Supplementary Information

Metal-Free Oxidative [2+2+1] Heteroannulation of 1,7-Enynes with Thiocyanates toward Thieno[3,4-c]quinolin-4(5H)-ones

Jiang-Xi Yu,* Shijie Niu, Ming Hu, Jian-Nan Xiang, and Jin-Heng Li*

State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, Hengyang Normal University, Hengyang 421008, China, and Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China

E-mail: hnhyyjx@126.com and jhli@hnu.edu.cn

List of Contents

- (A) General Experimental Procedures
- (B) Analytical data
- (C) References
- (D) Spectra
- (E) The X-ray single-crystal diffraction analysis of 3r

(A) General Experimental Procedures

Unless otherwise noted, all reactions were carried out under argon, and all starting materials and solvents were commercially available and used without further purification. Substrates **1a-v** were prepared according to the literatures.^{1,2} All products were identified by ¹H and ¹³C NMR, LRMS and HRMS. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance III HD 500 MHz spectrometer at room temperature in CDCl₃ with tetramethylsilane as internal standard. ¹⁹F NMR spectroscopy were recorded on a Bruker Avance III HD 500 MHz spectrometer at room temperature in CDCl₃ with tetramethylsilane as internal standard. ¹⁹F NMR spectra (LRMS) data were measured on a Shimadzu GCMS-QP2010 Ultra spectrometer. High-resolution mass spectra (HRMS) were obtained on a Waters Xevo G2-XS QTOF spectrometer. Melting point was determined by an X-4 microscopic melting point apparatus. Column chromatography was performed on silica gel (300-400 mesh) using petroleum ether (PE)/ethyl acetate (EA).

(a) General Procedure for the Cyclization Cascades of 1,7-Eneynes with Sodium Sulfocyanate:

A 25 mL oven-dried Schlenk tube equipped with a magnetic stirring bar was charged with substrate 1a (0.2 mmol), NaSCN (2 equiv), BPO (1.5 equiv) and

MeNO₂ (2 mL). The tube was evacuated and back-filled with argon for three times and the mixture was stirred at 120 °C (oil bath temperature) for 24 h until complete consumption of starting material as monitored by TLC and/or GC-MS analysis. A combination of NaSCN (2 equiv) and BPO (1.5 equiv) were added when the mixture was cooled to room temperature, and the resulting mixture was then stirred at 120 °C in argon for 24 h. After the reaction was finished, the reaction mixture was diluted with brine (5 mL), and the resulting solution extracted with ethyl acetate (3×10 mL). The combined organic layer was dried with Na₂SO₄, filtered and concentrated in vacuum. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to afford the desired products **3a**.

(b) Preparation of 4a³:

To a cooled solution (0 °C) containing **3a** in MeOH/H₂O (1:1, 10 ml total volume) was added oxone (3 equiv) and the suspension was stirred for 15 h at room temperature. Subsequently, the reaction mixture was diluted with CHCl₃ (3 × 10 ml), and the organics were extracted with H₂O (3 × 10 ml), dried over MgSO₄, filtered, and concentrated. Purification by column chromatography afforded **4a** (97% yield).

(B) Analytical data

3a,5-dimethyl-1-phenyl-3,3a-dihydrothieno[3,4-*c*]quinolin-4(5*H*)-one (3a):

¹³C NMR (125 MHz, CDCl₃) δ 173.9, 139.4, 137.7, 135.3, 129.0, 128.6, 128.3, 128.1, 127.5, 125.3, 122.7, 121.1, 115.4, 58.1, 41.4, 30.2, 21.4; LRMS (EI, 70 eV) *m/z* (%): 307 (M⁺, 52), 292 (100); HRMS *m/z* (ESI) calcd for C₁₉H₁₇NOS [M+H]⁺ 308.1104, Found 308.1169.

5-benzyl-3a-methyl-1-phenyl-3,3a-dihydrothieno[3,4-*c*]quinolin-4(5*H*)-one (3b):

38% yield; white solid, mp 198 - 199 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.35 - 7.32 (m, 7H), 7.27 - 7.23 (m, 3H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.70 (t, *J* = 7.5 Hz, 1H), 5.60 (d, *J* = 16.0 Hz, 1H), 4.82 (d, *J* = 16.0 Hz, 1H), 4.12 (d, *J* = 12.0 Hz, 1H), 3.32 (d, *J* = 12.0 Hz,

1H), 1.54 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.0, 138.7, 137.9, 137.0, 135.2, 129.0, 128.7, 128.5, 128.1, 127.6, 127.3, 126.3, 125.1, 122.9, 121.2, 116.2, 58.2, 46.8, 41.1, 21.7; LRMS (EI, 70 eV) *m/z* (%): 383 (M⁺, 96), 368 (70), 292 (26), 91 (100); HRMS *m/z* (ESI) calcd for C₂₅H₂₁NOS [M+H]⁺ 384.1417, Found 384.1466.

