. . .

Copper-catalyzed [4+1]-annulation of 2-alkenylindoles with diazoacetates: a facile access to dihydrocyclopenta[b]indoles

Kuiyong Dong,^{ab} Chao Pei,^b Qian Zeng,^b Lihua Qiu,^b Wenhao Hu,^a Yu Qian*^a and Xinfang Xu*^{ab}

^{*a*} Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China

^b College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

E-mail: qianyu5@mail.sysu.edu.cn

xinfangxu@suda.edu.cn

~

Table of Contents

1. General Information	82
2. Condition Optimization	S2-S3
3. General Procedure for the Preparation of 2-Alkenylindoles 1	S2-S8
4. General Procedure for [4 + 1]-Annulation Reaction	S8-S23
5. General Procedure of the Scale Up and Synthesis of 5, and 6	S23-25
6. 1D-Noe Study of 5, 7, and 8	S26-S27
7. References	S27
8. NMR Spectra of 3, 4a, 5, 6, 7, and 8	S28-S59
9. Crystallographic Data for 3d	S60

General Information

All reactions were performed in 10 ml oven-dried glassware under atmosphere of argon. Solvents were dried and distilled by following the standard methods before using. Analytical thin-layer chromatography was performed using glass plates pre-coated with 200-300 mesh silica gel impregnated with a fluorescent indicator (254 nm). Flash column chromatography was performed using silica gel (300-400 mesh). ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ on a 400 MHz spectrometer; chemical shifts are reported in ppm with the solvent signals as reference and coupling constants (*J*) are given in Hertz. The peak information is described as: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, comp = composite. Enantioselectivity was determined on HPLC using Chiralpak IC-3. High-resolution mass spectra (HRMS) were recorded on a commercial apparatus (ESI Source) and (CI Source). Starting materials 1¹ and 2² were prepared according to the reported reference.

Condition Optimization

The initial exploration was carried out with 2-alkenylindole **1a** and methyl phenyldiazoacetate **2a** as model substrates in dichloromethane (DCM) at 25 °C (Table S1). Instead of giving the annulation product **3a**, only decomposition of **2a** was observed when the reaction was catalyzed by Rh-, Pd-, or Ag-catalysts (entries 1-4), and most of the material **1a** remained intact. The desired product **3a** was obtained in moderate to high yields contaminated with C-H insertion product **4a** when the copper-catalysts were explored (entries 5-14), and Cu(CH₃CN)₄PF₆ gave the superior results in terms of both the yield and selectivity (entry 12, 85% yield, **3a**:**4a** = 91:9). Control experiment in the presence of Lewis acid, such as Sc(OTf)₃, was conducted and no reaction occurred (entry 15).¹⁷ Further optimization of solvents, reaction temperature, and the concentration of reaction mixture showed that only trace amount of **3a** was formed when the reaction was conducted in tetrahydrofuran (entry 18) or acetonitrile (entry 19), and the best results were obtained by conducting the reaction

Table S1 Condition optimization^a

E a tara	Cat (x mol %)	Solvent	Yield ^b (%)	Ratio ^c
Entry			(3a+4a)	3a : 4a
1 ^{<i>d</i>}	Rh ₂ (OAc) ₄ (1.0)	DCM	-	-
2 ^{<i>d</i>}	Rh ₂ (esp) ₂ (1.0)	DCM	-	-
3 ^{<i>d</i>}	$[PdCl(\eta^{3}-C_{3}H_{5})]_{2}(5.0)$	DCM	-	-
4 ^{<i>d</i>}	AgOTf (5.0)	DCM	-	-
5	Cu(OTf) ₂ (5.0)	DCM	61	83:17
6	$Cu(hfacac)_2(5.0)$	DCM	48	67:33
7	CuBr ₂ (5.0)	DCM	37	71:29
8	$Cu(CH_{3}CN)_{4}BF_{4}(5.0)$	DCM	78	85:15
9	Cu(TFA) ₂ (5.0)	DCM	57	66:34
10	Copper(II)acrylate (5.0)	DCM	61	54:46
11	CuTC (5.0)	DCM	55	73:27
12	$Cu(CH_3CN)_4PF_6(5.0)$	DCM	85	91:9
13	[CuOTf] ₂ .benzene (5.0)	DCM	60	63:37
14	$Cu(acac)_2(5.0)$	DCM	49	77:23
15	Sc(OTf)₃ (5.0)	DCM	NR	-
16	$Cu(CH_3CN)_4PF_6$ (5.0)	DCE	88	81:13
17	$Cu(CH_3CN)_4PF_6(5.0)$	toluene	84	71:29
18 ^d	$Cu(CH_3CN)_4PF_6(5.0)$	THF	<5	-
19 ^{<i>d</i>}	$Cu(CH_3CN)_4PF_6(5.0)$	CH ₃ CN	<5	-
20	$Cu(CH_3CN)_4PF_6$ (5.0)	TBME	43	55:45
21 ^e	$Cu(CH_3CN)_4PF_6(5.0)$	DCM	86	>95:5

^{*a*} Reaction conditions: to the catalyst and **1a** (30.0 mg, 0.1 mmol) in 1.0 mL of solvent, was added **2a** (35.0 mg, 0.2 mmol) in 1.0 mL of the same solvent *via* syringe pump over 2 h under argon atmosphere at 25 °C. ^{*b*} Isolated yields, ^{*c*} The ratio was determined by proton NMR of the crude reaction mixture. ^{*d*} Most of material **1a** was recovered and **2a** was decomposed. ^{*e*} The reaction was carried at 35 °C in 3.0 mL DCM. CuTC = Copper(I) thiophene-2-carboxylate.

General Procedure for the Preparation of 2-Alkenylindoles 1

2-Alkenylindoles 1 were prepared according to the reported reference.¹

Diethyl 2-[(1-methyl-1*H*-indol-2-yl)methylene]malonate (1a)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.82 (s, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.32 – 7.27 (m, 2H), 7.14– 7.10 (m, 1H), 6.96 (s, 1H), 4.43 (q, J = 7.1 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 1.36 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 166.8, 164.2, 138.8, 131.9, 129.4, 127.6, 124.8, 124.4, 121.9, 120.6, 109.8, 106.5, 61.9, 61.7, 29.9, 14.3, 14.0; HRMS (TOF MS ESI⁺) calculated for C₁₇H₁₉NNaO₄ [M + Na]⁺, 324.1206; found, 324.1201.

Diethyl 2-((4-chloro-1-methyl-1H-indol-2-yl)methylene)malonate (1n)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) δ 7.76 (s, 1H), 7.22 – 7.13 (m, 2H), 7.12 – 7.07 (m, 1H), 6.98 (s, 1H), 4.44 (q, J = 7.1 Hz, 2H), 4.33 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 1.37 (dt, J = 16.7, 7.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) δ 166.5, 164.0, 139.3, 132.5, 128.7, 127.1, 126.6, 126.1, 124.7, 120.3, 108.5, 104.7, 62.2, 61.9, 30.4, 14.3, 14.1; HRMS (TOF MS ESI⁺) calculated for C₁₇H₁₈ClNNaO₄ [M + Na]⁺, 358.0817; found, 358.0825.

