,3H), 1.29 (d, J = 8.7 Hz, 6H), 1.23 (s, 3H), 1.05 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.29, 169.27, 166.51, 153.52, 143.29, 135.19, 127.99, 126.79, 122.65, 121.56, 120.15, 63.90, 62.65, 60.27, 59.92, 45.30, 41.47, 26.56, 22.68, 22.19, 18.51, 14.24, 13.89. **HRMS (ESI)**: Calcd for C₂₃H₃₀N₂O₅ [M+H]⁺: 415.2227; found: 415.2232

Ethyl (E)-3-(9-(2-ethoxy-2-oxoethyl)-9-methyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo [1,2-a]indazol-5-yl)but-2-enoate (3ba)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 67.9 mg, 88% yield, yellow oil. Reaction time is 10 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.05 (ddd, J = 11.2, 7.5, 1.4 Hz, 2H), 6.98 (t, J = 7.5 Hz, 1H), 6.01 (d, J = 1.4 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.94 (ddq, J = 10.8, 7.2, 3.7 Hz, 2H), 3.67 – 3.59 (m, 2H), 3.55 (q, J = 8.7 Hz, 1H), 2.89 – 2.78 (m, 2H), 2.71 (ddd, J = 16.1, 8.5, 5.8 Hz, 1H), 2.50 (d, J = 1.3 Hz, 3H), 1.77 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.06 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 169.32, 166.42, 166.18, 153.32, 143.32, 135.18, 128.02, 126.84, 122.85, 121.53, 120.17, 62.74, 60.31, 59.96, 51.04, 41.15, 34.90, 26.56, 18.81, 14.23, 13.88. **HRMS (ESI)**: Calcd for $C_{21}H_{26}N_2O_5$ [M+H]⁺: 387.1914; found: 387.1901

Ethyl (E)-3-(9-(2-ethoxy-2-oxoethyl)-7-isopropyl-2,2,9-trimethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-5-yl)but-2-enoate (3ca)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 80.4 mg, 88% yield, yellow solid. Reaction time is 15 min. mp 128-130 °C

¹**H NMR** (400 MHz, CDCl₃) δ 6.90 (d, J = 3.5 Hz, 2H), 6.03 (d, J = 1.3 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 4.02 – 3.87 (m, 2H), 3.58 (d, J = 15.2 Hz, 1H), 3.30 (dd, J = 18.7, 8.2 Hz, 2H), 2.91 – 2.79 (m, 2H), 2.51 (d, J = 1.2 Hz, 3H), 1.80 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H), 1.28 (s, 3H), 1.25 (s, 3H), 1.21 (d, J = 6.9 Hz, 6H), 1.05 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.28, 169.34, 166.63, 154.07, 143.75, 141.47, 135.33, 126.64, 126.04, 119.98, 119.63, 64.17, 62.81, 60.27, 59.94, 45.36, 41.64, 33.70, 26.45, 24.16, 24.03, 22.67, 22.27, 18.58, 14.30, 13.96. **HRMS (ESI)**: Calcd for C₂₆H₃₆N₂O₅ [M+H]⁺: 457.2697; found: 457.2697

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 52.3 mg, 80% yield, white solid. Reaction time is 2 h. mp 122-124 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 (dd, J = 8.2, 1.5 Hz, 1H), 7.30 (d, J = 1.3 Hz, 1H), 6.68 (d, J = 8.2 Hz, 1H), 3.95 (dtt, J = 10.8, 7.3, 3.7 Hz, 2H), 3.68 (d, J = 16.2 Hz, 1H), 3.54 (q, J = 8.1 Hz, 2H), 2.82 (d, J = 16.2 Hz, 1H), 1.75 (s, 3H), 1.34 (s, 3H), 1.27 (s, 3H), 1.09 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.87, 169.06, 150.00, 135.29, 133.86, 125.43, 119.13, 109.15, 104.50, 63.10, 62.37, 60.52, 45.84, 40.94, 26.51, 23.36, 22.44, 13.92. **HRMS (ESI)**: Calcd for C₁₈H₂₁N₃O₃ [M+H]⁺: 328.1656; found: 328.1660

Ethyl 2-(2,2,9-trimethyl-7-nitro-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9yl)acetate (3ea)

silica gel column chromatography (petroleum ether/ethyl acetate = 2:1), 49.3 mg,71% yield, yellow solid. Reaction time is 75 min. mp 151-154 °C

¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (dd, J = 8.7, 2.1 Hz, 1H), 7.92 (d, J = 2.1 Hz, 1H), 6.65 (d, J = 8.7 Hz, 1H), 4.00 – 3.87 (m, 2H), 3.75 (d, J = 16.5 Hz, 1H), 3.62 (dd, J = 18.9, 8.2 Hz, 2H), 2.86 (d, J = 16.5 Hz, 1H), 1.77 (s, 3H), 1.36 (s, 3H), 1.28 (s, 3H), 1.08 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.05, 169.11, 151.34, 142.34, 135.10, 126.37, 117.94, 107.63, 63.17, 61.93, 60.57, 45.91, 40.94, 26.75, 23.62, 22.47, 13.92. **HRMS (ESI)**: Calcd for C₁₇H₂₁N₃O₅ [M+H]⁺: 348.1554; found: 348.1559

Ethyl 2-(2,2,5,9-tetramethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9-yl)acetate (3fa)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 56.2 mg, 89% yield, colorless oil. Reaction time is 10 min.

¹**H NMR** (400 MHz, CDCl₃) δ 6.98 (dd, J = 6.3, 1.8 Hz, 1H), 6.92 – 6.85 (m, 2H), 3.99 – 3.87 (m, 2H), 3.64 – 3.50 (m, 3H), 2.80 (d, J = 15.4 Hz, 1H), 2.27 (s, 3H), 1.75 (s, 3H), 1.34 (s, 3H), 1.28 (s, 3H), 1.05 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.17, 169.41, 144.78, 134.12, 130.57, 122.67, 120.71, 119.06, 64.82, 62.95, 60.19, 45.58, 41.44, 26.64, 22.82, 22.32, 17.63, 13.89. **HRMS (ESI)**: Calcd for C₁₈H₂₄N₂O₃ [M+H]⁺: 317.1860; found: 317.1859

Ethyl 2-(5-fluoro-2,2,9-trimethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9yl)acetate (3ga)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 63.3 mg, 99% yield, yellow oil. Reaction time is 15 min.