5-allyl-3a-methyl-1-phenyl-3,3a-dihydrothieno[3,4-*c*]quinolin-4(5*H*)one (3c):

55% yield; white solid, mp 101 - 102 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.34 (s, 5H), 7.11 (t, *J* = 7.5 Hz, 1H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 1H), 6.73 (t, *J* = 7.5 Hz, 1H), 5.96 - 5.88 (m, 1H), 5.23 - 5.15 (m, 2H), 4.95 - 4.90 (m, 1H), 4.30 - 4.25 (m, 1H), 4.06 (d, *J* = 12.0 Hz, 1H), 3.27 (d, *J* = 12.0 Hz, 1H), 1.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.5, 138.6, 137.8, 135.3, 132.5, 129.0, 128.6, 128.4, 128.0, 127.6, 125.2, 122.8, 121.2, 116.3, 116.0, 58.1, 45.5, 41.1, 21.6; LRMS (EI, 70 eV) *m*/*z* (%): 333 (M⁺, 75), 318 (100), 277 (28); HRMS *m*/*z* (ESI) calcd for C₂₁H₁₉NOS [M+H]⁺ 334.1260, Found 334.1330.

3a,5-dimethyl-1-(*o*-tolyl)-3,3a-dihydrothieno[3,4-*c*]quinolin-4(5*H*)-on e (3e):

1.7H), 2.03 (s, 1.3H), 1.47 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.9, 173.6,
139.0, 138.6, 137.9, 136.9, 135.7, 134.7, 134.4, 131.0, 130.5, 129.0, 128.9, 128.8,
128.7, 127.9, 127.8, 127.0, 126.3, 126.1, 126.0, 125.8, 123.1, 121.2, 120.9, 115.3,
115.2, 57.6 (2C), 41.6, 41.4, 30.2 (2C), 21.9, 21.7, 19.5, 19.3; LRMS (EI, 70 eV) *m/z*(%): 321 (M⁺, 47), 306 (100); HRMS *m/z* (ESI) calcd for C₂₀H₁₉NOS [M+H]⁺

322.1260, Found 322.1344.

3a,5-dimethyl-1-(*m*-tolyl)-3,3a-dihydrothieno[3,4-*c*]quinolin-4(5*H*)-on e (3f):

48% yield; white solid, mp 83 - 84 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.22 (t, J = 7.5 Hz, 1H), 7.18 - 7.11 (m, 4H), 7.00 (d, J = 8.5 Hz, 1H), 6.95 (dd, J = 8.0, 1.0 Hz, 1H), 6.75 (t, J = 7.5 Hz, 1H), 4.00 (d, J = 12.0 Hz, 1H), 3.42 (s, 3H), 3.27 (d, J = 12.0

Hz, 1H), 2.33 (s, 3H), 1.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.0, 139.3, 138.7, 137.9, 135.2, 129.4, 128.8, 128.8, 128.0, 127.5, 125.3, 125.1, 122.7, 121.2, 115.3, 58.0, 41.4, 30.2, 21.5, 21.4; LRMS (EI, 70 eV) *m/z* (%): 321 (M⁺, 52), 306 (100); HRMS *m/z* (ESI) calcd for C₂₀H₁₉NOS [M+H]⁺ 322.1260, Found 322.1347.

1-(4-methoxyphenyl)-3a,5-dimethyl-3,3a-dihydrothieno[3,4-*c*]quinoli n-4(5*H*)-one (3g):

80% yield; pale yellow solid, mp 146 - 147 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.26 - 7.24 (m, 2H), 7.16 (t, *J* = 8.0 Hz, 1H), 7.00 (d, *J* = 8.0 Hz, 2H), 6.86 (d, *J* = 8.0 Hz, 2H), 6.77 (t, *J* = 8.0 Hz, 1H), 4.02 (d, *J* = 12.0 Hz, 1H), 3.83 (s, 3H), 3.41 (s, 3H),

3.26 (d, *J* = 12.0 Hz, 1H), 1.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.0, 159.8, 139.4, 137.5, 129.6, 127.9, 127.4, 127.3, 124.5, 122.7, 121.4, 115.4, 114.3, 58.0, 55.4, 41.3, 30.2, 21.4; LRMS (EI, 70 eV) *m*/*z* (%): 337 (M⁺, 54), 322 (100); HRMS *m*/*z* (ESI) calcd for C₂₀H₁₉NO₂S [M+H]⁺ 338.1209, Found 338.1251. 3a,5-dimethyl-1-(p-tolyl)-3,3a-dihydrothieno[3,4-c]quinolin-4(5H)-on e (3h):

52% yield; white solid, mp 151 - 152 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.22 - 7.13 (m, 5H), 7.00 - 6.97 (m, 2H), 6.76 (t, J = 7.5 Hz, 1H), 4.01 (d, J = 12.0 Hz, 1H), 3.41 (s, 3H), 3.26 (d,J = 12.0 Hz, 1H), 2.36 (s, 3H), 1.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) § 174.0, 139.3, 138.5, 137.9, 132.2, 129.6, 128.1, 127.9, 127.5, 124.8, 122.7,

121.3, 115.3, 58.1, 41.3, 30.2, 21.5, 21.4; LRMS (EI, 70 eV) m/z (%): 321 (M⁺, 55), 306 (100); HRMS m/z (ESI) calcd for C₂₀H₁₉NOS [M+H]⁺ 322.1260, Found 322.1349.