Diethyl 2-[(5-chloro-1-methyl-1H-indol-2-yl)methylene]malonate (10)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) δ 7.75 (s, 1H), 7.54 (t, J = 1.2 Hz, 1H), 7.20 (d, J = 1.2 Hz, 2H), 6.83 (s, 1H), 4.41 (q, J = 7.1 Hz, 2H), 4.32 (q, J = 7.1 Hz, 2H), 3.77 (s, 3H), 1.34 (td, J = 7.1, 1.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) δ 166.6, 164.0, 137.1, 133.1, 128.9, 128.4, 126.3, 125.9, 124.7, 121.0, 110.9, 105.6, 62.1, 61.9, 30.2, 14.3, 14.1; HRMS (TOF MS ESI⁺) calculated for C₁₇H₁₈ClNNaO₄ [M + Na]⁺, 358.0817; found, 358.0813.

Diethyl 2-[(6-chloro-1-methyl-1H-indol-2-yl)methylene]malonate (1p)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) δ 7.74 (s, 1H), 7.48 (d, J = 8.5 Hz, 1H), 7.28 (d, J = 0.7 Hz, 1H), 7.08 – 7.03 (m, 1H), 6.89 (s, 1H), 4.41 (q, J = 7.1 Hz, 2H), 4.32 (q, J = 7.1 Hz, 2H), 3.74 (s, 3H), 1.34 (td, J = 7.1, 2.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) δ 166.7, 164.0, 139.1, 132.7, 130.4, 128.8, 126.1, 125.4, 122.8, 121.5, 109.8, 106.4, 62.0, 61.8, 30.0, 14.2, 14.1; HRMS (TOF MS ESI⁺) calculated for C₁₇H₁₈ClNNaO₄ [M + Na]⁺, 358.0817; found, 358.0809.

Diethyl 2-[(1-benzyl-1*H*-indol-2-yl)methylene]malonate (1q)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) δ 7.78 (s, 1H), 7.69 – 7.64 (m, 1H), 7.33 – 7.23 (comp, 5H), 7.18 – 7.12 (m, 1H), 7.08 – 7.01 (comp, 3H), 5.45 (s, 2H), 4.44 (q, *J* = 7.1 Hz, 2H), 4.29 (q, *J* = 7.1 Hz, 2H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.32 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 166.6, 164.0, 138.6, 137.1, 131.9, 129.5, 129.0, 127.84, 127.77, 126.2, 125.3, 124.7, 122.0, 120.9, 110.2, 107.0, 61.9, 61.6, 46.9, 14.2, 14.0; HRMS (TOF MS ESI⁺) calculated for C₂₃H₂₃NNaO₄ [M + Na]⁺, 400.1519; found, 400.1528.

Diethyl 2-[(1-allyl-1*H*-indol-2-yl)methylene]malonate (1r)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) δ 7.75 (s, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.30 – 7.25 (m, 2H), 7.15 – 7.09 (m, 1H), 6.98 (s, 1H), 6.02 – 5.90 (m, 1H), 5.17 (dd, J = 10.4, 0.7 Hz, 1H), 4.90 (dd, J = 17.1, 0.6 Hz, 1H), 4.85 – 4.79 (m, 2H), 4.42 (q, J = 7.1 Hz, 2H), 4.32 (q, J = 7.1 Hz, 2H), 1.35 (td, J = 7.1, 4.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) δ 166.8, 164.1, 138.3, 132.8, 131.7, 129.5, 127.8, 125.1, 124.5, 122.0, 120.8, 117.1, 110.0, 106.8, 62.0, 61.7, 45.5, 14.3, 14.1; HRMS (TOF MS ESI⁺) calculated for C₁₉H₂₁NNaO₄ [M + Na]⁺, 350.1363; found, 350.1347.

3-[(1-Methyl-1H-indol-2-yl)methylene]pentane-2,4-dione (1s)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) δ 7.60 – 7.55 (comp, 2H), 7.31 – 7.30 (m, 2H), 7.14 – 7.11 (m, 1H), 6.79 (s, 1H), 3.81 (s, 3H), 2.41 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) δ205.8, 195.0, 141.1, 139.2, 131.6, 127.6, 126.7, 124.8, 122.0, 120.9, 109.8, 107.9, 77.5, 77.2, 76.8, 31.1, 29.9, 26.7; HRMS (TOF MS ESI⁺) calculated for C₁₅H₁₅NNaO₂ [M + Na]⁺, 264.0995; found, 264.1007.

Diethyl 2-{[1-(tert-butoxycarbonyl)-1*H*-indol-2-yl]methylene}malonate (1t)

¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 8.26 – 8.16 (comp, 2H), 7.56 (d, *J* = 7.7 Hz, 1H), 7.43 – 7.35 (m, 1H), 7.29 – 7.22 (m, 1H), 6.96 (s, 1H), 4.33 (qd, *J* = 7.1, 5.8 Hz, 4H), 1.71 (s, 9H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 166.5, 163.9, 150.0, 137.4, 134.1, 132.9, 128.8, 126.2, 125.7, 123.5, 121.6, 115.8, 113.1, 85.2, 61.8, 61.7, 28.3, 14.3, 14.0; HRMS (TOF MS ESI⁺) calculated for C21H25NO6 [M + Na]⁺, 387.1682; found, 387.1689.

Ethyl (Z)-2-[(1-methyl-1H-indol-2-yl)methylene]-3-oxobutanoate (Z-1u)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) δ 7.74 (s, 1H), 7.48 (d, J = 8.5 Hz, 1H), 7.28 (d, J = 0.7 Hz, 1H), 7.08 – 7.03 (m, 1H), 6.89 (s, 1H), 4.41 (q, J = 7.1 Hz, 2H), 4.32 (q, J = 7.1 Hz, 2H), 3.83 (s, 3H), 2.46 (s, 3H), 1.35 (td, J = 7.1, 0.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) δ 166.7, 164.0, 139.1, 132.7, 130.4, 128.8, 126.1, 125.4, 122.8, 121.5, 109.8, 106.4, 62.0, 61.8, 30.0, 14.2, 14.1; HRMS (TOF MS ESI⁺) calculated for $C_{16}H_{17}NNaO_3 [M + Na]^+$, 294.1101; found, 294.1092.

Ethyl (E)-2[(1-methyl-1H-indol-2-yl)methylene]-3-oxobutanoate (E-1u)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) δ 7.67 (s, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.32 – 7.27 (m, 2H), 7.15 – 7.08 (m, 1H), 6.96 (s, 1H), 4.44 (q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 2.41 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) δ 193.4,

168.3, 139.1, 132.4, 131.9, 128.2, 127.6, 124.7, 122.0, 120.7, 109.8, 107.0, 62.0, 29.8, 26.9, 14.0; HRMS (TOF MS ESI⁺) calculated for $C_{16}H_{17}NNaO_3 [M + Na]^+$, 294.1101; found, 294.1110.

General Procedure for [4 + 1]-Annulation Reaction

To a 10-mL oven-dried vial containing a magnetic stirring bar, $Cu(CH_3CN)_4PF_6$ (1.9 mg, 5.0 mol %), compound 1 (0.1 mmol) in DCM (2.0 mL), diazo compound 1 (0.2 mmol) in DCM (1.0 mL) was added as a solution *via* a syringe pump over 2 h under argon atmosphere at 35 °C. After addition, the reaction mixture was stirred overnight under these conditions until consumption of the material (monitored by TLC). Then the reaction mixture was purified by column chromatography on silica gel without any additional treatment (Hexanes : EtOAc = 15:1 to 10:1) to give the pure products **3**.

