Multiple Functional Groups in UiO-66

Improve Chemical Warfare Agent

Simulant Degradation

Mark Kalaj, Joseph M. Palomba, Kyle C. Bentz, and Seth M. Cohen*

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States

SUPPORTING INFORMATION

<u>Experimental</u>

Materials

All solvents and starting materials were purchased from chemical suppliers and used without further purification (Sigma Aldrich, Alfa Aesar, EMD, and TCI).

Materials Synthesis

MOF Synthesis:

One Ligand Synthesis:

Zirconium(IV) chloride (0.26 mmol) and one of the following: terephthalic acid (0.26 mmol, 0.286 g), 2-aminoterephthalic acid (0.26 mmol, 0.312 g), 2-hydroxyterephthalic acid (0.26 mmol, 0.312 g), 2-nitroterephthalic acid (0.26 mmol, 0.364 g), or 2-bromoterephthalic acid (0.26 mmol, 0.423 g) were dissolved in 15 mL DMF with 0.447 mL glacial acetic acid in a 20-mL vial. The capped vial was placed in an oven and heated to 120 °C for 24 h. After cooling to room temperature, the particles were collected by centrifugation (fixed-angle rotor, 6500 rpm, 15 min), washed with 3×10 mL portions of MeOH, and 1×10 mL hexanes and dried under vacuum at room temperature.

Two Ligand Synthesis:

Zirconium(IV) chloride (0.26 mmol) and a combination of two of the following: terephthalic acid (0.13 mmol, 0.143 g), 2-aminoterephthalic acid (0.13 mmol, 0.156 g), 2-hydroxyterephthalic acid (0.13 mmol, 0.156 g), 2-nitroterephthalic acid (0.13 mmol, 0.182 g), or 2-bromoterephthalic acid (0.13 mmol, 0.211 g) were dissolved in 15 mL DMF with 0.447 mL glacial acetic acid in a 20 mL vial. The capped vial was placed in an oven and

heated to 120 °C for 24 h. After cooling to room temperature, the particles were collected by centrifugation (fixed-angle rotor, 6500 rpm, 15 min), washed with 3×10 mL portions of MeOH, and 1×10 mL hexanes and dried under vacuum at room temperature.

Three Ligand Synthesis:

Zirconium(IV) chloride (0.26 mmol) and a combination of three of the following: terephthalic acid (0.087 mmol, 0.096 g), 2-aminoterephthalic acid (0.087 mmol, 0.105g), 2-hydroxyterephthalic acid (0.087 mmol, 0.105 g), 2-nitroterephthalic acid (0.087 mmol, 0.121 g) ,or 2-bromoterephthalic acid (0.087 mmol, 0.141 g) were dissolved in 15 mL DMF with 0.447 mL glacial acetic acid in a 20 mL vial. The capped vial was placed in an oven and heated to 120 °C for 24 h. After cooling to room temperature, the particles were collected by centrifugation (fixed-angle rotor, 6500 rpm, 15 min), washed with 3×10 mL portions of MeOH, and 1×10 mL hexanes and dried under vacuum at room temperature.

Four Ligand Synthesis:

Zirconium(IV) chloride (0.26 mmol) and a combination of four of the following: terephthalic acid (0.065 mmol, 0.072 g), 2-aminoterephthalic acid (0.065 mmol, 0.078 g), 2-hydroxyterephthalic acid (0.065 mmol, 0.078 g), 2-nitroterephthalic acid (0.065 mmol, 0.078 g), or 2-bromoterephthalic acid (0.065 mmol, 0.106 g) were dissolved in 15 mL DMF with 0.447 mL glacial acetic acid in a 20 mL vial. The capped vial was placed in an oven and heated to 120 °C for 24 h. After cooling to room temperature, the particles were collected by centrifugation (fixed-angle rotor, 6500 rpm, 15 min), washed with 3×10 mL portions of MeOH, and 1×10 mL hexanes and dried under vacuum at room temperature.

Five Ligand Synthesis:

Zirconium(IV) chloride (0.26 mmol) and terephthalic acid (0.052 mmol, 0.057 g), 2aminoterephthalic acid (0.052 mmol, 0.062 g), 2-hydroxyterephthalic acid (0.052 mmol, 0.062 g), 2-nitroterephthalic acid (0.052 mmol, 0.073 g), or 2-bromoterephthalic acid (0.052 mmol, 0.085 g) were dissolved in 15 mL DMF with 0.447 mL glacial acetic acid in a 20 mL vial. The capped vial was placed in an oven and heated to 120 °C for 24 h. After cooling to room temperature, the particles were collected by centrifugation (fixed-angle rotor, 6500 rpm, 15 min), washed with 3×10 mL portions of MeOH, and 1×10 mL hexanes and dried under vacuum at room temperature.