1-(4-fluorophenyl)-3a,5-dimethyl-3,3a-dihydrothieno[3,4-c]quinolin-4 (5*H*)-one (3i):

1H), 1.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.8, 162.8 (d, J_{C-F} = 247.5 Hz), 139.5, 136.5, 131.2 (d, $J_{C-F} = 3.8$ Hz), 130.2 (d, $J_{C-F} = 7.5$ Hz), 128.2, 127.4, 125.7, 122.8, 121.00, 116.2, 115.7 (d, $J_{C-F} = 66.3$ Hz), 58.1, 41.4, 30.2, 21.5; ¹⁹F NMR (470 MHz, CDCl₃) δ -35.8; LRMS (EI, 70 eV) *m/z* (%): 325 (M⁺, 49), 310 (100); HRMS m/z (ESI) calcd for C₁₉H₁₆FNOS [M+H]⁺ 326.1009, Found 326.1065.

1-(4-chlorophenyl)-3a,5-dimethyl-3,3a-dihydrothieno[3,4-*c*]quinolin-4(5*H*)-one (3j):

34% yield; white solid, mp 130 - 131 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.33 - 7.30 (m, 2H), 7.28 - 7.25 (m, 2H), 7.21 -7.17 (m, 1H), 7.01 (d, *J* = 8.0 Hz, 1H), 6.92 (dd, *J* = 7.5, 1.5 Hz, 1H), 6.78 (td, *J* = 7.5, 1.0 Hz, 1H), 4.02 (d, *J* = 12.0 Hz, 1H), 3.41 (s, 3H),

3.28 (d, J = 12.0 Hz, 1H), 1.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.8, 139.4, 136.2, 134.4, 133.7, 129.8, 129.2, 128.4, 127.4, 126.0, 122.9, 120.8, 115.5, 58.1, 41.4, 30.2, 21.4; LRMS (EI, 70 eV) m/z (%): 343 (M⁺+2, 19), 341 (M⁺, 49). 328 (38), 326 (100); HRMS m/z (ESI) calcd for C₁₉H₁₆ClNOS [M+H]⁺ 342.0714, Found 342.0763.

1-(4-bromophenyl)-3a,5-dimethyl-3,3a-dihydrothieno[3,4-*c*]quinolin-4(5*H*)-one (3k):

12.0 Hz, 1H), 1.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.8, 139.4, 136.2, 134.2, 132.2, 130.0, 128.4, 127.4, 126.1, 122.9, 122.6, 120.8, 115.5, 58.2, 41.4, 30.2, 21.4; LRMS (EI, 70 eV) *m*/*z* (%): 387 (M⁺+2, 46), 385 (M⁺, 46), 372 (100), 370 (92); HRMS *m*/*z* (ESI) calcd for C₁₉H₁₆BrNOS [M+H]⁺ 386.0209, Found 386.0229.

4-(3a,5-dimethyl-4-oxo-3,3a,4,5-tetrahydrothieno[3,4-*c*]quinolin-1-yl) benzonitrile (3l):

61% yield; yellow solid, mp 168 - 169 °C (uncorrected); ¹H NMR
(500 MHz, CDCl₃) δ 7.63 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.22 (t, J = 8.0 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 6.84 - 6.77 (m, 2H), 4.03 (d, J = 12.0 Hz, 1H), 3.42 (s, 3H), 3.32 (d, J = 12.0

Hz, 1H), 1.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.6, 140.4, 139.7, 135.2, 132.7, 129.3, 128.9, 127.9, 127.5, 123.0, 120.3, 118.6, 115.7, 112.3, 58.4, 41.5, 30.3, 21.3; LRMS (EI, 70 eV) *m/z* (%): 332 (M⁺, 42), 317 (100); HRMS *m/z* (ESI) calcd for C₂₀H₁₆N₂OS [M+H]⁺ 333.1056, Found 333.1077.

3a,5-dimethyl-1-(4-(trifluoromethyl)phenyl)-3,3a-dihydrothieno[3,4-*c* |quinolin-4(5*H*)-one (3m):

3.43 (s, 3H), 3.31 (d, J = 12.0 Hz, 1H), 1.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.7, 139.5, 139.2, 135.7, 130.5 (q, $J_{C-F} = 31.3$ Hz), 128.8, 128.6, 127.5, 127.0, 125.9 (q, $J_{C-F} = 3.8$ Hz), 124.1 (q, $J_{C-F} = 271.3$ Hz), 122.9, 120.5, 115.6, 58.2, 41.5, 30.2, 21.3; ¹⁹F NMR (470 MHz, CDCl₃) δ 13.9; LRMS (EI, 70 eV) m/z (%): 375 (M⁺, 43), 360 (100); HRMS m/z (ESI) calcd for C₂₀H₁₆F₃NOS [M+H]⁺ 376.0977, Found 376.1073.