2,2-Diethyl 1-methyl 4-methyl-1-phenyl-3,4-dihydrocyclopenta[*b*]indole-1,2,2 (1*H*)-tricarboxylate (3a)

White solid, 38.6 mg, 86% yield, mp: 134.5-135.9 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.66 (d, J = 3.4 Hz, 2H), 7.30 (t, J = 6.9 Hz, 4H), 7.20 – 7.12 (m, 2H), 7.02 (t, J = 7.5 Hz, 1H), 4.40 – 4.28 (m, 2H), 3.82 (d, J = 15.5 Hz, 1H), 3.78 (s, 3H), 3.65 (d, J = 15.5 Hz, 1H), 3.62 – 3.56 (m, 1H), 3.55 (s, 3H), 3.32 – 3.18 (m, 1H), 1.37 (t, J = 7.1 Hz, 3H), 0.73 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 173.4, 170.4, 169.6, 145.6, 141.4, 136.7, 130.8, 127.7, 127.3, 123.7, 120.9, 119.9, 119.2, 114.6, 109.8, 74.1, 66.2, 61.8, 61.7, 52.3, 34.3, 31.1, 14.2, 13.4; HRMS (TOF MS ESI⁺) calculated for C₂₆H₂₇NNaO₆ [M + Na]⁺, 472.1731; found, 472.1743.

White solid, 41.7 mg, 90% yield, mp: 111.2-113.0 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.53 (d, J = 8.0 Hz, 2H), 7.32 – 7.27 (m, 1H), 7.19 – 7.13 (m, 2H), 7.09 (d, J = 8.0 Hz, 2H), 7.04 – 6.97 (m, 1H), 4.40 – 4.26 (m, 2H), 3.80 (d, J = 15.5 Hz, 1H), 3.77 (s, 3H), 3.63 (d, J = 15.5 Hz, 1H), 3.61 – 3.56 (m, 1H), 3.54 (s, 3H), 3.38 – 3.24 (m, 1H), 2.34 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H), 0.74 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 173.5, 170.4, 169.7, 145.6, 141.4, 137.3, 133.7, 130.7, 128.0, 123.8, 120.8, 119.8, 119.2, 114.8, 109.8, 74.2, 67.0, 61.8, 61.6, 52.3, 34.3, 31.1, 21.2, 14.2, 13.3; HRMS (TOF MS ESI⁺) calculated for C₂₇H₂₉NNaO₆ [M + Na]⁺, 486.1887; found, 486.1893.

2,2-Diethyl 1-methyl 1-(4-methoxyphenyl)-4-methyl-3,4-dihydrocyclopenta[b] indole-1,2,2(1*H*)-tricarboxylate (3c)

White solid, 35.0 mg, 73% yield, mp: 159.2-161.3 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.56 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.5 Hz, 1H), 7.20 – 7.11 (m, 2H), 7.01 (t, J = 7.5 Hz, 1H), 6.81 (d, J = 8.6 Hz, 2H), 4.38 – 4.26 (m, 2H), 3.84 – 3.77 (comp, 4H), 3.77 (s, 3H), 3.65 – 3.57 (m, 2H), 3.53 (s, 3H), 3.39 – 3.28 (m, 1H), 1.36 (t, J = 7.1 Hz, 3H), 0.77 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 173.6, 170.5, 169.8, 159.2, 145.5, 141.4, 132.1, 128.8, 123.8, 120.8, 119.9, 119.2, 114.9,

112.6, 109.8, 74.2, 65.7, 61.8, 61.7, 55.4, 52.4, 34.3, 31.1, 14.2, 13.5; HRMS (TOF MS ESI⁺) calculated for $C_{27}H_{29}NNaO_7 [M + Na]^+$, 502.1836; found, 502.1831.

2,2-Diethyl 1-methyl 1-(4-fluorophenyl)-4-methyl-3,4-dihydrocyclopenta[b] indole-1,2,2(1*H*)-tricarboxylate (3d)

White solid, 40.2 mg, 86% yield, mp: 116.2-117.5 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.70 – 7.60 (m, 2H), 7.31 (d, J = 8.2 Hz, 1H), 7.21 – 7.15 (m, 1H), 7.13 (d, J = 7.8 Hz, 1H), 7.07 – 6.93 (m, 3H), 4.40 – 4.25 (m, 2H), 3.81 (d, J = 15.5 Hz, 1H), 3.77 (s, 3H), 3.67 – 3.58 (m, 2H), 3.54 (s, 3H), 3.40 – 3.25 (m, 1H), 1.36 (t, J = 7.1 Hz, 3H), 0.79 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 173.2, 170.3, 169.6, 162.5 (d, J = 246.5 Hz), 145.6, 141.4, 132.8 (d, J = 8.0 Hz), 132.5 (d, J = 3.2 Hz), 123.5, 121.0, 120.0, 119.0, 114.5, 114.1 (d, J = 21.1 Hz), 110.0, 74.1, 65.5, 61.9, 61.8, 52.4, 34.3, 31.1, 14.2, 13.5; ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) δ -115.2; HRMS (TOF MS ESI⁺) calculated for C₂₆H₂₆FNNaO₆ [M + Na]⁺, 490.1636; found, 490.1641.

2,2-Diethyl 1-methyl 1-(4-chlorophenyl)-4-methyl-3,4-dihydrocyclopenta[b] indole-1,2,2(1*H*)-tricarboxylate (3e)

White solid, 39.2 mg, 81% yield, mp: 171.6-172.9 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.61 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 1H), 7.28 – 7.25 (m, 2H), 7.21 –

7.15 (m, 1H), 7.11 (d, J = 7.8 Hz, 1H), 7.02 (t, J = 7.2 Hz, 1H), 4.39 – 4.26 (m, 2H), 3.80 (d, J = 15.6 Hz, 1H), 3.77 (s, 3H), 3.67 – 3.58 (m, 2H), 3.54 (s, 3H), 3.40 – 3.30 (m, 1H), 1.36 (t, J = 7.1 Hz, 3H), 0.78 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 173.0, 170.2, 169.5, 145.7, 141.4, 135.4, 133.7, 132.4, 127.4, 123.5, 121.0, 120.1, 119.0, 114.2, 109.9, 77.5, 77.2, 76.8, 74.1, 65.6, 62.0, 61.8, 52.4, 34.3, 31.2, 14.2, 13.4; HRMS (TOF MS ESI⁺) calculated for C₂₆H₂₆ClNNaO₆ [M + Na]⁺, 506.1341; found, 506.1333.