¹**H** NMR (400 MHz, CDCl₃) δ 6.97 – 6.87 (m, 2H), 6.85 (dd, J = 7.0, 1.6 Hz, 1H), 4.01 – 3.87 (m, 2H), 3.65 – 3.54 (m, 3H), 2.82 (d, J = 15.6 Hz, 1H), 1.76 (s, 3H), 1.32 (s, 3H), 1.26 (s, 3H), 1.06 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 171.36, 169.18, 148.72 (d, $J_{C-F} = 245.1$ Hz), 137.56 (d, $J_{C-F} = 3.8$ Hz), 134.00 (d, $J_{C-F} = 13.0$ Hz), 123.47 (d, $J_{C-F} = 5.9$ Hz), 117.18 (d, $J_{C-F} = 3.4$ Hz), 115.63 (d, $J_{C-F} = 17.3$ Hz), 64.33 (d, $J_{C-F} = 1.8$ Hz), 63.73 (d, $J_{C-F} = 1.4$ Hz), 60.33, 45.83, 41.22, 26.47, 22.74, 22.21, 13.90. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -133.46. HRMS (ESI): Calcd for C₁₇H₂₁N₂O₃ [M+H]⁺: 321.1609; found: 321.1609

Ethyl 2-(5-chloro-2,2,9-trimethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9yl)acetate (3ha)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 49.0 mg, 73% yield, yellow oil. Reaction time is 30 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.16 (dd, J = 7.8, 1.1 Hz, 1H), 6.96 (dd, J = 7.5, 1.1 Hz, 1H), 6.90 (t, J = 7.7 Hz, 1H), 4.01 – 3.89 (m, 2H), 3.78 (d, J = 8.3 Hz, 1H), 3.67 (dd, J = 12.0, 9.1 Hz, 2H), 2.81 (d, J = 15.7 Hz, 1H), 1.74 (s, 3H), 1.34 (s, 3H), 1.27 (s, 3H), 1.06 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.29, 169.22, 143.27, 136.59, 129.49, 123.46, 119.91, 116.44, 64.30, 63.34, 60.34, 45.45, 41.24, 26.71, 22.90, 22.27, 13.91. **HRMS (ESI)**: Calcd for C₁₇H₂₁ClN₂O₃ [M+H]⁺: 337.1313; found: 337.1313

Ethyl 2-(2,2,6,9-tetramethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9-yl)acetate (3ia)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 46.7 mg, 74% yield, yellow oil. Reaction time is 2 h.

¹**H NMR** (400 MHz, CDCl₃) δ 6.95 (d, J = 7.7 Hz, 1H), 6.76 (d, J = 7.7 Hz, 1H), 6.51 (s, 1H), 3.96 (tt, J = 8.9, 4.5 Hz, 2H), 3.49 (d, J = 5.5 Hz, 1H), 3.46 (d, J = 1.7 Hz, 1H), 3.36 (d, J = 7.9 Hz, 1H), 2.82 (d, J = 15.2 Hz, 1H), 2.31 (s, 3H), 1.78 (s, 3H), 1.30 (s, 3H), 1.28 (s, 3H), 1.07 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.64, 169.41, 147.13, 138.94, 131.58, 123.08, 121.36, 110.19, 63.79, 63.04, 60.27, 45.78, 41.70, 25.99, 22.85, 22.52, 21.47, 13.91. **HRMS (ESI)**: Calcd for C₁₈H₂₄N₂O₃ [M+H]⁺: 317.1860; found: 317.1862

Ethyl 2-(6-chloro-2,2,9-trimethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9yl)acetate (3ja)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 50.4 mg, 75% yield, yellow oil. Reaction time is 2 h.

¹**H** NMR (400 MHz, CDCl₃) δ 6.98 (d, J = 8.1 Hz, 1H), 6.91 (dd, J = 8.1, 1.7 Hz, 1H), 6.67 (d, J = 1.7 Hz, 1H), 4.02 – 3.86 (m, 2H), 3.56 (d, J = 15.6 Hz, 1H), 3.47 (d, J = 7.9 Hz, 1H), 3.41 (d, J = 7.9 Hz, 1H), 2.81 (d, J = 15.6 Hz, 1H), 1.76 (s, 3H), 1.31 (s,

3H), 1.27 (s, 3H), 1.08 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.81, 169.22, 148.13, 134.58, 132.89, 122.58, 122.19, 109.93, 63.43, 63.05, 60.40, 45.80, 41.27, 26.17, 23.00, 22.47, 13.95. **HRMS (ESI)**: Calcd for C₁₇H₂₁ClN₂O₃ [M+H]⁺: 337.1313; found: 337.1312

Ethyl 2-(5,7-dichloro-2,2,9-trimethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9-yl)acetate (3ka)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 46.6 mg, 63% yield, pale yellow solid. Reaction time is 35 min. mp 103-105 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.18 (d, J = 1.8 Hz, 1H), 6.94 (d, J = 1.8 Hz, 1H), 4.04 – 3.93 (m, 2H), 3.79 (d, J = 8.3 Hz, 1H), 3.71 (d, J = 16.1 Hz, 1H), 3.66 (d, J = 8.3 Hz, 1H), 2.79 (d, J = 16.1 Hz, 1H), 1.72 (s, 3H), 1.35 (s, 3H), 1.26 (s, 3H), 1.11 (t, J = 7.1Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.51, 169.10, 142.30, 137.85, 129.20, 127.81, 120.45, 116.93, 64.28, 63.50, 60.52, 45.45, 40.93, 26.88, 23.02, 22.25, 13.97. **HRMS (ESI)**: Calcd for C₁₇H₂₀Cl2N₂O₃ [M+H]⁺: 371.0924; found: 371.0923

Ethyl 2-(5,7-difluoro-2,2,9-trimethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9-yl)acetate (3la)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 61.5 mg, 91% yield, yellow solid. Reaction time is 35 min. mp 111-113 °C

¹**H NMR** (400 MHz, CDCl₃) δ 6.73 (ddd, J = 10.3, 9.0, 2.2 Hz, 1H), 6.66 – 6.61 (m, 1H), 3.97 (dtt, J = 10.8, 7.3, 3.7 Hz, 2H), 3.65 (d, J = 16.0 Hz, 1H), 3.56 (d, J = 1.2 Hz, 2H), 2.81 (d, J = 16.0 Hz, 1H), 1.74 (s, 3H), 1.32 (s, 3H), 1.25 (s, 3H), 1.10 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.66, 169.06, 158.64 (dd, $J_{C-F} = 243.8$, 9.3 Hz), 148.10 (dd, $J_{C-F} = 248.3$, 12.5 Hz), 138.08 (dd, $J_{C-F} = 5.1$, 3.7 Hz), 130.59 (dd, $J_{C-F} = 13.1$, 2.8 Hz), 104.94 (dd, $J_{C-F} = 24.8$, 3.8 Hz), 104.13 (dd, $J_{C-F} = 21.6$, 6.1Hz), 64.64, 64.0 (dd, $J_{C-F} = 2.5$, 2.4 Hz), 60.47, 45.73, 40.84, 26.47, 22.74, 22.17, 13.93. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -117.01, -129.38. **HRMS (ESI)**: Calcd for C₁₇H₂₀F₂N₂O₃ [M+H]⁺: 339.1515; found: 339.1514

Methyl 2-(2,2,5-trimethyl-1-oxo-9-pentyl-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9yl)acetate (3fb)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 64.5 mg, 90% yield, colorless oil. Reaction time is 20 min.