3a,5-dimethyl-1-(naphthalen-1-yl)-3,3a-dihydrothieno[3,4-*c*]quinolin-4(5*H*)-one (3n):

6.98 - 6.94 (m, 2.7H), 6.62 (d, J = 8.0 Hz, 1H), 6.51 (t, J = 7.5 Hz, 1.7H), 6.46 (t, J = 8.0 Hz, 1H), 6.36 (d, J = 8.0 Hz, 1.7H), 4.14 - 4.10 (m, 2.7H), 3.45 - 3.37 (m, 10.8H), 1.61 (s, 5.1H), 1.56 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.9, 173.7, 139.1, 138.7, 136.6, 135.4, 134.1, 133.9, 132.7, 132.7, 131.8, 129.8, 129.1, 129.0, 128.8, 128.4, 128.1, 127.9, 127.0, 127.0, 126.9, 126.8, 126.5, 126.4, 126.3, 126.3, 125.5, 125.4, 125.3, 122.9, 122.9, 120.8, 120.6, 115.2, 115.1, 58.1, 57.8, 41.9, 41.8, 30.2 (2C), 21.9, 21.8; LRMS (EI, 70 eV) m/z (%): 357 (M⁺, 52), 342 (100); HRMS m/z (ESI) calcd for C₂₃H₁₉NOS [M+H]⁺ 358.1260, Found 358.1312.

3a,5-dimethyl-1-(pyridin-2-yl)-3,3a-dihydrothieno[3,4-*c*]quinolin-4(5 *H*)-one (30):

28% yield; yellow solid, mp 31 - 32 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 8.65 (d, J = 4.0 Hz, 1H), 7.60 (td, J = 8.0, 2.0 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.25 - 7.21 (m, 2H), 7.07 (dd, J = 7.5, 1.5 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 6.81 (td, J = 7.5, 0.5 Hz, 1H),

3.97 (d, J = 12.0 Hz, 1H), 3.42 (s, 3H), 3.30 (d, J = 12.0 Hz, 1H), 1.43 (s, 3H); ¹³C

NMR (125 MHz, CDCl₃) δ 173.9, 154.0, 150.1, 139.7, 137.5, 136.4, 128.9, 128.0, 127.9, 123.4, 123.2, 122.8, 120.6, 115.6, 58.5, 41.0, 30.2, 20.7; LRMS (EI, 70 eV) *m/z* (%): 308 (M⁺, 54), 293 (49), 275 (20), 262 (100), 230 (30); HRMS *m/z* (ESI) calcd for C₁₈H₁₆N₂OS [M+H]⁺ 309.1056, Found 309.1123.

3a,5-dimethyl-1-(thiophen-3-yl)-3,3a-dihydrothieno[3,4-*c*]quinolin-4(5*H*)-one (3p):

67% yield; yellow solid, mp 110 - 111 °C (uncorrected); ¹H NMR
(500 MHz, CDCl₃) δ 7.32 - 7.28 (m, 2H), 7.22 - 7.19 (m, 1H), 7.13
(dd, J = 8.0, 1.5 Hz, 1H), 7.03 (dd, J = 5.0, 1.5 Hz, 1H), 7.02 - 7.01
(m, 1H), 6.84 (td, J = 7.5, 1.0 Hz, 1H), 4.03 (d, J = 12.0 Hz, 1H),

3.41 (s, 3H), 3.26 (d, J = 12.0 Hz, 1H), 1.38 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.9, 139.3, 134.9, 132.0, 128.3, 127.5, 127.3, 126.1, 125.6, 124.4, 122.8, 121.3, 115.4, 58.1, 41.3, 30.2, 21.5; LRMS (EI, 70 eV) m/z (%): 313 (M⁺, 57), 298 (100); HRMS m/z (ESI) calcd for C₁₇H₁₅NOS₂ [M+H]⁺ 314.0668, Found 314.0702.

3a,5,8-trimethyl-1-phenyl-3,3a-dihydrothieno[3,4-*c*]quinolin-4(5*H*)-o ne (3*r*):

50% yield; pale yellow solid, mp 163 - 164 °C (uncorrected); ¹H
NMR (500 MHz, CDCl₃) δ 7.34 - 7.32 (m, 5H), 6.96 (dd, J = 8.0,
1.5 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.71 (d, J = 1.5 Hz, 1H),
4.01 (d, J = 12.0 Hz, 1H), 3.39 (s, 3H), 3.27 (d, J = 12.0 Hz, 1H),

2.01 (s, 3H), 1.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.8, 137.3, 137.1, 135.3, 132.1, 128.8, 128.7, 128.6, 128.3, 128.0, 125.6, 120.9, 115.2, 58.1, 41.4, 30.2, 21.4,

20.6; LRMS (EI, 70 eV) *m/z* (%): 321 (M⁺, 52), 306 (100); HRMS *m/z* (ESI) calcd for C₂₀H₁₉NOS [M+H]⁺ 322.1260, Found 322.1346.

8-chloro-3a,5-dimethyl-1-phenyl-3,3a-dihydrothieno[3,4-*c*]quinolin-4(5*H*)-one (3s):

= 12.0 Hz, 1H), 1.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.6, 139.9, 137.9, 134.5, 129.1, 129.1, 128.1, 127.7, 127.1, 123.9, 122.5, 116.6, 57.8, 41.4, 30.4, 21.5; LRMS (EI, 70 eV) *m*/*z* (%): 343 (M⁺+2, 20), 341 (M⁺, 51), 328 (40), 326 (100); HRMS *m*/*z* (ESI) calcd for C₁₉H₁₆ClNOS [M+H]⁺ 342.0714, Found 342.0776.