2,2-Diethyl 1-methyl 4-methyl-1-(4-(trifluoromethyl)phenyl)-

3,4-dihydrocyclopenta[b]indole-1,2,2(1H)-tricarboxylate (3f)

Yellow oil, 41.4 mg, 80% yield, ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.84 (d, J = 7.9 Hz, 2H), 7.58 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.3 Hz, 1H), 7.24 – 7.19 (m, 1H), 7.14 – 7.02 (m, 2H), 4.41 – 4.29 (m, 2H), 3.85 (d, J = 15.5 Hz, 1H), 3.81 (s, 3H), 3.68 (d, J = 15.5 Hz, 1H), 3.65 – 3.58 (m, 1H), 3.58 (s, 3H), 3.34 – 3.21 (m, 1H), 1.38 (t, J = 7.1 Hz, 3H), 0.72 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 172.8, 170.1, 169.4, 145.8, 141.5, 141.0, 131.4, 129.9 (q, J = 32.3 Hz), 124.2 (q, J = 241.6 Hz), 124.2 (q, J = 3.7 Hz), 123.4, 121.1, 120.2, 118.9, 113.9, 110.0, 74.1, 65.8, 62.0, 61.9, 52.5, 34.4, 31.2, 14.2, 13.2; ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) δ -62.6; HRMS (TOF MS ESI⁺) calculated for C₂₇H₂₆F₃NNaO₆ [M + Na]⁺, 540.1604; found, 540.1618.

White solid, 43.9 mg, 83% yield, mp: 199.2-200.3 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.55 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.7 Hz, 2H), 7.31 (d, J = 8.2 Hz, 1H), 7.18 (t, J = 7.6 Hz, 1H), 7.11 (d, J = 7.8 Hz, 1H), 7.02 (t, J = 7.4 Hz, 1H), 4.40 – 4.26 (m, 2H), 3.80 (d, J = 15.6 Hz, 1H), 3.77 (s, 3H), 3.67 – 3.58 (m, 2H), 3.54 (s, 3H), 3.41 – 3.30 (m, 1H), 1.35 (t, J = 7.1 Hz, 3H), 0.78 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 172.9, 170.2, 169.5, 145.7, 141.4, 135.9, 132.8, 130.4, 123.5, 122.1, 121.0, 120.1, 119.0, 114.1, 109.9, 74.0, 65.6, 62.0, 61.8, 52.4, 34.3, 31.2, 14.2, 13.4; HRMS (TOF MS ESI⁺) calculated for C₂₆H₂₆BrNNaO₆ [M + Na]⁺, 550.0836; found, 550.0829.

2,2-Diethyl 1-methyl 1-(3-fluorophenyl)-4-methyl-3,4-dihydrocyclopenta[b] indole-1,2,2(1*H*)-tricarboxylate (3h)

White solid, 37.0 mg, 79% yield, mp: 184.1-185.9 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.54 – 7.36 (m, 2H), 7.31 (d, J = 8.2 Hz, 1H), 7.26 – 7.10 (m, 3H), 7.07 – 6.93 (m, 2H), 4.40 – 4.26 (m, 2H), 3.85 – 3.75 (comp, 4H), 3.68 – 3.59 (m, 2H), 3.54 (s, 3H), 3.39 – 3.27 (m, 1H), 1.37 (t, J = 7.1 Hz, 3H), 0.78 (t, J = 7.1 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 172.9, 169.8 (d, J = 71.5 Hz), 162.2 (d, J = 243.6 Hz), 145.7, 141.4, 139.5 (d, J = 7.5 Hz), 128.6 (d, J = 8.0 Hz), 126.4, 123.5, 121.0, 120.1,

119.0, 118.3 (d, J = 23.1 Hz), 114.8, 114.6, 114.2, 109.9, 74.1, 65.8 (d, J = 1.8 Hz), 62.0, 61.9, 52.5, 34.4, 31.2, 14.2, 13.4; ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) δ -114.4; HRMS (TOF MS ESI⁺) calculated for C₂₆H₂₆₇FNO₆ [M + H]⁺, 468.1817; found, 468.1797.

White solid, 34.6 mg, 74% yield, mp: 170.4-171.8 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.35 – 7.29 (m, 2H), 7.24 – 7.09 (comp, 3H), 7.05 – 6.93 (comp, 3H), 4.39 – 4.22 (m, 2H), 3.85 – 3.78 (comp, 4H), 3.75 – 3.64 (comp, 2H), 3.59 (s, 3H), 3.41 – 3.30 (m, 1H), 1.33 (td, *J* = 7.1, 0.5 Hz, 3H), 0.81 – 0.68 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 171.6, 169.5 (d, *J* = 3.2 Hz), 161.5 (d, *J* = 252.4 Hz), 145.7, 141.4, 131.8 (d, *J* = 3.3 Hz), 129.9 (d, *J* = 8.8 Hz), 124.9 (d, *J* = 12.3 Hz), 123.5, 123.1 (d, *J* = 3.4 Hz), 120.8, 119.9, 119.0, 116.4, 116.1, 114.0, 109.9, 74.3, 62.8, 61.9, 61.5, 52.4, 33.6, 31.1, 14.0, 13.4; ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) δ -104.8; HRMS (TOF MS ESI⁺) calculated for C₂₆H₂₆FNNaO₆ [M + Na]⁺, 490.1636; found, 490.1646.

4-methyl-1-phenyl-3,4-dihydrocyclopenta[b]indole-1,2,2(1H)

-tricarboxylate (3j)

Triethyl

Yellow oil, 40.8 mg, 88% yield; ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.70 – 7.59 (m, 2H), 7.32 – 7.26 (comp, 4H), 7.18 – 7.11 (m, 2H), 7.03 – 6.97 (m, 1H), 4.38 – 4.27 (m,

2H), 4.01 (q, J = 7.1 Hz, 2H), 3.81 (d, J = 15.5 Hz, 1H), 3.77 (s, 3H), 3.64 (d, J = 15.5 Hz, 1H), 3.61 – 3.53 (m, 1H), 3.30 – 3.17 (m, 1H), 1.36 (t, J = 7.1 Hz, 3H), 1.03 (t, J = 7.1 Hz, 3H), 0.72 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 172.7, 170.4, 169.7, 145.6, 141.4, 136.8, 130.9, 127.6, 127.2, 123.8, 120.8, 119.8, 119.3, 114.8, 109.8, 74.1, 66.3, 61.8, 61.6, 61.3, 34.4, 31.1, 14.2, 14.1, 13.4; HRMS (TOF MS ESI⁺) calculated for C₂₇H₂₉NNaO₆ [M + Na]⁺, 486.1887; found, 486.1878.

2,2-Diethyl 1-[2-(tosyloxy)ethyl] 4-methyl-1-phenyl-3,4-dihydrocyclopenta[b] indole-1,2,2(1*H*)-tricarboxylate (3k)

White solid, 52.6 mg, 83% yield, mp: 161.3-162.8 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.69 – 7.62 (m, 2H), 7.59 (d, J = 8.3 Hz, 2H), 7.37 – 7.30 (comp, 4H), 7.26 (s, 2H), 7.21 – 7.15 (m, 1H), 6.99 – 6.92 (m, 2H), 4.40 – 4.31 (m, 2H), 4.17 – 4.09 (m, 1H), 4.05 – 3.98 (m, 1H), 3.95 (t, J = 4.6 Hz, 2H), 3.84 – 3.75 (m, 4H), 3.68 (d, J = 15.6 Hz, 1H), 3.65 – 3.57 (m, 1H), 3.29 – 3.18 (m, 1H), 2.45 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H), 0.75 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 172.2, 170.2, 169.5, 146.0, 145.0, 141.4, 136.3, 132.6, 130.9, 130.0, 128.0, 127.8, 127.3, 123.5, 120.9, 119.9, 119.0, 114.1, 109.9, 74.2, 67.5, 65.8, 62.2, 61.9, 61.8, 34.3, 31.1, 21.8, 14.2, 13.4; HRMS (TOF MS ESI⁺) calculated for C₃₄H₃₅NNaO₉S [M + Na]⁺, 656.1925; found, 656.1929.

