Supporting Information

Trifunctional organometallic frameworks and cages based on all-cis-1,3,5-triethynyl-1,3,5-trisilacyclohexanes

Eugen Weisheim, Simon Weigel, Beate Neumann, Hans-Georg Stammler and Norbert W. Mitzel*

Experimental Part

General methods

All manipulations were performed under dried argon or nitrogen Schlenk techniques. Tetrahydrofuran was dried over potassium, before use, solvents were distilled. Phenylmercuric bromide ${ }^{[1]}$ and all-cis-1,3,5-triethynyl-1,3,5-trimethyl-1,3,5-trisilacyclohexane ${ }^{[2]}$ (1) were prepared along the lines of established protocols. NMR measurements were operated with Bruker Avance III 500, Bruker Avance III 300 and Bruker DRX 500. NMR-spectra were referenced to the residual signal of used protonated solvents $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)\left({ }^{7} \mathrm{Li}: \mathrm{LiCl}\right.$ in $\mathrm{D}_{2} \mathrm{O} ;{ }^{29} \mathrm{Si}$: TMS; ${ }^{199} \mathrm{Hg}: \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ in $\mathrm{D}_{2} \mathrm{O}$, external standard). FT-IR spectra were collected on a Bruker ALPHA FT-IR-spectrometer. Elemental analyses were performed with CHNS elemental analyser HEKAtech EURO EA (too low values for carbon are due to the known formation of silicon carbide).

Synthesis of $\left\{\left[\mathrm{CH}_{2} \mathrm{Si}(\mathrm{Me})\left(\mathrm{C}_{2} \mathrm{Li}\right)\right]_{3}(\mathbf{T H F})_{3}\right\}_{2}$ (2a)

1,3,5-Triethynyl-1,3,5-trimethyl-1,3,5-trisilacyclohexane (1a, $94 \mathrm{mg}, 0.38 \mathrm{mmol}$) was dissolved in 10 mL tetrahydrofuran. To the resulting a solution of a $n-\mathrm{BuLi}$ in n-hexane (0.71 mL , $1.14 \mathrm{mmol}, 1.6 \mathrm{M}$) was added at $-20^{\circ} \mathrm{C}$ and the mixture stirred for 30 min . All volatiles were removed and a colourless solid remained. Single crystals suitable for X-ray diffraction of 2a were obtained by gradual evaporation of THF in an H-tube. Yield: $182 \mathrm{mg}(0,19 \mathrm{mmol}, 100 \%)$. M. p.: $249{ }^{\circ} \mathrm{C}$ (decomposition). ${ }^{1} \mathrm{H}$ NMR (500 MHz , THF- $\mathrm{d}_{8}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=3.62(\mathrm{~m}, 12 \mathrm{H}$, THF), $1.77(\mathrm{~m}, 12 \mathrm{H}, \mathrm{THF}), 0.00\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{SiCH}_{2} \mathrm{Si}-\right), 0.00\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{SiCH}_{3}\right),-0.77$ (d, $\left.{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{SiCH}_{2} \mathrm{Si}-\right) ;{ }^{7} \mathrm{Li}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(117 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=0.53$ (s); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=171.2(\mathrm{~s},-\mathrm{Li} C \equiv \mathrm{CSi}$), $124.0(\mathrm{~s},-$ $\mathrm{LiC} \equiv C \mathrm{Ci}-), 68.4$ (s, THF), 26.5 (s, THF), 6.1 ($\mathrm{s},-\mathrm{SiCH}_{3}$), $5.5\left(\mathrm{~s},-\mathrm{SiCH}_{2} \mathrm{Si}-\right) ;{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(99 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=-28.6$. FT-IR $(\mathrm{KBr}): v\left[\mathrm{~cm}^{-1}\right]=3282,3267,3252,2954$,

2875, 2859, 1986 (C $=\mathrm{C}$), 1978 (C $\equiv \mathrm{C}), 1619,1615,1510,1461,1413,1361,1261,1248,1042$, $914,824,782,732,714,654,622,578,501,439$; elemental analysis calculated (\%) for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{Li}_{3} \mathrm{O}_{3} \mathrm{Si}_{3}$ (477.62): C 60.35, H 7.60; found: C 58.97, H 8.07.