3a,5-dimethyl-4-oxo-1-phenyl-3,3a,4,5-tetrahydrothieno[3,4-*c*]quinoli ne-8-carbonitrile (3t):

55% yield; white solid, mp 216 - 217 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.43 (dd, J = 8.5, 2.0 Hz, 1H), 7.40 - 7.38 (m, 3H), 7.29 - 7.27 (m, 2H), 7.14 (d, J = 2.0 Hz, 1H), 7.06 (d, J = 8.5 Hz, 1H), 4.04 (d, J = 12.0 Hz, 1H), 3.43 (s, 3H), 3.30 (d, J

= 12.0 Hz, 1H), 1.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.7, 142.5, 141.7, 133.9, 131.5, 130.9, 129.5, 129.4, 127.9, 122.5, 121.9, 118.5, 115.9, 106.1, 57.6, 41.3, 30.4, 21.7; LRMS (EI, 70 eV) *m*/*z* (%): 332 (M⁺, 44), 317 (100); HRMS *m*/*z* (ESI) calcd for C₂₀H₁₆N₂OS [M+H]⁺ 333.1056, Found 333.1079.

3a,5-dimethyl-1-phenyl-7-(trifluoromethyl)-3,3a-dihydrothieno[3,4-*c*] quinolin-4(5*H*)-one (3u):

81% yield; white solid, mp 125 - 126 °C (uncorrected); ¹H
NMR (500 MHz, CDCl₃)
$$\delta$$
 7.37 - 7.36 (m, 3H), 7.31 - 7.29 (m,
2H), 7.20 (s, 1H), 6.99 (s, 1H), 4.06 (d, *J* = 12.0 Hz, 1H), 3.45
(s, 3H), 3.31 (d, *J* = 12.0 Hz, 1H), 1.42 (s, 3H); ¹³C NMR (125

MHz, CDCl₃) δ 173.7, 141.3, 139.6, 134.6, 129.6 (q, $J_{C-F} = 32.5$ Hz), 129.2, 129.1, 128.2, 127.7, 124.3, 124.0 (q, $J_{C-F} = 270.0$ Hz), 123.8, 119.4 (q, $J_{C-F} = 3.8$ Hz), 112.2 (q, $J_{C-F} = 3.8$ Hz), 57.7, 41.5, 30.3, 21.7; ¹⁹F NMR (470 MHz, CDCl₃) δ 13.9; LRMS (EI, 70 eV) m/z (%): 375 (M⁺, 44), 360 (100); HRMS m/z (ESI) calcd for C₂₀H₁₆F₃NOS [M+H]⁺ 376.0977, Found 376.1022.

5-methyl-1,3a-diphenyl-3,3a-dihydrothieno[3,4-*c*]quinolin-4(5*H*)-one (3v):

46% yield; white solid, mp 179 - 180 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.44 - 7.42 (m, 4H), 7.40 - 7.37 (m, 3H), 7.27 - 7.25 (m, 1H), 7.25 - 7.24 (m, 1H), 7.21 - 7.18 (m, 1H), 7.06 - 7.03 (m, 1H), 7.01 (dd, *J* = 8.0, 1.5 Hz, 1H), 6.84 (d,

J = 8.0 Hz, 1H), 6.71 (td, *J* = 7.5, 1.0 Hz, 1H), 4.46 (d, *J* = 12.0 Hz, 1H), 3.44 - 3.41 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 141.9, 139.3, 139.2, 135.0, 129.0, 128.9, 128.4, 128.0, 127.8, 127.3, 126.5, 123.2, 122.8, 122.1, 115.6, 65.6, 43.7, 30.6; LRMS (EI, 70 eV) *m*/*z* (%): 369 (M⁺, 71), 292 (100); HRMS *m*/*z* (ESI) calcd for C₂₄H₁₉NOS [M+H]⁺ 370.1260, Found 370.1348.

3a,5-dimethyl-1-phenyl-3,3a-dihydrothieno[3,4-*c*]quinolin-4(5*H*)-one 2,2-dioxide (4a):

97% yield; white solid, mp 204 - 205 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.48 - 7.39 (m, 6H), 7.15 - 7.12 (m, 2H), 6.90 (td, J = 7.5, 1.0 Hz, 1H), 3.96 (d, J = 14.0 Hz, 1H), 3.53 (d, J = 14.0Hz, 1H), 3.47 (s, 3H), 1.61 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ

170.0, 140.5, 140.0, 137.2, 132.1, 130.1, 129.5, 129.4, 129.3, 127.0, 123.5, 117.2, 115.8, 57.5, 47.6, 30.6, 25.7; LRMS (EI, 70 eV) *m/z* (%): 339 (M⁺, 74), 274 (57), 260 (100); HRMS *m/z* (ESI) calcd for C₁₉H₁₇NO₃S [M+H]⁺ 340.1002, Found 340.1107.

(C) References

(1) X. Mu, T. Wu, H.-y. Wang, Y.-l. Guo and G. Liu, J. Am. Chem. Soc., 2012, 134, 878.