¹**H NMR** (400 MHz, CDCl₃) δ 6.97 (d, J = 7.3 Hz, 1H), 6.87 (t, J = 7.4 Hz, 1H), 6.82 (d, J = 7.3 Hz, 1H), 3.89 (d, J = 15.9 Hz, 1H), 3.67 (d, J = 7.7 Hz, 1H), 3.48 (d, J = 7.7 Hz, 1H), 3.43 (s, 3H), 2.79 (d, J = 15.9 Hz, 1H), 2.26 (s, 3H), 2.19 – 2.08 (m, 1H), 1.76 – 1.64 (m, 1H), 1.38 (s, 3H), 1.36 – 1.27 (m, 1H), 1.24 (s, 3H), 1.22 – 1.12 (m, 4H), 1.10 – 0.97 (m, 1H), 0.79 (t, J = 6.7 Hz, 3H). ¹³**C NMR** (100MHz, CDCl₃) δ 171.89, 170.00, 145.28, 132.41, 130.56, 122.55, 120.55, 118.95, 66.62, 64.81, 51.18, 45.60, 39.99, 39.73, 31.51, 23.36, 23.15, 22.30, 22.05, 17.66, 13.88. **HRMS (ESI)**: Calcd for C₂₁H₂₀N₂O₃ [M+H]⁺: 359.2329; found: 359.2330

Methyl 2-(2,2,5-trimethyl-1-oxo-9-propyl-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9-yl)acetate (3fc)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 60.1 mg, 91% yield, yellow oil. Reaction time is 60 min.

¹**H NMR** (400 MHz, CDCl₃) δ 6.97 (d, J = 7.3 Hz, 1H), 6.87 (t, J = 7.4 Hz, 1H), 6.82 (d, J = 7.3 Hz, 1H), 3.91 (d, J = 15.9 Hz, 1H), 3.68 (d, J = 7.7 Hz, 1H), 3.48 (d, J = 7.7 Hz, 1H), 3.43 (s, 3H), 2.79 (d, J = 15.9 Hz, 1H), 2.26 (s, 3H), 2.19 – 2.08 (m, 1H), 1.73 – 1.61 (m, 1H), 1.39 (s, 3H), 1.38 – 1.31 (m, 1H), 1.24 (s, 3H), 1.12 – 0.98 (m, 1H), 0.83 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.94, 169.97, 145.28, 132.42, 130.56, 122.57, 120.56, 118.94, 66.60, 64.83, 51.17, 45.59, 42.43, 39.60, 23.17, 22.05, 17.65, 17.23, 13.85. **HRMS (ESI)**: Calcd for C₁₉H₂₆N₂O₃ [M+H]⁺: 331.2016; found: 330.2015

Methyl 2-(9-hexyl-2,2,5-trimethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9yl)acetate (3fd)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 66.6 mg, 90% yield, yellow oil. Reaction time is 15 min.

¹**H NMR** (400 MHz, CDCl₃) δ 6.97 (d, J = 7.3 Hz, 1H), 6.87 (t, J = 7.4 Hz, 1H), 6.81 (d, J = 7.2 Hz, 1H), 3.88 (d, J = 15.9 Hz, 1H), 3.67 (d, J = 7.7 Hz, 1H), 3.48 (d, J = 7.7 Hz, 1H), 3.43 (s, 3H), 2.79 (d, J = 15.9 Hz, 1H), 2.26 (s, 3H), 2.20 – 2.08 (m, 1H), 1.76 – 1.65 (m, 1H), 1.38 (s, 3H), 1.36 – 1.29 (m, 1H), 1.24 (s, 3H), 1.23 – 1.11 (m, 6H), 1.10 – 0.93 (m, 1H), 0.81 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.87, 169.98, 145.27, 132.41, 130.54, 122.53, 120.53, 118.94, 66.61, 64.80, 51.16, 45.58, 40.08, 39.70, 31.50, 29.02, 23.68, 23.15, 22.46, 22.03, 17.65, 13.92. HRMS (ESI): Calcd for C₂₂H₃₂N₂O₃ [M+H]⁺: 373.2486; found: 373.2486

Methyl 2-(5-fluoro-2,2,9-trimethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9yl)acetate (3gb)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 59.9mg, 98% yield, yellow oil. Reaction time is 15 min.

¹**H NMR** (400 MHz, CDCl₃) δ 6.97 – 6.89 (m, 2H), 6.84 (dd, J = 6.9, 1.7 Hz, 1H), 3.63 (d, J = 15.8 Hz, 1H), 3.59 (s, 2H), 3.49 (s, 3H), 2.84 (d, J = 15.8 Hz, 1H), 1.75 (s, 3H), 1.33 (s, 3H), 1.26 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.41, 169.65, 148.73 (d, $J_{C-F} = 245.2$ Hz), 137.51 (d, $J_{C-F} = 3.8$ Hz), 133.99 (d, $J_{C-F} = 13.0$ Hz), 123.55 (d, $J_{C-F} = 5.9$ Hz), 117.08 (d, $J_{C-F} = 3.4$ Hz), 115.70 (d, $J_{C-F} = 17.3$ Hz), 64.34 (d, $J_{C-F} = 1.8$ Hz), 63.62 (d, $J_{C-F} = 1.5$ Hz), 51.44, 45.83, 40.94, 26.41, 22.72, 22.18. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -133.34. **HRMS** (**ESI**): Calcd for C₁₆H₁₉FN₂O₃ [M+H]⁺: 307.1452; found: 307.1452

Ethyl 2-(9-ethyl-5-fluoro-2,2-dimethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9-yl)acetate (3gc)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 62.1 mg, 93% yield, yellow oil. Reaction time is 25 min.