Synthesis of $\left\{\left[\mathrm{CH}_{2} \mathrm{Si}(\mathbf{P h})\left(\mathrm{C}_{2} \mathrm{Li}\right)\right]_{3}(\mathbf{T H F})_{3}\right\}_{2} \mathbf{(2 b)}$

To a solution of 1,3,5-triethynyl-1,3,5-triphenyl-1,3,5-trisilacyclohexane ($\mathbf{1 b}, 52 \mathrm{mg}, 0.12$ mmol) in tetrahydrofuran (6 mL) a solution of n-butyllithium (1.6 M in hexane, $0.23 \mathrm{~mL}, 0.37$ mmol) was added at $-20^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min . All volatile components were removed at reduced pressure. The product was obtained as a slightly yellowish solid. Single crystals were obtained by slow evaporation of the solvent in an H-tube. The product obtained in this way contains traces of diethyl ether and n-hexane. Yield: $49 \mathrm{mg}(0.11 \mathrm{mmol}$, $91 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}$): $\delta[\mathrm{ppm}]=7.78-7.75(\mathrm{~m}, 5 \mathrm{H}, o-\mathrm{CH}[\mathrm{Ph}]), 7.26-7.20(\mathrm{~m}$, $10 \mathrm{H}, m-/ p-\mathrm{CH}[\mathrm{Ph}]), 3.62(\mathrm{~m}, \mathrm{THF}), 1.77$ (m, THF), $0.42\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.2 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{Si}^{2}-\mathrm{CH}_{2}-\mathrm{Si}-\right.$), $0.06\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.2 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{Si}^{-} \mathrm{CH}_{2}-\mathrm{Si}-\right)$; ${ }^{7} \mathrm{Li}-\mathrm{NMR}\left(194 \mathrm{~Hz}, \mathrm{THF}-\mathrm{d}_{8}\right): \delta[\mathrm{ppm}]=0.9$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right): \delta[\mathrm{ppm}]=174.8,(-\mathrm{Si}-\mathrm{C} \equiv C-\mathrm{Li}), 143.5(i-\mathrm{CH}[\mathrm{Ph}]), 134.5$ ($o-C H[P h]$), $129.0(p-C H[P h]), 128.2$ ($m-C H[P h]$), 121.9 ($-\mathrm{Si}-C \equiv \mathrm{C}-\mathrm{Li}$), 68.4 (THF), 26.6 (THF), $4.4\left(-\mathrm{Si}-\mathrm{CH}_{2}-\mathrm{Si}-\right) .{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(99 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right): \delta[\mathrm{ppm}]=-30.0$.

Synthesis of $\left\{\left[\mathrm{CH}_{2} \mathbf{S i}(\mathbf{P h})\left(\mathbf{C}_{2} \mathbf{S i M e}_{3}\right)\right]_{\mathbf{3}}(\mathbf{T H F})_{3}\right\}_{\mathbf{2}}(\mathbf{3 b})$

To a solution of 1,3,5-triethynyl-1,3,5-triphenyl-1,3,5-trisilacyclohexane ($\mathbf{1 b}, 61 \mathrm{mg}, 0.14$ mmol) in THF (7 mL) a solution of n-butyllithium (1.6 M in hexane $0.27 \mathrm{~mL}, 0.43 \mathrm{mmol}$) was added at $-20^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min . Trimethylchlorosilane $(0.20 \mathrm{~mL}, 1.57$ mmol) was added at $-10^{\circ} \mathrm{C}$ and the mixture was stirred overnight. All volatile components were removed at reduced pressure and the residue was extracted with n-pentane (30 mL). After removal of the solvent, the product was obtained as a colourless solid. Single crystals were obtained by continuous evaporation of the solvent from a pentane solution. Yield: $79 \mathrm{mg}, 0.12$ $\mathrm{mmol}, 86 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta[\mathrm{ppm}]=7.47-7.43(\mathrm{~m}, 6 \mathrm{H}, o-\mathrm{CH}[\mathrm{Ph}]), 7.12-7.02$ (m, 9H, $m-/ p-\mathrm{CH}[\mathrm{Ph}]), 1.09\left(\mathrm{~s},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=14.3 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{Si}^{-} \mathrm{CH}_{2}-\mathrm{Si}-\right) 0.53\left(\mathrm{~s},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=14.3 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.{ }_{-S i-} \mathrm{CH}_{2}-\mathrm{Si}-\right), 0.26\left(\mathrm{~s}, 27 \mathrm{H},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta[\mathrm{ppm}]=137.3(i-$ $C H[P h]), 134.2$ ($o-C H[P h]$), 129.6 ($p-\mathrm{CH}[\mathrm{Ph}]$), 128.4 ($m-\mathrm{CH}[\mathrm{Ph}]$), $116.5\left(-\mathrm{C} \equiv C-\mathrm{Si}^{(}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $113.4\left(-\mathrm{CH}_{2}-\mathrm{Si}-\mathrm{C} \equiv \mathrm{C}-\right), 0.1\left(-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right),-0.6\left(-\mathrm{Si}-\mathrm{CH}_{2}-\mathrm{Si}-\right) ;{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(99 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta[\mathrm{ppm}]=-19.0\left(-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right),-24.9\left(-\mathrm{CH}_{2}-\mathrm{Si}-\mathrm{CH}_{2}-\right) ; \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z=648.2$ $[\mathrm{M}]^{+}, 633.2\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 575.1\left[\mathrm{M}-\mathrm{SiMe}_{3}\right]^{+},\left[\mathrm{SiMe}_{2} \mathrm{Ph}\right]^{+}, 73.0\left[\mathrm{SiMe}_{3}\right]^{+} ;$FT-IR (ATR): $v\left[\mathrm{~cm}^{-1}\right]$ $=3069\left(\mathrm{w}, v_{\mathrm{CH}}(=\mathrm{CH})\right.$), 3049 (w) $3020(\mathrm{w}), 3008(\mathrm{w}), 2960\left(\mathrm{~m}, v_{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)\right.$), $2898\left(\mathrm{w}, v_{\mathrm{CH}}\left(\mathrm{CH}_{2}\right)\right)$, 1948 (w), 1875 (w)1689 (w), 1487 (w), 1428 (m), 1409 (w), 1355 (w), 1248 (s), 1190 (w), 1110