2,2-Diethyl 1-[(1*R*, 2*R*, 5*S*)-2-Isopropyl-5-methylcyclohexyl] (*S*)-4-methyl-1phenyl-3,4-dihydrocyclopenta[*b*]indole-1,2,2(1*H*)-tricarboxylate (31)

White oil, 39.0 mg, 68% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.64 (d, J = 3.0 Hz, 2H), 7.27 – 7.30 (comp, 3H), 7.22 – 7.26 (m, 1H), 7.14 – 7.07 (m, 2H), 7.00 – 6.93 (m, 1H), 4.58 – 4.51 (m, 1H), 4.36 – 4.26 (m, 2H), 3.81 (d, J = 15.4 Hz, 1H), 3.76 (s, 3H), 3.68 – 3.55 (m, 3H), 3.21 – 3.51 (m, 1H), 1.76 (d, J = 11.4 Hz, 1H), 1.51 – 1.44 (m, 1H), 1.36 – 1.31 (m, 3H), 1.12 – 1.05 (m, 1H), 0.94 – 0.83 (m, 2H), 0.80 (d, J = 6.6 Hz, 4H), 0.77 – 0.67 (m, 5H), 0.46 (d, J = 7.0 Hz, 3H), 0.27 (d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 172.8, 170.4, 169.8, 145.6, 141.4, 136.9, 131.0, 127.5, 127.1, 123.8, 120.7, 119.6, 119.5, 115.0, 109.6, 75.7, 74.2, 66.7, 61.7, 61.5, 46.9, 40.4, 34.3, 34.2, 31.4, 31.1, 25.0, 22.6, 22.1, 20.8, 15.3, 14.2, 13.4; HRMS (TOF MS ESI⁺) calculated for C₃₅H₄₃NNaO₆ [M + Na]⁺, 596.2983; found, 596.2989.

 1-[(3R, 9R, 10S, 13S, 14R)-10,13-Dimethyl-17-((S)-6

 -methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclop

 enta[a]phenanthren-3-yl]
 2,2-diethyl

 (1S)-4-methyl-1-phenyl

3,4-dihydrocyclopenta[b]indole-1,2,2(1H)-tricarboxylate (3m)

White oil, 34.5 mg, 43% yield; ¹H NMR (400 MHz, CDCl₃) of the two isomers (δ , ppm) 7.68-7.51 (m, 2H), 7.35-7.31 (comp, 3H), 7.30 – 7.24 (m, 2H), 7.20 (m, 1H), 7.04 (t, J = 7.5 Hz, 1H), 5.44 – 5.17 (m, 1H), 4.48-4.74 (m, 1H), 4.43 – 4.15 (m, 2H), 3.89 - 3.74 (m, 4H), 3.68 - 3.51 (m, 2H), 3.31 - 3.25 (m, 1H), 2.45 - 2.13 (m, 2H), 2.06 - 1.94 (m, 2H), 1.73 - 1.52 (m, 6H), 1.48 - 1.36 (m, 8H), 1.33 - 1.25 (m, 4H), 1.18 - 1.09 (m, 6H), 1.06 - 1.01 (m, 3H), 0.96 - 0.85 (m, 11H), 0.81 - 0.74 (m, 2H), 0.73 - 0.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) of the two isomers (δ , ppm) 172.4, 172.1, 171.4, 170.4, 169.8, 168.7, 145.6, 141.4, 139.8, 139.6, 139.6, 138.9, 137.0, 136.9, 134.7, 130.9, 128.39, 128.37, 128.3, 127.6, 127.2, 126.7, 126.6, 123.8, 123.77, 122.7, 122.66, 122.6, 121.6, 121.5, 121.4, 120.8, 120.75, 119.7, 119.68, 119.5, 119.4, 115.0, 109.8, 109.1, 75.2, 75.1, 74.9, 74.02, 74.00, 66.59, 66.55, 62.0, 61.9, 61.8, 61.6, 56.81, 56.78, 56.75, 56.3, 52.4, 50.1, 50.06, 50.03, 48.8, 48.7, 42.44, 42.41, 39.9, 39.8, 39.7, 38.0, 37.8, 37.1, 37.06, 37.00, 36.9, 36.7, 36.6, 36.3, 35.9, 34.4, 34.3, 32.0, 31.9, 31.1, 30.1, 28.4, 28.2, 24.4, 24.0, 23.7, 23.0, 22.7, 21.2, 21.14, 21.12, 21.1, 19.5, 19.4, 18.9, 18.8, 14.2, 14.1, 14.0, 13.4, 11.99, 11.97; HRMS (TOF MS ESI⁺) calculated for $C_{52}H_{69}NNaO_6[M + Na]^+$, 826.5017; found, 826.5029.

2,2-Diethyl 1-methyl 8-chloro-4-methyl-1-phenyl-3,4-dihydrocyclopenta[b] indole-1,2,2(1*H*)-tricarboxylate (3n)

White solid, 34.4 mg, 71% yield, mp: 121.4-122.8 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.58-7.69 (m, 2H), 7.25 – 7.15 (m, 4H), 7.08 – 6.96 (m, 2H), 4.35 – 4.25 (m, 2H), 3.85 – 3.73 (m, 4H), 3.68 – 3.53 (m, 5H), 3.17 – 3.07 (m, 1H), 1.35 (td, *J* = 7.1, 1.6 Hz, 3H), 0.75 (td, *J* = 7.1, 1.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 173.6, 170.4, 169.8, 147.2, 142.3, 138.1, 131.3, 127.5, 126.7, 125.1, 122.5, 121.6, 121.2, 114.6, 108.2, 75.1, 66.3, 62.0, 61.8, 52.4, 34.1, 31.4, 14.2, 13.4; HRMS (TOF

MS ESI⁺) calculated for $C_{26}H_{26}CINNaO_6 [M + Na]^+$, 506.1341, found, 506.1334.

2,2-Diethyl 1-methyl 7-chloro-4-methyl-1-phenyl- 3,4-dihydrocyclopenta[*b*]indole -1,2,2(1*H*)-tricarboxylate (30)

White solid, 38.2 mg, 79% yield, mp: 144.1-142.2 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.62 – 7.55 (m, 2H), 7.33 – 7.27 (m, 3H), 7.19 (d, *J* = 9.3 Hz, 1H), 7.12 – 7.08 (m, 2H), 4.37 – 4.27 (m, 2H), 3.78 (d, *J* = 15.7 Hz, 1H), 3.75 (s, 3H), 3.64 (d, *J* = 7.3 Hz, 1H), 3.61 – 3.57 (m, 1H), 3.56 (s, 3H), 3.28 – 3.17 (m, 1H), 1.35 (t, *J* = 7.1 Hz, 3H), 0.72 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 173.2, 170.2, 169.6, 147.1, 139.8, 136.3, 130.7, 127.9, 127.5, 125.9, 124.6, 121.2, 118.5, 114.4, 110.8, 74.0, 66.1, 61.9, 61.7, 52.5, 34.3, 31.3, 14.2, 13.4; HRMS (TOF MS ESI⁺) calculated for C₂₆H₂₆CINNaO₆ [M + Na]⁺, 506.1341, found, 506.1347.