¹**H NMR** (400 MHz, CDCl₃) δ 6.97 – 6.86 (m, 2H), 6.78 (dd, J = 7.1, 1.4 Hz, 1H), 3.97 – 3.83 (m, 3H), 3.69 (dd, J = 8.1, 2.0 Hz, 1H), 3.54 (d, J = 8.1 Hz, 1H), 2.78 (d, J = 15.9 Hz, 1H), 2.22 (dq, J = 14.6, 7.3 Hz, 1H), 1.79 (dq, J = 14.6, 7.3 Hz, 1H), 1.37 (s, 3H), 1.25 (s, 3H), 1.02 (t, J = 7.1 Hz, 3H), 0.81 (t, J = 7.3 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 172.13, 169.34, 148.76 (d, $J_{C-F} = 245.0$ Hz), 135.63 (d, $J_{C-F} = 4.0$ Hz), 134.54 (d, $J_{C-F} = 12.9$ Hz), 123.31 (d, $J_{C-F} = 5.9$ Hz), 117.25 (d, $J_{C-F} = 3.4$ Hz), 115.64 (d, $J_{C-F} = 17.3$ Hz), 68.11 (d, $J_{C-F} = 1.3$ Hz), 64.33 (d, $J_{C-F} = 1.8$ Hz), 60.18, 45.93, 39.71, 32.84, 23.11, 21.95, 13.89, 8.24. ¹⁹F NMR (376 MHz, CDCl₃) δ -133.61. HRMS (ESI): Calcd for C₁₈H₂₃FN₂O₃ [M+H]⁺: 335.1765; found: 335.1765

Phenyl 2-(2,2,5,9-tetramethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9-yl)acetate (3fg)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 41.6 mg, 55% yield, yellow oil. Reaction time is 10 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 (dd, J = 10.7, 5.0 Hz, 2H), 7.18 – 7.11 (m, 1H), 7.03 (t, J = 6.9 Hz, 2H), 6.98 – 6.93 (m, 1H), 6.74 (dd, J = 8.4, 0.9 Hz, 2H), 4.04 (d, J = 15.4 Hz, 1H), 3.57 (d, J = 7.8 Hz, 1H), 3.48 (d, J = 7.8 Hz, 1H), 3.05 (d, J = 15.4 Hz, 1H), 2.27 (s, 3H), 1.82 (s, 3H), 1.37 (s, 3H), 1.23 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.49, 168.07, 150.24, 144.85, 133.69, 130.78, 129.25, 129.25, 125.72, 122.87, 121.47, 121.47, 120.96, 119.21, 64.76, 63.06, 45.62, 41.31, 27.03, 22.92, 22.23, 17.62. **HRMS (ESI)**: Calcd for C₂₂H₂₄N₂O₃ [M+H]⁺: 365.1860; found: 365.1860

p-Tolyl 2-(2,2,5,9-tetramethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9-yl)acetate (3fh)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 68.0 mg, 90% yield, white solid. Reaction time is 15 min. mp 131-134 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.03 (dd, J = 15.7, 7.3 Hz, 4H), 6.98 – 6.92 (m, 1H), 6.60 (d, J = 8.4 Hz, 2H), 4.05 (d, J = 15.4 Hz, 1H), 3.57 (d, J = 7.8 Hz, 1H), 3.48 (d, J = 7.8 Hz, 1H), 3.03 (d, J = 15.4 Hz, 1H), 2.27 (s, 3H), 1.82 (s, 3H), 1.38 (s, 3H), 1.23 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.45, 168.24, 147.94, 144.82, 135.30, 133.65, 130.71, 129.75, 129.75 122.80, 121.10, 121.10, 120.89, 119.20, 64.69, 63.04, 45.59, 41.19, 27.04, 22.90, 22.19, 20.73, 17.59. **HRMS (ESI)**: Calcd for C₂₃H₂₆N₂O₃ [M+H]⁺: 379.2016; found: 379.2013

4-(Tert-butyl)phenyl 2-(2,2,5,9-tetramethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2a]indazol-9-yl)acetate (3fi)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 73.9 mg, 88% yield, white solid. Reaction time is 10 min. mp 175-177 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.29 (d, J = 8.7 Hz, 2H), 7.05 (t, J = 6.8 Hz, 2H), 6.97 (t, J = 7.4 Hz, 1H), 6.68 (d, J = 8.7 Hz, 2H), 4.06 (d, J = 15.4 Hz, 1H), 3.60 (d, J = 7.8 Hz, 1H), 3.53 (d, J = 7.8 Hz, 1H), 3.07 (d, J = 15.4 Hz, 1H), 2.30 (s, 3H), 1.85 (s, 3H), 1.40 (s, 3H), 1.29 (s, 9H), 1.27 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.39, 168.21, 148.40, 147.84, 144.83, 133.70, 130.72, 126.12, 126.12, 122.81, 120.87, 120.71, 120.71, 119.21, 64.72, 63.01, 45.60, 41.26, 34.32, 31.29, 31.29, 31.29, 26.99, 22.88, 22.25, 17.61. **HRMS (ESI)**: Calcd for C₂₆H₃₂N₂O₃ [M+H]⁺: 421.2486; found: 421.2487

4-Fluorophenyl 2-(2,2,5,9-tetramethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9yl)acetate (3fj)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 72.5mg, 95% yield, white solid. Reaction time is 10 min. mp 139-140 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.02 (dd, J = 12.7, 7.0 Hz, 2H), 6.98 – 6.90 (m, 3H), 6.74 – 6.66 (m, 2H), 3.98 (d, J = 15.3 Hz, 1H), 3.56 (d, J = 7.8 Hz, 1H), 3.47 (d, J =7.8 Hz, 1H), 3.02 (d, J = 15.3 Hz, 1H), 2.27 (s, 3H), 1.82 (s, 3H), 1.37 (s, 3H), 1.22 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.52, 168.21, 160.21 (d, $J_{C-F} = 244.1$ Hz), 146.12 (d, $J_{C-F} = 2.8$ Hz), 144.93, 133.74, 130.89, 122.99, 122.94, 122.90, 121.08, 119.20, 116.08, 115.85, 64.85, 63.07, 45.65, 41.44, 26.96, 22.94, 22.30, 17.68. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -117.10. **HRMS (ESI)**: Calcd for C₂₂H₂₃FN₂O₃ [M+H]⁺: 383.1765; found: 383.1755

4-Bromophenyl 2-(2,2,5,9-tetramethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9yl)acetate (3fk)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 68.9mg, 78% yield, white solid. Reaction time is 10 min. mp 145-147 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 2H), 7.07 – 6.90 (m, 3H), 6.67 – 6.59 (m, 2H), 3.98 (d, *J* = 15.3 Hz, 1H), 3.56 (d, *J* = 7.8 Hz, 1H), 3.46 (d, *J* = 7.8 Hz, 1H), 3.02 (d, *J* = 15.2 Hz, 1H), 2.27 (s, 3H), 1.82 (s, 3H), 1.36 (s, 3H), 1.22 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.45, 167.79, 149.25, 144.83, 133.58, 132.30, 132.30, 130.83, 123.31, 123.31, 122.87, 121.01, 119.12, 118.88, 64.77, 62.99, 45.58, 41.38, 26.90, 22.86, 22.23, 17.61. **HRMS (ESI)**: Calcd for C₂₂H₂₃BrN₂O₃ [M+H]⁺: 443.0965; found:443.0962