(m), $477(\mathrm{~s}), 433(\mathrm{~m}), 416(\mathrm{~m})$. Analysis calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{Si}_{6}\left(649.28 \mathrm{~g} \mathrm{~mol}^{-1}\right)$: C 66.59, H 7.49; found 65.71, H 7.73.

Synthesis of $\left[\mathrm{SiCH}_{2} \mathrm{MeCCHgCCMeCH}_{2} \mathrm{Si}_{3}\right]_{3}$ (4a)

To a solution of $\mathbf{2 a}$ (prepared in situ from 1a, $100 \mathrm{mg}, 0.41 \mathrm{mmol} / n-\mathrm{BuLi}, 1.6 \mathrm{M}$ in hexane, $0.77 \mathrm{~mL}, 1.22 \mathrm{mmol}, 30 \mathrm{~min}$) in 20 mL THF phenylmercuric bromide ($448 \mathrm{mg}, 1.25 \mathrm{mmol}$) was added. The suspension was refluxed for 15 min until the whole phenylmercuric bromide was dissolved. After stirring for 30 min water was added to remove LiBr. The THF phase was separated, dried over MgSO_{4} and the solvent was removed in vacuum. To remove the diphenylmercury the solid was washed with 1,4-dioxane and dried in vacuum. Yield: 130 mg ($0.12 \mathrm{mmol}, 59 \%$). M. p.: $324^{\circ} \mathrm{C}$ (decomposition).
${ }^{1} \mathrm{H}$ NMR (500 MHz, THF- $\mathrm{d}_{8}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=3.62(\mathrm{~m}, \mathrm{THF}), 1.78(\mathrm{~m}, \mathrm{THF}), 0.13(\mathrm{~s}, 9 \mathrm{H},-$ $\left.\mathrm{SiCH}_{3}\right), 0.03\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.4 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{SiCH}_{2} \mathrm{Si}\right),-0.38\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.4,3 \mathrm{H},-\mathrm{SiCH}_{2} \mathrm{Si}-\right)$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, THF-d $\left.8,298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=144.6$ (s, $-\mathrm{Hg} C \equiv \mathrm{CSi}$), 111.1 ($\mathrm{s},-\mathrm{HgC} \equiv C \mathrm{Ci}-), 68.4$ (s, THF), 26.6 (s, THF), $4.4\left(\mathrm{~s},-\mathrm{SiCH}_{3}\right), 2.9\left(\mathrm{~s},-\mathrm{SiCH}_{2} \mathrm{Si}-\right) ;{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (99 MHz, THF-d $8,298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=-22.6(\mathrm{~s}) ;{ }^{199} \mathrm{Hg}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(90 \mathrm{MHz}$, THF-d 8 , 298 K): $\delta[\mathrm{ppm}]=-1016$; FT-IR (KBr): $v\left[\mathrm{~cm}^{-1}\right]=3075,3059,3031,3003,2949,2926,2910$, 2896, 2874, 2855, 2110 ($\mathrm{C} \equiv \mathrm{C}$), 2093 ($\mathrm{C} \equiv \mathrm{C}$), 2086 ($\mathrm{C} \equiv \mathrm{C}$), 2076 ($\mathrm{C} \equiv \mathrm{C}$), 1572, 1480, 1440, 1402, 1348, 1248, 1215, 1147, 1052, 1028, 993, 824, 788, 742, 717, 706, 700, 622, 608, 469(br); elemental analysis calculated (\%) for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{Hg}_{3} \mathrm{O}_{2} \mathrm{Si}_{6}$ with one 1,4-dioxane ($1175.06 \mathrm{~g} \mathrm{~mol}^{-1}$): C 28.58, H 3.25; found: C 28.18 , H 3.36 .