2,2-Diethyl 1-methyl 6-chloro-4-methyl-1-phenyl-3,4-dihydrocyclopenta[*b*]indole -1,2,2(1*H*)-tricarboxylate (3p)

White solid, 36.3 mg, 75% yield, mp: 163.3-164.5 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.63 – 7.55 (m, 2H), 7.33 – 7.26 (m, 4H), 7.07 – 6.95 (m, 2H), 4.39 – 4.25 (m, 2H), 3.78 (d, *J* = 15.7 Hz, 1H), 3.74 (s, 3H), 3.63 (d, *J* = 15.5 Hz, 1H), 3.60 – 3.55 (m, 1H), 3.54 (s, 3H), 3.29 – 3.17 (m, 1H), 1.35 (t, *J* = 7.1 Hz, 3H), 0.72 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 173.2, 170.2, 169.5, 146.4, 141.8, 136.4, 130.7, 127.9, 127.4, 127.0, 122.2, 120.6, 119.9, 115.0, 110.1, 74.1, 66.1, 61.9, 61.8, 52.4, 34.3, 31.3, 14.2, 13.4; HRMS (TOF MS ESI⁺) calculated for C₂₆H₂₆ClNNaO₆

 $[M + Na]^+$, 506.1341, found, 506.1344.

2,2-Diethyl 1-methyl 4-benzyl-1-phenyl-3,4-dihydrocyclopenta[*b*]indole -1,2,2(1*H*)-tricarboxylate (3q)

White solid, 43.6 mg, 83% yield, mp: 163.3-164.5 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.73 – 7.63 (m, 2H), 7.36 – 7.28 (comp, 5H), 7.26 – 7.21 (m, 2H), 7.18 (d, J = 7.4 Hz, 3H), 7.10 (t, J = 7.4 Hz, 1H), 7.01 (t, J = 7.4 Hz, 1H), 5.40 – 5.26 (m, 2H), 4.31 (q, J = 7.1 Hz, 2H), 3.77 (d, J = 15.6 Hz, 1H), 3.62 – 3.55 (comp, 4H), 3.54 – 3.47 (m, 1H), 3.35 – 3.23 (m, 1H), 1.34 (t, J = 7.1 Hz, 3H), 0.74 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 173.3, 170.4, 169.6, 145.6, 140.8, 137.3, 136.6, 130.9, 129.0, 127.8, 127.7, 127.3, 126.7, 124.0, 121.1, 120.2, 119.4, 115.5, 110.5, 74.3, 66.1, 61.8, 61.7, 52.4, 48.6, 34.6, 14.2, 13.5; HRMS (TOF MS ESI⁺) calculated for C₃₂H₃₁NO₆ [M + H]⁺, 525.2151; found, 525.2147.

2,2-Diethyl 1-methyl 4-allyl-1-phenyl-3,4-dihydrocyclopenta[*b*]indole-1,2,2(1*H*) -tricarboxylate (3r)

White oil, 40.0 mg, 89% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.70 – 7.62 (m, 2H), 7.34 – 7.27 (comp, 4H), 7.15 (t, J = 8.4 Hz, 2H), 7.02 (t, J = 7.5 Hz, 1H), 6.13 – 5.97 (m, 1H), 5.22 (dd, J = 10.3, 1.0 Hz, 1H), 5.07 (dd, J = 17.1, 1.0 Hz, 1H), 4.84 – 4.66 (m, 2H), 4.33 (q, J = 7.1 Hz, 2H), 3.79 (d, J = 15.6 Hz, 1H), 3.61 (d, J = 15.6 Hz, 1H), 3.58 – 3.49 (comp, 4H), 3.33 – 3.23 (m, 1H), 1.36 (t, J = 7.1 Hz, 3H), 0.74 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 173.3, 170.4, 169.6, 145.5,

140.7, 136.6, 133.1, 130.9, 127.8, 127.3, 123.8, 121.0, 120.0, 119.3, 117.1, 115.3, 110.2, 74.3, 66.0, 61.8, 61.7, 52.3, 47.1, 34.5, 14.2, 13.4; HRMS (TOF MS ESI⁺) calculated for $C_{28}H_{29}NNaO_6 [M + Na]^+$, 498.1887, found, 498.1892.

Methyl 2,2-diacetyl-4-methyl-1-phenyl-1,2,3,4- tetrahydrocyclopenta[b]indole-1carboxylate (3s)

White solid, 32.3 mg, 83% yield, mp: 163.3-164.5 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.54 – 7.47 (m, 2H), 7.34 – 7.26 (m, 4H), 7.22 – 7.15 (m, 2H), 7.02 (t, *J* = 7.5 Hz, 1H), 3.83 – 3.73 (comp, 4H), 3.64 – 3.52 (comp, 4H), 2.27 (s, 3H), 1.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 206.2, 203.9, 174.0, 144.4, 141.6, 136.8, 130.6, 128.1, 128.0, 123.6, 121.2, 120.1, 119.6, 115.5, 109.9, 85.2, 66.5, 52.5, 32.3, 31.2, 29.3, 27.9; HRMS (TOF MS ESI⁺) calculated for C₂₄H₂₃NNaO₄ [M + Na]⁺, 412.1519, found, 412.1523.

Diethyl 1-cyano-4-methyl-1-phenyl-3,4-dihydrocyclopenta[*b*]indole-2,2(1*H*)dicarboxylate (3ao). 36.0 mg, 87% yield; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.71 – 7.54 (m, 2H), 7.43 – 7.30 (comp, 4H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.10 (d, *J* = 7.8 Hz, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), 4.51 – 4.25 (m, 2H), 3.88 – 3.67 (comp, 5H), 3.57 (d, *J* = 16.0 Hz, 1H), 3.36 – 3.33 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 3H), 0.79 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl3) (δ , ppm) 168.4, 167.6, 144.0, 141.7, 134.9, 128.9, 128.7, 128.3, 122.6, 121.8, 120.5, 120.3, 118.8, 113.2, 110.1, 74.7, 62.5, 62.3, 53.7, 32.8, 31.2, 14.108, 13.4. HRMS (TOF MS ESI⁺) calculated for C₂₅H₂₅N₂O₄ [M + H]⁺,

Diethyl 2-{[3-(2-methoxy-2-oxo-1-phenylethyl)-1-methyl-1*H*-indol-2-yl] methylene}malonate 4a

Yellow solid, mp: 121.1-122.4 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.79 (s, 1H), 7.51 (d, J = 8.1 Hz, 1H), 7.30 – 7.21 (comp, 7H), 7.10 – 7.02 (m, 1H), 5.31 (s, 1H), 4.39 – 4.26 (m, 2H), 3.93 – 3.84 (m, 1H), 3.74 (t, J = 3.5 Hz, 1H), 3.70 (s, 3H), 3.65 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H), 0.93 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 173.0, 164.8, 163.6, 138.8, 138.0, 134.1, 132.0, 131.9, 128.6, 128.4, 127.1, 126.8, 123.5, 121.7, 120.3, 113.1, 109.7, 62.1, 61.6, 52.4, 48.6, 31.5, 14.2, 13.8; HRMS (TOF MS ESI⁺) calculated for C₂₆H₂₇NNaO₆ [M + Na]⁺, 472.1731; found, 472.1743.