4-Cyanophenyl 2-(2,2,5,9-tetramethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9yl)acetate (3fl)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 63.0 mg, 81% yield, white solid. Reaction time is 30 min. mp 164-165 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 – 7.54 (m, 2H), 7.06 – 6.94 (m, 3H), 6.94 – 6.87 (m, 2H), 3.93 (d, *J* = 15.2 Hz, 1H), 3.55 (d, *J* = 7.9 Hz, 1H), 3.47 (d, *J* = 7.9 Hz, 1H), 3.04 (d, *J* = 15.2 Hz, 1H), 2.27 (s, 3H), 1.83 (s, 3H), 1.35 (s, 3H), 1.21 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.41, 167.27, 153.56, 144.84, 133.53, 133.48, 133.48, 130.93, 122.95, 122.72, 122.72, 121.11, 119.01, 118.13, 109.68, 64.83, 62.89, 45.53, 41.63, 26.68, 22.79, 22.24, 17.59. **HRMS (ESI)**: Calcd for C₂₃H₂₃N₃O₃ [M+H]⁺: 390.1812; found: 390.1818

4-Acetylphenyl 2-(2,2,5,9-tetramethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9yl)acetate (3fm)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 79.5 mg, 98% yield, yellow oil. Reaction time is 10 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 – 7.83 (m, 2H), 7.06 – 6.90 (m, 3H), 6.87 – 6.79 (m, 2H), 3.99 (d, J = 15.3 Hz, 1H), 3.55 (d, J = 7.8 Hz, 1H), 3.45 (d, J = 7.9 Hz, 1H), 3.04 (d, J = 15.3 Hz, 1H), 2.52 (s, 3H), 2.26 (s, 3H), 1.82 (s, 3H), 1.35 (s, 3H), 1.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.73, 171.42, 167.53, 153.95, 144.81, 134.63, 133.51, 130.85, 129.74, 129.74, 122.88, 121.68, 121.68, 121.01, 119.09, 64.76, 62.96, 45.55, 41.44, 26.87, 26.44, 22.81, 22.19, 17.57. **HRMS (ESI)**: Calcd for C₂₄H₂₆N₂O₄ [M+H]⁺: 407.1965; found: 407.1964

m-Tolyl 2-(2,2,5,9-tetramethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9-yl)acetate (3fn)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 72.2 mg, 96% yield, white solid. Reaction time is 10 min. mp 136-137 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.14 (t, *J* = 7.8 Hz, 1H), 7.03 (t, *J* = 7.0 Hz, 2H), 6.95 (t, *J* = 7.3 Hz, 2H), 6.56 – 6.47 (m, 2H), 4.06 (d, *J* = 15.4 Hz, 1H), 3.58 (d, *J* = 7.8 Hz, 1H), 3.48 (d, *J* = 7.8 Hz, 1H), 3.04 (d, *J* = 15.4 Hz, 1H), 2.27 (d, *J* = 5.4 Hz, 6H), 1.82 (s, 3H), 1.38 (s, 3H), 1.23 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.45, 168.15, 150.13, 144.81, 139.32, 133.63, 130.69, 128.90, 126.48, 122.80, 122.03, 120.87, 119.23, 118.34, 64.68, 63.04, 45.58, 41.19, 27.09, 22.90, 22.16, 21.10, 17.57. **HRMS** (**ESI**): Calcd for C₂₃H₂₆N₂O₃ [M+H]⁺: 379.2016; found: 379.2013

3-Fluorophenyl 2-(2,2,5,9-tetramethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9yl)acetate (3fo)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 74.8 mg, 98% yield, white solid. Reaction time is 10 min. mp 110-111 $^{\circ}$ C

¹**H NMR** (400 MHz, CDCl₃) δ 7.21 (td, J = 8.3, 6.5 Hz, 1H), 7.02 (dd, J = 14.8, 6.9 Hz, 2H), 6.98 – 6.92 (m, 1H), 6.86 (td, J = 8.7, 2.1 Hz, 1H), 6.58 (dd, J = 8.2, 1.9 Hz, 1H), 6.48 (dt, J = 9.5, 2.3 Hz, 1H), 4.00 (d, J = 15.3 Hz, 1H), 3.57 (d, J = 7.8 Hz, 1H), 3.48 (d, J = 7.9 Hz, 1H), 3.03 (d, J = 15.3 Hz, 1H), 2.27 (s, 3H), 1.82 (s, 3H), 1.37 (s, 3H), 1.23 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.44, 167.67, 162.66 (d, $J_{C-F} = 247.4$ Hz), 151.06 (d, $J_{C-F} = 10.9$ Hz), 144.82, 133.54, 130.86, 129.97 (d, $J_{C-F} = 9.3$ Hz), 122.89, 121.01, 119.12, 117.30 (d, $J_{C-F} = 3.4$ Hz), 112.77 (d, $J_{C-F} = 21.1$ Hz), 109.58 (d, $J_{C-F} = 24.4$ Hz), 64.78, 62.98, 45.57, 41.38, 26.94, 22.84, 22.21, 17.57. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.16. **HRMS (ESI)**: Calcd for C₂₂H₂₃FN₂O₃ [M+H]⁺: 383.1765; found: 383.1765

2-Fluorophenyl 2-(2,2,5,9-tetramethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9yl)acetate (3fp)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 71.0 mg, 93% yield, white solid. Reaction time is 10 min. mp 123-126 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.16 – 7.08 (m, 1H), 7.08 – 6.99 (m, 4H), 6.97 – 6.91 (m, 1H), 6.87 – 6.80 (m, 1H), 4.01 (d, J = 15.6 Hz, 1H), 3.56 (d, J = 7.8 Hz, 1H), 3.50 (d, J = 7.8 Hz, 1H), 3.14 (d, J = 15.6 Hz, 1H), 2.27 (s, 3H), 1.83 (s, 3H), 1.37 (s, 3H), 1.24 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.35, 166.90, 153.91 (d, $J_{C-F} = 249.8$ Hz), 144.79, 137.60 (d, $J_{C-F} = 12.9$ Hz), 133.57, 130.77, 126.92 (d, $J_{C-F} = 7.0$ Hz), 124.24 (d, $J_{C-F} = 3.9$ Hz), 123.72, 122.87, 120.90, 119.18, 116.48 (d, $J_{C-F} = 18.4$ Hz), 64.77, 62.84, 45.57, 40.92, 26.81, 22.83, 22.20, 17.60. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -128.30. **HRMS (ESI)**: Calcd for C₂₂H₂₃FN₂O₃ [M+H]⁺: 383.1765; found: 383.1766