(2) N. Sakiyama, K. Noguchi and K. Tanaka, Angew. Chem. Int. Ed., 2012, 51, 5976.

(3) C. D. McCune, M. L. Beio, J. M. Sturdivant, R. de la Salud-Bea, B. M. Darnell and D. B. Berkowitz, J. Am. Chem. Soc., 2017, **139**, 14077.

(D) Spectra

trifluoroacetic acid (TFA)

CF3COOH

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

---76.55

N 210 200 . 190 180 170 160 . 150 . 140 130 120 110 100 f1 (ppm) . 90 . 80 . 70 60 50 40 . 30 . 20 10 0

3a,5-dimethyl-1-phenyl-3,3a-dihydrothieno[3,4-c]quinolin-4(5H)-one

5-benzyl-3a-methyl-1-phenyl-3,3a-dihydrothieno[3,4-c]quinolin-4(5H

5-allyl-3a-methyl-1-phenyl-3,3a-dihydrothieno[3,4-c]quinolin-4(5H)-

3a,5-dimethyl-1-(o-tolyl)-3,3a-dihydrothieno[3,4-c]quinolin-4(5H)-on

3a,5-dimethyl-1-(*m*-tolyl)-3,3a-dihydrothieno[3,4-*c*]quinolin-4(5*H*)-on

1-(4-methoxyphenyl)-3a,5-dimethyl-3,3a-dihydrothieno[3,4-c]quinoli

3a,5-dimethyl-1-(p-tolyl)-3,3a-dihydrothieno[3,4-c]quinolin-4(5H)-on

1-(4-fluorophenyl)-3a,5-dimethyl-3,3a-dihydrothieno[3,4-c]quinolin-4

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 f1 (ppm) -130 -150 -170 -190

1-(4-chlorophenyl)-3a,5-dimethyl-3,3a-dihydrothieno[3,4-c]quinolin-

1-(4-bromophenyl)-3a,5-dimethyl-3,3a-dihydrothieno[3,4-c]quinolin-

4-(3a,5-dimethyl-4-oxo-3,3a,4,5-tetrahydrothieno[3,4-c]quinolin-1-yl)

3a,5-dimethyl-1-(4-(trifluoromethyl)phenyl)-3,3a-dihydrothieno[3,4-c

3a,5-dimethyl-1-(naphthalen-1-yl)-3,3a-dihydrothieno[3,4-c]quinolin-

110 100 f1 (ppm) 150 140 130

3a,5-dimethyl-1-(pyridin-2-yl)-3,3a-dihydrothieno[3,4-c]quinolin-4(5

3a,5-dimethyl-1-(thiophen-3-yl)-3,3a-dihydrothieno[3,4-c]quinolin-4(

3a,5,8-trimethyl-1-phenyl-3,3a-dihydrothieno[3,4-c]quinolin-4(5H)-o

8-chloro-3a,5-dimethyl-1-phenyl-3,3a-dihydrothieno[3,4-c]quinolin-4(

5H)-one (3s):

3a,5-dimethyl-4-oxo-1-phenyl-3,3a,4,5-tetrahydrothieno[3,4-c]quinoli

3a,5-dimethyl-1-phenyl-7-(trifluoromethyl)-3,3a-dihydrothieno[3,4-c]

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

5-methyl-1,3a-diphenyl-3,3a-dihydrothieno[3,4-c]quinolin-4(5H)-one

(3v):

3a,5-dimethyl-1-phenyl-3,3a-dihydrothieno[3,4-c]quinolin-4(5H)-one

(E) The X-ray single-crystal diffraction analysis of 3r (CCDC: 1904009)

Molecular structure of 3r with 15% probability ellipsoids.

Identification code	yjx204
Empirical formula	C20H19NOS
Formula weight	321.42
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic

Table S1. Crystal data and structure refinement for yjx204.

Space group	P21/c	
	a = 12.2921(15) Å	$\alpha = 90^{\circ}$
Unit cell dimensions	b = 13.3688(17) Å	β=101.103(2)°
	c = 10.0405(12) Å	$\gamma=90^\circ$
Volume	1619.1(3) Å ³	
Z	4	
Density (calculated)	1.319 Mg/m ³	
Absorption coefficient	0.204 mm ⁻¹	
F(000)	680	
Crystal size	$0.210 \times 0.200 \times 0.170 \text{ mm}^3$	
Theta range for data collection	1.688 to 26.572°	
Index ranges	$-13 \le h \le 15, -16 \le k \le 15, -12 \le 1 \le 12$	
Reflections collected	9188	
Independent reflections	3367 [R(int) = 0.0382]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from e	equivalents
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3367 / 0 / 211	
Goodness-of-fit on F ²	1.022	
Final R indices [I > 2sigma(I)]	$R_1 = 0.0430, wR_2 = 0.$	1054
R indices (all data)	$R_1 = 0.0593, wR_2 = 0.1183$	
Extinction coefficient	n/a	

S(1)-C(4)	1.7709(18)
S(1)-C(3)	1.814(2)
O(1)-C(1)	1.218(2)
N(1)-C(1)	1.364(2)
N(1)-C(11)	1.419(2)
N(1)-C(12)	1.466(2)
C(1)-C(2)	1.522(3)
C(2)-C(5)	1.516(2)
C(2)-C(3)	1.532(3)
C(2)-C(13)	1.538(3)
C(3)-H(3A)	0.9700
C(3)-H(3B)	0.9700
C(4)-C(5)	1.345(2)
C(4)-C(14)	1.480(2)
C(5)-C(6)	1.464(2)
C(6)-C(7)	1.394(2)
C(6)-C(11)	1.410(2)
C(7)-C(8)	1.384(2)
C(7)-H(7)	0.9300

Table S2. Bond lengths [Å] and angles [°] for yjx204.