Diethyl 2-((3-(1-(4-fluorophenyl)-2-oxopropyl)-1-methyl-1*H***-indol-2-yl)methylene) malonate (4an).** 29.2 mg, 65% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.79 (s, 1H), 7.39 – 7.26 (comp, 3H), 7.15 – 7.05 (comp, 3H), 6.99 – 6.91 (m, 2H), 5.24 (s, 1H), 4.37 – 4.31 (m, 2H), 3.91 – 4.83 (m, 1H), 3.74 – 3.66 (comp, 4H), 2.12 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H), 0.97 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 206.1, 164.8, 163.5, 163.1, 160.7, 139.0, 133.4, 132.4, 132.3, 130.9, 130.8, 126.5, 123.8, 121.0 (d, *J* = 32.5 Hz), 115.1 (d, *J* = 21.2 Hz), 112.4, 110.0, 62.3, 61.7, 55.8, 31.6, 29.4, 14.2, 13.9; ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) -116.10. HRMS (TOF MS ESI⁺) calculated for $C_{26}H_{26}FNNaO_5 [M + Na]^+$, 474.1687; found, 474.1670.

Ethyl (*E*)-3-(3-(2-methoxy-2-oxo-1-phenylethyl)-1-methyl-1*H*-indol-2-yl)acrylate (4ha). 30.6 mg, 81% yield; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.88 (d, *J* = 16.2 Hz, 1H), 7.55 (d, *J* = 8.1 Hz, 1H), 7.41 – 7.20 (comp, 6H), 7.09 – 7.05 (m, 1H), 6.27 (d, *J* = 16.2 Hz, 1H), 5.49 (s, 1H), 4.28 (q, *J* = 7.1 Hz, 2H). 3.84 (s, 3H), 3.74 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl3) (δ , ppm) 173.1, 166.8, 138.9, 138.3, 133.0, 132.3, 128.6, 128.5, 127.2, 126.6, 124.1, 121.6, 121.2, 120.5, 115.2, 109.7, 60.9, 52.5, 48.6, 31.5, 14.5. HRMS (TOF MS ESI⁺) calculated for C₂₃H₂₄NO₄ [M + H]⁺, 378.1700; found, 378.1717.

Methyl (*E*)-2-(2-(2-cyanovinyl)-1-methyl-1*H*-indol-3-yl)-2-phenylacetate (4ia). 22.2 mg, 67% yield; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.56 – 7.54 (m, 1H), 7.51 (d, *J* = 16.7 Hz, 1H), 7.35 – 7.27 (comp, 5H), 7.23 – 7.17 (m, 2H), 7.12 – 7.08 (m, 1H), 5.68 (d, *J* = 16.7 Hz, 1H), 5.40 (s, 1H), 3.81 (s, 3H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl3) (δ , ppm) 172.7, 138.9, 138.2, 137.7, 132.1, 128.8, 128.3, 127.5, 126.7, 124.9, 121.6, 121.0, 118.2, 115.9, 109.9, 99.1, 52.7, 48.5, 31.4. HRMS (TOF MS ESI⁺) calculated for C₂₁H₁₉N₂O₂ [M + H]⁺, 331.1441; found, 331.1449.

Methyl (*E*)-2-(1-methyl-2-(3-oxobut-1-en-1-yl)-1*H*-indol-3-yl)-2-phenylacetate (4ja) and Methyl 2-acetyl-4-methyl-1-phenyl-1,2,3,4-tetrahydrocyclopenta[*b*]indole-1-carboxylate (3ja). 27.1 mg, 4xa : 3xa = 4.8 : 1, 78% total yield; 4xa: ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.74 (d, *J* = 16.4 Hz, 1H), 7.66 – 7.56 (m, 1H), 7.38 – 7.26 (comp, 7H), 7.16 – 7.08 (m, 1H), 6.56 (d, *J* = 16.4 Hz, 1H), 5.56 (s, 1H), 3.83 (s, 3H), 3.76 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 197.6, 172.9, 139.1, 138.2, 132.8, 131.0, 128.8, 128.5, 128.3, 127.2, 126.7, 124.3, 121.0, 120.5, 116.0, 109.8, 52.4, 48.4, 31.5, 28.0. **3xa**: ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.54 – 7.49 (m, 2H), 7.41 – 7.28 (comp, 3H), 7.25 – 7.17 (m, 3H), 7.07 – 7.03 (m, 1H), 3.85 – 3.81 (m, 1H), 3.74 (s, 3H), 3.64 (s, 3H), 3.53 (dd, *J* = 15.3, 8.4 Hz, 1H), 3.24 (dd, *J* = 15.3, 8.4 Hz, 1H), 2.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 205.9, 173.6, 144.2, 142.3, 141.3, 128.2, 128.1, 127.2, 123.6, 120.9, 119.8, 119.5, 116.9, 109.6, 69.6, 62.8, 52.1, 30.8, 29.6, 27.3. HRMS (TOF MS ESI⁺) calculated for C₂₂H₂₁NNaO₃ [M + Na]⁺, 370.1414; found, 370.1400.

2-Ethyl 1-methyl (1*S**, 2*R**)-2-acetyl-4-methyl-1-phenyl-1,2,3,4tetrahydrocyclopenta[*b*]indole-1,2-dicarboxylate (7)

Yellow solid, 32.3 mg, 77% yield, mp: 133.7-134.5 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.61 – 7.54 (m, 2H), 7.34 – 7.28 (comp, 4H), 7.20 – 7.10 (m, 2H), 7.03 – 6.98 (m, 1H), 4.40 – 4.28 (m, 2H), 3.78 (d, *J* = 4.9 Hz, 3H), 3.70 (d, *J* = 15.8 Hz, 1H), 3.58 – 3.51 (comp, 4H), 1.47 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 202.7, 173.5, 172.0, 145.8, 141.5, 136.3, 130.8, 128.1, 128.0,

123.7, 121.0, 120.0, 119.3, 114.4, 109.9, 78.9, 66.4, 61.8, 52.4, 32.9, 31.2, 27.7, 14.2; HRMS (TOF MS ESI⁺) calculated for $C_{25}H_{25}NNaO_5 [M + Na]^+$, 442.1625, found, 442.1629.

2-Ethyl 1-methyl (1*S**, 2*S**)-2-acetyl-4-methyl-1-phenyl-1,2,3,4tetrahydrocyclopenta[*b*]indole-1,2-dicarboxylate (8)

Yellow solid, 33.1 mg, 79% yield, mp: 133.7-134.5 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.63 – 7.54 (m, 2H), 7.32 – 7.27 (m, 2H), 7.26 (d, J = 1.6 Hz, 2H), 7.19 – 7.12 (m, 2H), 7.04 – 6.97 (m, 1H), 3.79 (s, 3H), 3.76 – 3.66 (m, 2H), 3.65 – 3.58 (m, 1H), 3.55 (s, 3H), 3.26 – 3.15 (m, 1H), 2.30 (s, 3H), 0.74 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 202.1, 173.7, 169.7, 144.4, 141.5, 137.1, 130.8, 127.6, 127.5, 123.7, 121.0, 120.0, 119.4, 115.4, 109.8, 80.3, 65.6, 62.0, 52.4, 33.7, 31.2, 28.5, 13.4; HRMS (TOF MS ESI⁺) calculated for C₂₅H₂₅NNaO₅ [M + Na]⁺, 442.1625, found, 442.1626.