Characterization Methods

Nuclear Magnetic Resonance (NMR). Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Varian FT-NMR spectrometer (400 MHz). Chemical shifts are quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0 ppm for TMS. MOFs were digested for NMR analysis by immersion of ~8-10 mg MOF in 580 μ L DMSO-*d*₆ with 20 μ L HF (48% in water). Samples were kept in this acidic solution at room temperature until the MOF was fully dissolved.

Powder X-ray Diffraction (PXRD). PXRD data was collected at room temperature on a Bruker D8 Advance diffractometer running at 40 kV, 40 mA for Cu K α (λ = 1.5418 Å), with a scan speed of 0.5 sec/step, a step size of 0.01° in 2 θ , and a 2 θ range of 3-50° at room temperature.

Scanning Electron Microscopy (SEM). MOFs were placed on conductive carbon tape on a sample holder and coated using an Ir-sputter coating for 7 sec. A Zeiss Sigma 500 ESEM microscope was used for acquiring images using a 2-3 kV energy source under vacuum at a working distance of 5 mm.

Thermogravimetric analysis (TGA). ~10 mg of sample were placed in a 100 μ L aluminum crucible. Samples were analyzed on a Mettler Toledo Star TGA/DSC using a temperature range of 30-600 °C scanning at 5 °C/min synthetic air (75 cm³/min air flow rate) for sample degradation measurements and a heat-cool-heat procedure at 10 °C/min for melting point determination.

 N_2 Gas Sorption Analysis: Samples for analysis were evacuated in a vacuum oven overnight at room temperature prior to analysis. ~50 mg of sample were then transferred to pre-weighed sample tubes and degassed at 105° C on a Micromeritics ASAP 2020 Adsorption Analyzer for a minimum of 12 h or until the outgas rate was <5 mmHG. After degassing, the sample tubes were re-weighed to obtain a consistent mass for the samples. Sorption data and BET surface area (m²/g) measurements were collected at 77 K with N₂ on a Micromeritics ASAP 2020 Adsorption Analyzer using volumetric technique.

Catalysis Experiments. In this study, DMNP hydrolysis was measured using a modified version of a previously reported procedure (*Chem. Commun.* **2018**, *54*, 5768-5771). All catalytic monitoring was carried out using a BioTek Synergy H4 plate reader using single wavelength absorbance mode. 20 and 40 mM of *N*-ethylmorpholine buffer was prepared

from deionized water adjusted to pH = 8.0. A plot of absorbance of *p*-nitrophenol at varying concentrations was measured yielding a calibration curve with a slope of 3.48 Abs/mM (Chem. Commun. 2018, 54, 5768-5771). MOF samples were prepared by weighing 6 mg of MOF powder and diluting this powder in 10 mL of deionized water. These solutions were rigorously sonicated and vortexed ($>3\times$ of each) and diluted in half with 40 mM buffer solution yielding 300 µg/mL MOF in 20 mM buffer solution. Dimethyl *p*-nitrophenylphosphate (DMNP) hydrolysis assays with MOF powders were carried out in Olympus Plastics clear, flat-bottom 96-well plates. Each well was prepared with 100 μ L total volume containing: 95 μ L MOF suspension in buffer and 5 μ L substrate (25 mM DMNP in MeOH; 1.25 mM total concentration; 0.125 µmol). Upon the addition of substrate using a multi-channel pipette, hydrolysis was monitored by the change in absorbance ($\lambda_{max} = 407 \text{ nm}$) over 15 min at 24 °C with 3 sec shaking of the plate every 10 sec. The absorbance was monitored from the 30 to 360 sec time period, as previously reported (Chem. Commun. 2019, 55, 3481-3484). Reported activities for MOF samples are an average of seven replicates. Hydrolysis rates were adjusted to account for the increased mass of the various species such that a direct comparison could be made across all materials in this study as previously reported (Chem. Commun. 2019, 55, 3481-3484).

Characterization

Figure S1. *Top*: PXRD of MTV-UiO-66-A. *Bottom*: ¹H NMR digestion of MTV-UiO-66-A.

Figure 2. *Top*: PXRD of MTV-UiO-66-B. *Bottom*: ¹H NMR digestion of MTV-UiO-66-B.

Figure S3. *Top*: PXRD of MTV-UiO-66-C. *Bottom*: ¹H NMR digestion of MTV-UiO-66-C.

Figure S4. *Top*: PXRD of MTV-UiO-66-D. *Bottom*: ¹H NMR digestion of MTV-UiO-66-D.