2-Chlorophenyl 2-(2,2,5,9-tetramethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9yl)acetate (3fq)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 76.4 mg, 96% yield, white solid. Reaction time is 10 min. mp 143-145 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 (dd, J = 7.9, 1.6 Hz, 1H), 7.16 (td, J = 7.7, 1.6 Hz, 1H), 7.09 (td, J = 7.7, 1.6 Hz, 1H), 7.02 (dd, J = 7.2, 2.5 Hz, 2H), 6.96 – 6.90 (m, 1H), 6.82 (dd, J = 8.0, 1.6 Hz, 1H), 4.07 (d, J = 15.9 Hz, 1H), 3.58 (d, J = 7.8 Hz, 1H), 3.51 (d, J = 7.8 Hz, 1H), 3.16 (d, J = 15.9 Hz, 1H), 2.27 (s, 3H), 1.82 (s, 3H), 1.37 (s, 3H), 1.23 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.42, 166.95, 146.58, 144.81, 133.60, 130.75, 130.04, 127.53, 126.87, 126.80, 123.60, 122.87, 120.90, 119.22, 64.73, 62.79, 45.57, 40.72, 26.97, 22.88, 22.19, 17.60. **HRMS (ESI)**: Calcd for C₂₂H₂₃ClN₂O₃ [M+H]⁺: 399.1470; found: 399.1473

[1,1'-Biphenyl]-2-yl 2-(2,2,5,9-tetramethyl-1-oxo-2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-9-yl)acetate (3fr)

silica gel column chromatography (petroleum ether/ethyl acetate = 4:1), 85.3 mg, 97% yield, white solid. Reaction time is 10 min. mp 172-173 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.20 (m, 8H), 7.00 (d, J = 7.4 Hz, 1H), 6.87 (t, J = 7.5 Hz, 1H), 6.80 (dd, J = 7.3, 2.2 Hz, 2H), 3.84 (d, J = 16.1 Hz, 1H), 3.60 – 3.52 (m, 2H), 2.90 (d, J = 16.1 Hz, 1H), 2.28 (s, 3H), 1.74 (s, 3H), 1.38 (s, 3H), 1.24 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.36, 168.07, 147.24, 144.83, 137.26, 134.58, 133.71, 130.65, 130.57, 128.79, 128.79, 128.27, 128.21, 128.21, 127.36, 126.16, 122.78, 122.77, 120.76, 118.97, 64.71, 62.68, 45.49, 40.74, 26.74, 22.88, 22.22, 17.58. **HRMS (ESI)**: Calcd for C₂₈H₂₈N₂O₃ [M+H]⁺: 441.2173; found: 441.2176

6. X-ray Crystallographic data of 3la

CCDC 1852306 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre.

Table 1 Crystal data and structure refinement for 3la.

Identification code	exp_5657
Empirical formula	$C_{17}H_{20}F_2N_2O_3$
Formula weight	338.35
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2
a/Å	15.6208(15)
b/Å	11.2655(7)
c/Å	9.9974(8)
a/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	1759.3(2)
Z	4
$\rho_{calc}g/cm^3$	1.277
µ/mm⁻¹	0.102
F(000)	712.0
Crystal size/mm ³	$0.15 \times 0.14 \times 0.12$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/	° 7.234 to 58.852
Index ranges	$\textbf{-19} \leq h \leq 21, \textbf{-14} \leq k \leq 15, \textbf{-12} \leq l \leq 11$
Reflections collected	15610

Independent reflections	4261 [$R_{int} = 0.0369$, $R_{sigma} = 0.0399$]
Data/restraints/parameters	4261/2/230
Goodness-of-fit on F ²	1.028
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0553, wR_2 = 0.1483$
Final R indexes [all data]	$R_1 = 0.0981$, $wR_2 = 0.1764$
Largest diff. peak/hole / e Å-3	3 0.21/-0.19
Flack parameter	0.3(5)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3la. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom x		У	Z	U(eq)	
C1	2345(3)	3305(3)	2216(4)	60.7(9)	
C2	2242(3)	2661(3)	3361(4)	64.7(9)	
C3	1765(2)	3020(3)	4424(4)	66.4(10)	
C4	1357(2)	4096(4)	4321(4)	64.1(9)	
C5	1420(2)	4781(3)	3189(3)	56.5(8)	
C6	1927(2)	4380(3)	2157(3)	53.5(8)	
C7	1911(2)	5269(3)	1012(3)	55.4(8)	
C8	1410(2)	7392(3)	1545(4)	58.5(9)	
C9	953(3)	7907(3)	2740(4)	66.3(10)	
C10	1025(3)	6877(3)	3720(4)	68.5(10)	
C11	30(3)	8148(4)	2340(6)	89.0(13)	
C12	1393(3)	9021(4)	3226(5)	92.6(14)	
C13	1445(3)	4770(4)	-193(4)	79.2(12)	
C14	2806(2)	5676(3)	607(4)	61.2(9)	
C15	3326(3)	6224(4)	1672(4)	71.0(11)	
C16	4626(11)	7408(19)	1940(20)	136(5)	
C16A	A 4627(18)	6920(30)	2380(30)	136(5)	
C17	5130(12)	6471(15)	2573(18)	171(5)	
C174	A 5335(14)	7600(20)	1880(30)	171(5)	
F1	2642.0(18)	1584(2)	3447(3)	93.1(8)	
F2	876.5(17)	4495(2)	5353(2)	97.2(9)	
N1	1404.9(19)	6218(2)	1644(3)	59.3(8)	
N2	981.7(19)	5833(3)	2866(3)	61.6(8)	
O1	1722(2)	7943(2)	604(3)	88.2(10)	
O2	3118(2)	6438(3)	2785(3)	101.5(12)	

03	4088(2)	6512(4)	1216(4)	126.2(14)

Table 3 Anisotropic Displacement Parameters (Å ² ×10 ³) for 3la. The Anisotropic
displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+]$.