General Procedure of the Scale Up and Synthesis of 5 and 6.

General Procedure of the Scale Up:

To a 50-mL oven-dried vial containing a magnetic stirring bar, $Cu(CH_3CN)_4PF_6$ (74.5 mg, 5.0 mol %), compound **1a** (1.20 g, 4.0 mmol) in DCM (20.0 mL), diazo

compound **2a** (1.41 g, 8.0 mmol) in DCM (10.0 mL) was added as a solution *via* a syringe pump over 2 h under argon atmosphere at 35 °C. After addition, the reaction mixture was stirred overnight under these conditions until consumption of the material (monitored by TLC). Then the reaction mixture was purified by column chromatography on silica gel after evaporate most of the solvent in *vacuo* (Hexanes : EtOAc = 15:1 to 10:1) to give the pure products 1.40 g of **3** (78% yield).

Synthesis of 5.³

To a 10-mL oven-dried vial containing a magnetic stirring bar, **3q** (52.6 mg, 0.1 mmol), Pd/C (1.1 mg, 0.01 mmol, 0.1 equiv), was added MeOH (3.0 mL) under H₂ atmosphere. Then the reaction mixture was stirred at 50 °C for 2 h with a H₂ balloon. After the reaction was complete, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The obtained residue was purified by flash column chromatography on silica gel (Hexanes: EtOAc = 15:1) to give 44.3 mg pure product **5** as white solid (84% yield). mp: 137.2-138.9 °C, ¹H NMR (400 MHz, CDCl₃) (δ , ppm)7.49 (d, *J* = 7.9 Hz, 1H), 7.30 – 7.26 (comp, 3H), 7.26 – 7.18 (comp, 6H), 7.15 – 7.09 (m, 1H), 7.06 – 6.99 (m, 1H), 6.97 – 6.91 (m, 2H), 5.45 (s, 2H), 5.42 (s, 1H), 4.21 – 4.05 (m, 2H), 4.00 – 3.84 (m, 2H), 3.73 (s, 3H), 3.56 (t, *J* = 7.3 Hz, 1H), 3.42 (d, *J* = 7.0 Hz, 2H), 1.19 (t, *J* = 7.1 Hz, 3H), 1.11 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 173.6, 168.7, 168.6, 138.6, 137.7, 137.3, 134.8, 129.0, 128.5, 128.4, 127.5, 126.9, 126.0, 122.0, 121.1, 120.0, 110.4, 109.9, 61.9, 61.8, 52.3, 52.3, 48.2, 46.8, 29.9, 23.8, 14.07, 14.0. HRMS (TOF MS ESI⁺) calculated for C₃₂H₃₃NNaO₆ [M + Na]⁺, 550.2200; found, 550.2196.

To a 10-mL oven-dried vial containing a magnetic stirring bar, 3g (52.8 mg, 0.1 mmol), Phenylacetylene (15.3 mg, 0.15 mmol, 1.5 equiv), Et₃N (30.3 mg, 0.3 mmol, 3.0 equiv), Pd(PPh₃)₂Cl₂ (1.4 mg, 2.0 mol%), and CuI (0.4 mg, 2.0 mol%), was added DMF (2.0 mL) under argon atmosphere. Then the reaction mixture was stirred at 80 ^oC for 12 h. After the reaction was complete, the reaction mixture was cooled to room temperature and quenched with water (10 mL) and extracted with EtOAc (10 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure after filtration. The obtained residue was purified by flash column chromatography on silica gel (Hexanes: EtOAc = 10:1) to give 50.6 mg pure product 6 as yellow solid (92% yield). mp: 178.8-179.3 °C, ¹H NMR (400 MHz, CDCl₃) (δ, ppm) δ 7.66 (d, J = 8.0 Hz, 2H), 7.57 – 7.51 (m, 2H), 7.46 (d, J = 8.7 Hz, 2H), 7.38 – 7.29 (comp, 4H), 7.21 – 7.11 (m, 2H), 7.06 – 6.99 (m, 1H), 4.42 – 4.27 (m, 2H), 3.85 - 3.73 (comp, 4H), 3.69 - 3.58 (comp, 2H), 3.55 (s, 3H), 3.40 - 3.27 (m, 1H), 1.37 (t, J = 7.1 Hz, 3H), 0.79 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 173.1, 170.3, 169.5, 145.7, 141.4, 137.1, 131.7, 130.9, 130.5, 128.5, 128.3, 123.6, 123.5, 122.6, 121.0, 120.0, 119.1, 114.3, 109.9, 89.7, 89.6, 74.2, 66.0, 62.0, 61.8, 52.4, 34.3, 31.2, 14.2, 13.5; HRMS (TOF MS ESI⁺) calculated for $C_{34}H_{31}NNaO_6[M + Na]^+$, 572.2044; found, 572.2048.

1D-Noe Study of 5

1D-Noe Study of 7

1D-Noe Study of 8

References

- 1 F. Sha, Y. Tao, C. Y. Tang, F. Zhang and X. Wu, J. Org. Chem., 2015, 80, 8122.
- 2 (a) X. Zhang, Y. Zheng, L. Qiu and X. Xu, Org. Biomol. Chem., 2018, 16, 70; (b)
- K. Zhang, X. Xu, J. Zhang, H. Zheng and A. Lin, Org. Lett., 2017, 19, 2596.
- 3 D. S. Roman, Y. Takahashi and A. B. Charette, Org. Lett., 2011, 13, 3242.
- 4 R. Yao, G. Rong, B. Yan, L. Qiu and X. Xu, ACS Catal., 2016, 6, 1024.

Jun29-2018-f400-dk-903f

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 fl (ppm)

Nov12-2018-f400-pc-dk-mF.10.fid

7.5

6.5

6.0

5.5

5.0

4.5

2.5

2.0

3.0

1.5

1.0

0.5

0.0

S50

 $<^{3.75}_{3.74}$

-205.92 -205.92 -197.57 -197.57 -173.60 -142.28 -142.28 -142.28 -142.28 -142.28 -142.28 -142.28 -142.28 -142.28 -142.28 -128.19 -128.1

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

No syntax errors found.

CIF dictionary Interpreting this report

Datablock: s180711a

Bond precision:	C-C = 0.0037 A	Wavelength=0.71073				
Cell: a	=9.936(7)	b=11.476(9)	c	c=12.791(10)		
a. Tomporaturo, 21	lpha=112.421(8)	beta=91.811	(11) 9	gamma=111.934(8)		
Temperacure: 2.	55 K					
	Calculated	Re	ported			
Volume	1224.6(16)	12	24.58(1	10)		
Space group	P -1	P	-1			
Hall group	-P 1	- I	21			
Moiety formula	C26 H26 F N O6	?				
Sum formula	C26 H26 F N O6	C2	26 H26 H	F N 06		
Mr	467.48	46	57.48			
Dx,g cm-3	1.268	1.	268			
Z	2	2				
Mu (mm-1)	0.095	0.	095			
F000	492.0	49	92.0			
F000'	492.28					
h,k,lmax	15,18,20	15	5,18,19			
Nref	10657	90)35			
Tmin,Tmax						
Tmin'						
Correction method= Not given						
Data completeness= 0.848		Theta(max) = 34.830				
R(reflections) = 0.0933(6826)		wR2(reflections) = 0.2820(9035)				
S = 1.152 Npar= 311						

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.