C(8)-C(9)	1.385(3)
C(8)-C(20)	1.504(3)
C(9)-C(10)	1.385(3)
C(9)-H(9)	0.9300
C(10)-C(11)	1.387(2)
C(10)-H(10)	0.9300
C(12)-H(12A)	0.9600
C(12)-H(12B)	0.9600
C(12)-H(12C)	0.9600
C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600
C(13)-H(13C)	0.9600
C(14)-C(15)	1.388(3)
C(14)-C(19)	1.390(2)
C(15)-C(16)	1.381(3)
C(15)-H(15)	0.9300
C(16)-C(17)	1.374(3)
C(16)-H(16)	0.9300
C(17)-C(18)	1.381(3)
C(17)-H(17)	0.9300
C(18)-C(19)	1.378(3)
C(18)-H(18)	0.9300

С(19)-Н(19)	0.9300
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
C(20)-H(20C)	0.9600
C(4)-S(1)-C(3)	90.25(9)
C(1)-N(1)-C(11)	123.18(15)
C(1)-N(1)-C(12)	117.49(16)
C(11)-N(1)-C(12)	118.96(16)
O(1)-C(1)-N(1)	121.85(18)
O(1)-C(1)-C(2)	120.32(17)
N(1)-C(1)-C(2)	117.82(16)
C(5)-C(2)-C(1)	112.27(15)
C(5)-C(2)-C(3)	105.22(15)
C(1)-C(2)-C(3)	109.36(15)
C(5)-C(2)-C(13)	110.64(15)
C(1)-C(2)-C(13)	108.00(15)
C(3)-C(2)-C(13)	111.37(16)
C(2)-C(3)-S(1)	105.65(13)
C(2)-C(3)-H(3A)	110.6
S(1)-C(3)-H(3A)	110.6
C(2)-C(3)-H(3B)	110.6

S(1)-C(3)-H(3B)	110.6
H(3A)-C(3)-H(3B)	108.7
C(5)-C(4)-C(14)	129.63(16)
C(5)-C(4)-S(1)	112.94(13)
C(14)-C(4)-S(1)	117.40(12)
C(4)-C(5)-C(6)	129.68(16)
C(4)-C(5)-C(2)	114.35(15)
C(6)-C(5)-C(2)	115.87(14)
C(7)-C(6)-C(11)	118.72(16)
C(7)-C(6)-C(5)	124.19(16)
C(11)-C(6)-C(5)	117.05(15)
C(8)-C(7)-C(6)	122.43(17)
C(8)-C(7)-H(7)	118.8
C(6)-C(7)-H(7)	118.8
C(7)-C(8)-C(9)	117.54(17)
C(7)-C(8)-C(20)	121.33(17)
C(9)-C(8)-C(20)	121.11(17)
C(10)-C(9)-C(8)	121.78(17)
C(10)-C(9)-H(9)	119.1
C(8)-C(9)-H(9)	119.1
C(9)-C(10)-C(11)	120.35(17)
C(9)-C(10)-H(10)	119.8
	S(1)-C(3)-H(3B) H(3A)-C(3)-H(3B) C(5)-C(4)-C(14) C(5)-C(4)-S(1) C(14)-C(4)-S(1) C(4)-C(5)-C(6) C(4)-C(5)-C(2) C(6)-C(5)-C(2) C(7)-C(6)-C(11) C(7)-C(6)-C(5) C(11)-C(6)-C(5) C(8)-C(7)-F(6) C(8)-C(7)-F(7) C(6)-C(7)-H(7) C(7)-C(8)-C(20) C(7)-C(8)-C(20) C(10)-C(9)-F(8) C(10)-C(9)-H(9) C(8)-C(10)-H(10)

С(11)-С(10)-Н(10)	119.8
C(10)-C(11)-C(6)	119.09(17)
C(10)-C(11)-N(1)	120.74(16)
C(6)-C(11)-N(1)	120.17(16)
N(1)-C(12)-H(12A)	109.5
N(1)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
N(1)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(2)-C(13)-H(13A)	109.5
C(2)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(2)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(15)-C(14)-C(19)	118.51(17)
C(15)-C(14)-C(4)	121.03(17)
C(19)-C(14)-C(4)	120.39(17)
C(16)-C(15)-C(14)	120.6(2)
C(16)-C(15)-H(15)	119.7
C(14)-C(15)-H(15)	119.7