Atom	U_{11}	U_{22}	U ₃₃	U_{23}	U_{13}	U_{12}
C1	73(2)	46.2(18)	63(2)	-3.8(17)	-0.1(18)	0.4(16)
C2	76(2)	45.6(17)	73(2)	9.7(18)	-6(2)	1.3(16)
C3	68(2)	66(2)	66(2)	23.6(19)	-2(2)	-4.3(18)
C4	56.4(19)	73(2)	63(2)	19.3(18)	10.9(18)	4.4(18)
C5	58.9(18)	51.5(18)	59.1(19)	10.5(16)	5.5(17)	-0.6(16)
C6	62.9(19)	42.0(15)	55.5(18)	4.2(15)	1.2(17)	-2.4(14)
C7	74(2)	43.1(16)	49.4(17)	1.6(14)	6.5(16)	3.1(15)
C8	73(2)	41.1(16)	61(2)	6.3(15)	9.2(19)	3.8(15)
C9	77(2)	50.7(18)	71(2)	3.7(17)	14(2)	11.5(16)
C10	80(2)	67(2)	59(2)	2.4(18)	17.3(19)	18.9(19)
C11	79(3)	80(3)	108(3)	17(3)	14(3)	21(2)
C12	108(3)	64(2)	106(3)	-15(2)	5(3)	8(2)
C13	107(3)	65(2)	65(2)	1.2(19)	-16(2)	2(2)
C14	82(2)	46.4(17)	54.7(19)	-0.7(15)	18.9(18)	4.0(17)
C15	82(3)	63(2)	68(2)	-9(2)	17(2)	-11.4(19)
C16	100(5)	170(17)	139(14)	47(9)	-20(8)	-28(10)
C16A	100(5)	170(17)	139(14)	47(9)	-20(8)	-28(10)
C17	133(9)	174(11)	206(14)	-12(11)	-46(10)	-6(9)
C17A	133(9)	174(11)	206(14)	-12(11)	-46(10)	-6(9)
F1	121(2)	56.0(13)	102.5(18)	16.5(12)	-3.8(16)	22.4(13)
F2	104.4(17)	108(2)	79.2(14)	37.7(14)	38.2(15)	27.6(15)
N1	79.1(18)	45.4(14)	53.5(15)	7.0(12)	15.4(15)	2.1(13)
N2	66.3(17)	56.3(16)	62.2(17)	15.8(13)	13.0(15)	5.8(13)
01	132(3)	51.1(14)	81.8(17)	16.9(14)	36.2(19)	4.8(15)
02	102(2)	122(3)	81(2)	-43(2)	12.8(18)	-27.9(19)
03	87(2)	170(4)	122(3)	-30(3)	28(2)	-40(2)

Table 4 Bond Lengths for 3la.

1 av	Table 4 Dond Lengths for Sia.									
Ato	m Atoı	n Length/Å	Ator	Atom Atom Length/Å						
C1	C2	1.365(5)	C8	N1	1.325(4)					
C1	C6	1.377(5)	C8	01	1.228(4)					
C2	C3	1.359(6)	C9	C10	1.523(5)					

C2	F1	1.368(4)	C9	C11	1.521(7)
C3	C4	1.373(5)	C9	C12	1.511(6)
C4	C5	1.373(5)	C10	N2	1.455(5)
C4	F2	1.353(4)	C14	C15	1.475(6)
C5	C6	1.378(5)	C15	O2	1.184(5)
C5	N2	1.406(5)	C15	O3	1.314(5)
C6	C7	1.521(5)	C16	C17	1.459(18)
C7	C13	1.516(5)	C16	O3	1.50(2)
C7	C14	1.526(5)	C16A	C17A	1.44(2)
C7	N1	1.472(4)	C16A	03	1.50(3)
C8	C9	1.508(5)	N1	N2	1.456(4)

Table 5 Bond Angles for 3la.

Atom Atom Angle/°					Atom Atom Atom Angle/°			
C2	C1	C6	116.6(3)	01	C8	N1	124.3(3)	
C1	C2	F1	118.0(4)	C8	C9	C10	100.5(3)	
C3	C2	C1	124.2(3)	C8	C9	C11	108.0(4)	
C3	C2	F1	117.7(3)	C8	C9	C12	111.1(4)	
C2	C3	C4	117.3(3)	C11	C9	C10	112.0(4)	
C3	C4	C5	121.6(4)	C12	C9	C10	113.1(4)	
F2	C4	C3	119.6(3)	C12	C9	C11	111.5(4)	
F2	C4	C5	118.8(3)	N2	C10	C9	103.6(3)	
C4	C5	C6	118.3(3)	C15	C14	C7	116.0(3)	
C4	C5	N2	128.9(3)	02	C15	C14	127.8(4)	
C6	C5	N2	112.6(3)	02	C15	O3	121.6(4)	
C1	C6	C5	121.9(3)	03	C15	C14	110.6(4)	
C1	C6	C7	128.3(3)	C17	C16	03	91.4(13)	
C5	C6	C7	109.8(3)	C17A	C16A	.03	109(2)	
C6	C7	C14	112.5(3)	C8	N1	C7	133.6(3)	
C13	C7	C6	111.2(3)	C8	N1	N2	111.3(3)	
C13	C7	C14	109.9(3)	N2	N1	C7	112.8(2)	
N1	C7	C6	99.5(2)	C5	N2	C10	121.6(3)	
N1	C7	C13	110.6(3)	C5	N2	N1	102.9(3)	
N1	C7	C14	112.8(3)	C10	N2	N1	103.3(3)	
N1	C8	C9	108.8(3)	C15	03	C16	120.3(9)	
01	C8	C9	126.9(3)	C15	O3	C16A	108.3(11)	

Table 6 Torsion Angles for 3la.