Figure S5. *Top*: PXRD of MTV-UiO-66-E. *Bottom*: ¹H NMR digestion of MTV-UiO-66-E.

Figure S6. *Top*: PXRD of MTV-UiO-66-AB. *Bottom*: ¹H NMR digestion of MTV-UiO-66-AB.

Figure S7. *Top*: PXRD and SEM of MTV-UiO-66-AC. *Bottom*: ¹H NMR digestion of MTV-UiO-66-AC.

Figure S8. *Top*: PXRD of MTV-UiO-66-AD. *Bottom*: ¹H NMR digestion of MTV-UiO-66-AD.

Figure S9. *Top*: PXRD of MTV-UiO-66-AE. *Bottom*: ¹H NMR digestion of MTV-UiO-66-AE.

Figure S10. *Top*: PXRD of MTV-UiO-66-BC. *Bottom*: ¹H NMR digestion of MTV-UiO-66-BC.

Figure S11. *Top*: PXRD of MTV-UiO-66-BD. *Bottom*: ¹H NMR digestion of MTV-UiO-66-BD.

Figure S12. *Top*: PXRD of MTV-UiO-66-BE. *Bottom*: ¹H NMR digestion of MTV-UiO-66-BE.

Figure S13. *Top*: PXRD of MTV-UiO-66-CD. *Bottom*: ¹H NMR digestion of MTV-UiO-66-CD.

Figure S14. *Top*: PXRD of MTV-UiO-66-CE. *Bottom*: ¹H NMR digestion of MTV-UiO-66-CE.

Figure S15. *Top*: PXRD of MTV-UiO-66-DE. *Bottom*: ¹H NMR digestion of MTV-UiO-66-DE.

Figure S16. *Top*: PXRD of MTV-UiO-66-ABC. *Bottom*: ¹H NMR digestion of MTV-UiO-66-ABC.

Figure S17. *Top*: PXRD of MTV-UiO-66-ABD. *Bottom*: ¹H NMR digestion of MTV-UiO-66-ABD.

Figure S18. *Top*: PXRD of MTV-UiO-66-ABE. *Bottom*: ¹H NMR digestion of MTV-UiO-66-ABE.

Figure S19. *Top*: PXRD of MTV-UiO-66-ACD. *Bottom*: ¹H NMR digestion of MTV-UiO-66-ACD.

Figure S20. *Top*: PXRD of MTV-UiO-66-ACE. *Bottom*: ¹H NMR digestion of MTV-UiO-66-ACE.

Figure S21. *Top*: PXRD of MTV-UiO-66-ADE. *Bottom*: ¹H NMR digestion of MTV-UiO-66-ADE.

Figure S22. *Top*: PXRD of MTV-UiO-66-BCD. *Bottom*: ¹H NMR digestion of MTV-UiO-66-BCD.

Figure S23. *Top*: PXRD of MTV-UiO-66-BCE. *Bottom*: ¹H NMR digestion of MTV-UiO-66-BCE.

Figure S24. *Top*: PXRD of MTV-UiO-66-BDE. *Bottom*: ¹H NMR digestion of MTV-UiO-66-BDE.

Figure S25. *Top*: PXRD of MTV-UiO-66-CDE. *Bottom*: ¹H NMR digestion of MTV-UiO-66-CDE.

Figure S26. *Top*: PXRD of MTV-UiO-66-ABCD. *Bottom*: ¹H NMR digestion of MTV-UiO-66-ABCD.

Figure S27. *Top*: PXRD of MTV-UiO-66-ABCE. *Bottom*: ¹H NMR digestion of MTV-UiO-66-ABCE.

Figure S28. *Top*: PXRD of MTV-UiO-66-ABDE. *Bottom*: ¹H NMR digestion of MTV-UiO-66-ABDE.

Figure S29. *Top*: PXRD of MTV-UiO-66-ACDE. *Bottom*: ¹H NMR digestion of MTV-UiO-66-ACDE.

Figure S30. *Top*: PXRD of MTV-UiO-66-BCDE. *Bottom*: ¹H NMR digestion of MTV-UiO-66-BCDE.

Figure S31. *Top*: PXRD of MTV-UiO-66-ABCDE. *Bottom*: ¹H NMR digestion of MTV-UiO-66-ABCDE.