C(17)-C(16)-C(15)	120.4(2)
C(17)-C(16)-H(16)	119.8
C(15)-C(16)-H(16)	119.8
C(16)-C(17)-C(18)	119.5(2)
С(16)-С(17)-Н(17)	120.2
С(18)-С(17)-Н(17)	120.2
C(19)-C(18)-C(17)	120.3(2)
C(19)-C(18)-H(18)	119.8
C(17)-C(18)-H(18)	119.8
C(18)-C(19)-C(14)	120.58(19)
C(18)-C(19)-H(19)	119.7
C(14)-C(19)-H(19)	119.7
C(8)-C(20)-H(20A)	109.5
C(8)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(8)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5

C(11)-N(1)-C(1)-O(1)	-172.95(18)
C(12)-N(1)-C(1)-O(1)	0.0(3)
C(11)-N(1)-C(1)-C(2)	6.2(3)
C(12)-N(1)-C(1)-C(2)	179.11(17)
O(1)-C(1)-C(2)-C(5)	-157.58(18)
N(1)-C(1)-C(2)-C(5)	23.3(2)
O(1)-C(1)-C(2)-C(3)	-41.2(2)
N(1)-C(1)-C(2)-C(3)	139.67(17)
O(1)-C(1)-C(2)-C(13)	80.2(2)
N(1)-C(1)-C(2)-C(13)	-98.98(19)
C(5)-C(2)-C(3)-S(1)	-33.86(17)
C(1)-C(2)-C(3)-S(1)	-154.66(13)
C(13)-C(2)-C(3)-S(1)	86.05(16)
C(4)-S(1)-C(3)-C(2)	30.06(14)
C(3)-S(1)-C(4)-C(5)	-18.34(16)
C(3)-S(1)-C(4)-C(14)	159.78(15)
C(14)-C(4)-C(5)-C(6)	6.0(3)
S(1)-C(4)-C(5)-C(6)	-176.16(15)
C(14)-C(4)-C(5)-C(2)	-177.78(17)
S(1)-C(4)-C(5)-C(2)	0.1(2)
C(1)-C(2)-C(5)-C(4)	141.49(17)

C(3)-C(2)-C(5)-C(4)	22.6(2)
C(13)-C(2)-C(5)-C(4)	-97.77(19)
C(1)-C(2)-C(5)-C(6)	-41.7(2)
C(3)-C(2)-C(5)-C(6)	-160.61(15)
C(13)-C(2)-C(5)-C(6)	78.99(19)
C(4)-C(5)-C(6)-C(7)	30.1(3)
C(2)-C(5)-C(6)-C(7)	-146.07(17)
C(4)-C(5)-C(6)-C(11)	-152.35(19)
C(2)-C(5)-C(6)-C(11)	31.5(2)
C(11)-C(6)-C(7)-C(8)	2.6(3)
C(5)-C(6)-C(7)-C(8)	-179.87(16)
C(6)-C(7)-C(8)-C(9)	0.0(3)
C(6)-C(7)-C(8)-C(20)	178.83(18)
C(7)-C(8)-C(9)-C(10)	-1.9(3)
C(20)-C(8)-C(9)-C(10)	179.29(18)
C(8)-C(9)-C(10)-C(11)	1.1(3)
C(9)-C(10)-C(11)-C(6)	1.6(3)
C(9)-C(10)-C(11)-N(1)	-178.11(17)
C(7)-C(6)-C(11)-C(10)	-3.4(3)
C(5)-C(6)-C(11)-C(10)	178.90(16)
C(7)-C(6)-C(11)-N(1)	176.35(15)
C(5)-C(6)-C(11)-N(1)	-1.3(2)

C(1)-N(1)-C(11)-C(10)	161.02(18)
C(12)-N(1)-C(11)-C(10)	-11.8(3)
C(1)-N(1)-C(11)-C(6)	-18.7(3)
C(12)-N(1)-C(11)-C(6)	168.45(17)
C(5)-C(4)-C(14)-C(15)	-134.8(2)
S(1)-C(4)-C(14)-C(15)	47.5(2)
C(5)-C(4)-C(14)-C(19)	48.2(3)
S(1)-C(4)-C(14)-C(19)	-129.53(16)
C(19)-C(14)-C(15)-C(16)	-1.3(3)
C(4)-C(14)-C(15)-C(16)	-178.35(19)
C(14)-C(15)-C(16)-C(17)	0.5(4)
C(15)-C(16)-C(17)-C(18)	0.5(4)
C(16)-C(17)-C(18)-C(19)	-0.6(3)
C(17)-C(18)-C(19)-C(14)	-0.2(3)
C(15)-C(14)-C(19)-C(18)	1.1(3)
C(4)-C(14)-C(19)-C(18)	178.21(18)

Table 54. Hydrogen bonds for yjx204 [A and].				
D-HA	<i>d</i> (D-H)	<i>d</i> (HA)	<i>d</i> (DA)	∠(DHA)
C(12)-H(12B)O(1) ^{#1}	0.96	2.36	3.229(3)	149.6

Table S4. Hydrogen bonds for yjx204 [Å and °].

Symmetry transformations used to generate equivalent atoms: $^{#1}$ x, -y+3/2, z+1/2.