A B	С	D	Angle/°	A	B	С	D	Angle/°
C1 C2	C3	C4	0.6(6)	C9	C8	N1	C7	-161.8(3)
C1C6	C7	C13	66.8(5)	C9	C8	N1	N2	-1.1(4)
C1C6	C7	C14	-56.9(5)	C9	C10	N2	C5	148.0(3)
C1C6	C7	N1	-176.6(3)	C9	C10	N2	N1	33.5(4)
C2C1	C6	C5	-0.9(5)	C11	C9	C10	N2	81.0(4)
C2C1	C6	C7	-178.8(3)	C12	C9	C10	N2	-151.9(4)
C2C3	C4	C5	0.6(6)	C13	C7	C14	C15	177.9(3)
C2C3	C4	F2	-179.8(4)	C13	C7	N1	C8	-96.0(5)
C3 C4	C5	C6	-1.8(6)	C13	C7	N1	N2	103.6(3)
C3 C4	C5	N2	172.9(4)	C14	C7	N1	C8	27.5(5)
C4C5	C6	C1	2.0(5)	C14	C7	N1	N2	-132.9(3)
C4C5	C6	C7	-179.7(3)	C14	C15	03	C16	160.6(7)
C4C5	N2	C10	57.7(5)	C14	C15	03	C16A	-172.7(14)
C4C5	N2	N1	172.4(4)	C17	C16	03	C15	99.8(12)
C5C6	C7	C13	-111.3(3)	C17A	C16A	.03	C15	-161(2)
C5C6	C7	C14	124.9(3)	F1	C2	C3	C4	-179.2(3)
C5C6	C7	N1	5.3(4)	F2	C4	C5	C6	178.5(3)
C6C1	C2	C3	-0.4(6)	F2	C4	C5	N2	-6.8(6)
C6C1	C2	F1	179.4(3)	N1	C7	C14	C15	53.9(4)
C6C5	N2	C10	-127.4(3)	N1	C8	C9	C10	21.5(4)
C6C5	N2	N1	-12.6(4)	N1	C8	C9	C11	-95.9(4)
C6C7	C14	C15	-57.7(4)	N1	C8	C9	C12	141.5(4)
C6C7	N1	C8	147.0(4)	N2	C5	C6	C1	-173.5(3)
C6C7	N1	N2	-13.5(4)	N2	C5	C6	C7	4.7(4)
C7C14	C15	502	-4.0(6)	01	C8	C9	C10	-160.1(4)
C7C14	C15	503	178.5(4)	01	C8	C9	C11	82.4(5)
C7N1	N2	C5	16.5(4)	01	C8	C9	C12	-40.2(6)
C7N1	N2	C10	143.9(3)	01	C8	N1	C7	19.9(7)
C8C9	C10)N2	-33.5(4)	01	C8	N1	N2	-179.5(4)
C8N1	N2	C5	-148.4(3)	02	C15	03	C16	-17.1(10)
C8N1	N2	C10	-21.0(4)	O2	C15	03	C16A	.9.6(15)

Table	7	Hydrogen	Atom	Coordinates	(Å×10 ⁴)	and	Isotropic	Displacement
Param	ete	ers (Å ² ×10 ³)	for 3la.					

Atom x		У	z	U(eq)	
H1	2680	3032	1512	73	
H3	1716	2556	5189	80	

H10A1562	6906	4204	82
H10B 556	6886	4357	82
H11A19	8660	1573	133
H11B -264	8525	3069	133
H11C -249	7413	2127	133
H12A 1972	8838	3477	139
H12B 1092	9331	3986	139
H12C 1396	9603	2524	139
H13A1768	4121	-559	119
H13B 1383	5379	-858	119
H13C 890	4494	74	119
H14A 3115	4996	261	73
H14B 2750	6243	-118	73
H16A 4959	7911	1352	164
H16B 4304	7883	2577	164
H16C 4286	7397	2980	164
H16D4836	6232	2870	164
H17A 5258	5868	1925	257
H17B 4809	6129	3296	257
H17C 5653	6799	2913	257
H17D 5384	7481	928	257
H17E 5853	7341	2305	257
H17F 5242	8422	2061	257

Table 8 Atomic Occupancy for 3la.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
C16	0.587(11)	H16A	0.587(11)	H16B	0.587(11)
C16A	0.413(11)	H16C	0.413(11)	H16D	0.413(11)
C17	0.587(11)	H17A	0.587(11)	H17B	0.587(11)
H17C	0.587(11)	C17A	0.413(11)	H17D	0.413(11)
H17E	0.413(11)	H17F	0.413(11)		

7. References:

(1) C. F. H. Allen, J. R. Jr. Byers, US2772282, 1956.

(2) Jaimes, M. C. B.; Ahrens, A.; Rudolph, M.; Hashmi, A. S. K. Chem. Eur. J. 2015, 21, 427

Copies of ¹ H, ¹³C, and ¹⁹F NMR of products

S27

$\begin{array}{c} 6.959 \\ 6.955 \\ 6.956 \\ 6.956 \\ 6.870 \\ 6.881 \\ 6.887 \\$

S31

S34

6.881 6.881 6.881 6.883 6.883 6.883

6.977 6.938 6.888 6.880 6.822 6.822 6.824

7 6.964 7 6.964 7 6.944 7 6.943 7 6.933 7 6.933 7 6.933 6.835 6.834 6.834 6.834 6.833 6.833

 $\begin{array}{c} \overbrace{}^{3.650} \\ \overbrace{}^{3.610} \\ \overbrace{}^{3.691} \\ \overbrace{}^{3.91} \\ \overbrace{}^{3.93} \\ \overbrace{}^{3.591} \\ \overbrace{}^{3.59} \\ \overbrace{}^{2.859} \\ \overbrace{}^{2.859} \\ \overbrace{}^{-1.755} \\ \overbrace{}^{-1.755} \\ \overbrace{}^{-1.755} \\ \overbrace{}^{-1.755} \\ \overbrace{}^{-1.755} \\ \overbrace{}^{-1.259} \end{array}$

S41

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

S45

06 1 2 3 3 8 6 8 1 8 6 6 7 9 8 0 0 0 1 2 3 3 8 6 8 1 2 8 9 0 0 0 0 1 3 3 8 6 8 1 2 8 1 1 2 1 2	2 6 2 8 8 9 4 9 4 7 4 7 4 4 7 4 4 7 4 4 7 4 4 7 4 4 7 4 4 7 4	69	33	53
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00004400	2	~	90
000000000000000000000000000000000000000	<i>ოოოოო</i> ო <i>ო</i>	0	-	
	しし にししつ しし			1 1





 $\sim$  4012 3.565  $\chi$  3.565 3.565  $\chi$  3.565 3.645  $\sim$  3.020  $\sim$  3.020  $\sim$  3.022  $\sim$  3.02











3fo









10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

00-004000004080-0-08-8	00440080	0	2	~ ~
4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	10 201001	r-	3	3.0
	06 2224	0	80	60
	400000000	~		
	し にしえ し	+		





10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)





# $\int_{-1}^{7} \frac{7}{420}$ $\int_{-1}^{7} \frac{7}{420}$ $\int_{-1}^{7} \frac{7}{331}$ $\int_{-1}^{7} \frac{7}{331}$ $\int_{-1}^{7} \frac{7}{331}$ $\int_{-1}^{7} \frac{7}{331}$ $\int_{-1}^{7} \frac{7}{331}$ $\int_{-1}^{7} \frac{7}{331}$ $\int_{-1}^{7} \frac{7}{320}$ $\int_{-1}^{7} \frac{3}{3863}$ $\int_{-1}^{2} \frac{3}{3863}$ $\int_{-1}^{2} \frac{3}{3863}$ $\int_{-1}^{2} \frac{3}{3561}$ $\int_{-1}^{2} \frac{3}{3561}$



S57