MTV-UiO-	(A)	(B)	(C)	(D)	(E)
66 MOF	BDC	NH ₂ -BDC	OH-BDC	NO ₂ -BDC	Br-BDC
А	1.00(1)	N/A	N/A	N/A	N/A
В	N/A	1.00(1)	N/A	N/A	N/A
С	N/A	N/A	1.00(1)	N/A	N/A
D	N/A	N/A	N/A	1.00(1)	N/A
Е	N/A	N/A	N/A	N/A	1.00(1)
AB	0.45 (1)	0.55 (1)	N/A	N/A	N/A
AC	0.50(1)	N/A	0.50(1)	N/A	N/A
AD	0.58 (1)	N/A	N/A	0.42 (1)	N/A
AE	0.49 (1)	N/A	N/A	N/A	0.51 (1)
BC	N/A	0.44 (1)	0.56 (1)	N/A	N/A
BD	N/A	0.49 (1)	N/A	0.51 (1)	N/A
BE	N/A	0.44 (1)	N/A	N/A	0.56 (1)
CD	N/A	N/A	0.50(1)	0.50(1)	N/A
CE	N/A	N/A	0.51 (1)	N/A	0.49(1)
DE	N/A	N/A	N/A	0.48 (1)	0.52 (1)
ABC	0.36 (1)	0.30(1)	0.34 (1)	N/A	N/A
ABD	0.38 (1)	0.28 (1)	N/A	0.34 (1)	N/A
ABE	0.40(1)	0.23 (1)	N/A	N/A	0.37 (1)
ACD	0.36(1)	N/A	0.33 (1)	0.31 (1)	N/A
ACE	0.34 (1)	N/A	0.34 (1)	N/A	0.32 (1)
ADE	0.37 (1)	N/A	N/A	0.29 (1)	0.34 (1)
BCD	N/A	0.30(1)	0.37 (1)	0.33 (1)	N/A
BCE	N/A	0.26 (1)	0.32 (1)	N/A	0.42 (1)
BDE	N/A	0.18 (1)	N/A	0.32 (1)	0.50(1)
CDE	N/A	N/A	0.28 (1)	0.31 (1)	0.41 (1)
ABCD	0.30(1)	0.18 (1)	0.27 (1)	0.25 (1)	N/A
ABCE	0.26 (1)	0.22 (1)	0.18 (1)	N/A	0.34 (1)
ABDE	0.30 (1)	0.22 (1)	N/A	0.20(1)	0.28 (1)
ACDE	0.23 (1)	N/A	0.21 (1)	0.26 (1)	0.30(1)
BCDE	N/A	0.21 (1)	0.27 (1)	0.25 (1)	0.27 (1)
ABCDE	0.22 (1)	0.15 (1)	0.19 (1)	0.16 (1)	0.28 (1)

Table S1. Ratio of MOF ligands determined by ¹H NMR and their respective stoichiometry in parentheses. The ratios are normalized to a value of one.

Scanning Electron Microscopy (SEM)

Figure 32. SEM images of MTV-UiO-66 MOFs.

N₂ Sorption Isotherms

Figure S33. N₂ sorption isotherm for MTV-UiO-66-A.

Figure S34. N₂ sorption isotherm for MTV-UiO-66-B.

Figure S35. N₂ sorption isotherm for MTV-UiO-66-C.

Figure S36. N₂ sorption isotherm for MTV-UiO-66-D.

Figure S37. N₂ sorption isotherm for MTV-UiO-66-E.

Figure S38. N₂ sorption isotherm for MTV-UiO-66-AB.

Figure S39. N₂ sorption isotherm for MTV-UiO-66-BD.

Figure S40. N₂ sorption isotherm for MTV-UiO-66-BE.

Figure S41. N₂ sorption isotherm for MTV-UiO-66-ABE.

Figure S42. N₂ sorption isotherm for MTV-UiO-66-ABCD.

Figure S43. N₂ sorption isotherm for MTV-UiO-66-BCDE.

Thermogravimetric Analysis (TGA)

Figure S44. TGA trace for MTV-UiO-66-B.

Figure S45. TGA trace for MTV-UiO-66-BE.

Figure S46. TGA trace for MTV-UiO-66-DE.

Figure S47. TGA trace for MTV-UiO-66-ABC.

Figure S48. TGA trace for MTV-UiO-66-BDE.

Figure S49. TGA trace for MTV-UiO-66-BCDE.

 Table S2.
 MTV-UiO-66 MOF defects quantified as carboxylates per SBU.

MTV-UiO-66 MOF	Carboxylates/SBU (12 = pristine)
MTV-UiO-66-DE	9.4
MTV-UiO-66-B	10.2
MTV-UiO-66-BDE	9.2
MTV-UiO-66-ABC	8.4
MTV-UiO-66-BCDE	9.8
MTV-UiO-66-BE	10.4

Figure S50. Ratio of organic linkers per SBU of MTV-UiO-66 MOFs (black) vs. rate of DMNP degradation by MOFs (red).