Synthesis of $\left[\mathrm{SiCH}_{2} \mathbf{P h C C H g C C P h C H} 2 \mathrm{Si}\right]_{3}(4 b)$

To a solution of $\mathbf{2 b}$ (prepared in situ from $\mathbf{1 b}, 72 \mathrm{mg}, 0.17 \mathrm{mmol} / n-\mathrm{BuLi}, 1.6 \mathrm{M}$ in hexane, $0.32 \mathrm{~mL}, 0.50 \mathrm{mmol}, 30 \mathrm{~min}$) phenyl mercury bromide ($180 \mathrm{mg}, 0.50 \mathrm{mmol}$) was added at -10 ${ }^{\circ} \mathrm{C}$. The mixture was stirred for 30 min . The reaction mixture was stirred at room temperature for 1 h and then heated to reflux for 10 min . After adding distilled water (10 mL) and diethyl ether (8 mL), the organic phase was separated and dried over sodium sulphate. All volatile components were removed under reduced pressure and the residue washed with 1,4-dioxane (2 mL). The product was obtained as a colourless solid. The product contained traces of dichloromethane, 1,4-dioxane and diethyl ether. Yield 49 mg ($0.03 \mathrm{mmol}, 20 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz , pyridine-d 5): $\delta=8.11-8.08$ (m, 6H, o-CH[Ph]), $7.55-7.45$ ($\mathrm{m}, 9 \mathrm{H}, m-/ p-\mathrm{CH}[\mathrm{Ph}]$), $0.97\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.5 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{Si}-\mathrm{CH}_{2}-\mathrm{Si}-\right), 0.68\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.5 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{Si}-\mathrm{CH}_{2}-\mathrm{Si}\right)$; ${ }^{1} \mathrm{H}-$ NMR (500 MHz, THF- d_{8}): $\delta=7.78-7.68(\mathrm{~m}, 6 \mathrm{H}, o-\mathrm{CH}[\mathrm{Ph}]), 7.33-7.26(\mathrm{~m}, 11 \mathrm{H}, m-/ p-$ $\mathrm{CH}[\mathrm{Ph}]), 0.46\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.5 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{Si}-\mathrm{CH}_{2}-\mathrm{Si}-\right), 0.38\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.5 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{Si}^{-} \mathrm{CH}_{2}-\right.$
$\mathrm{Si}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}\right.$, pyridine- $\left.\mathrm{d}_{5}\right): \delta=147.9$ (-C $\left.=\mathrm{C}-\mathrm{Hg}\right), 141.2(i-\mathrm{CH}[\mathrm{Ph}]), 134.7$ ($o-C H[P h]$), 130.0 ($p-\mathrm{CH}[\mathrm{Ph}]$), 128.8 ($m-\mathrm{CH}[\mathrm{Ph}]$), 109.6 ($-\mathrm{Si}-C \equiv \mathrm{C}-$), 2.3 ($-\mathrm{Si}^{-} \mathrm{CH}_{2}-\mathrm{Si}-$); ${ }^{29} \mathrm{Si}^{2}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (99 MHz , pyridine-d 5): $\delta=-25.4 ;{ }^{199} \mathrm{Hg}-\mathrm{NMR}\left(54 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right): \delta=$ -1039.5; FT-IR (ATR): $v\left[\mathrm{~cm}^{-1}\right]=3064(\mathrm{w}), 3045(\mathrm{w}), 2962(\mathrm{~m}), 2094\left(\mathrm{w}, v_{\mathrm{CH}}\left(\mathrm{CH}_{2}\right)\right), 1426$ (w), 1413 (w), 1260 (s), 1089 (s), 1018 (s), 865 (m), 796 (s), 734 (m), 695 (m), 658 (m), 617 (m), $525(\mathrm{~m}), 474(\mathrm{~m}), 438(\mathrm{~m})$.

Crystallographic structure determination

Single crystals suitable for X-ray diffraction measurement were suspended in a paratone$\mathrm{N} /$ paraffin oil mixture, mounted on a glass fibre and transferred onto the goniometer of the diffractometer. The structures were solved by Direct Methods and refined by full-matrix leastsquares cycles (programs Olex $2^{[3]}$ SHELXS- $97{ }^{[4]}$ and SHELXL-97 ${ }^{[4]}$). 2b $\cdot 6$ THF shows a disorder of the THF molecule with ratio 81:19. Equivalent bond lengths of the disordered molecules were restrained to be same; the neighbouring disordered carbon atoms were constrained to have the same anisotropic displacement parameters pair wisely . Further details on the crystallographic measurements can be found in Table 1.

CCDC 1418361, 1418362, 1901920 and 1901921 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table 1. Crystallographic data of 2a, 2b, 3b and 4a.

	2a 6 THF	2b $\cdot 6$ THF	3b	4a $\cdot 2$ pyridine
Formula	$\mathrm{C}_{48} \mathrm{H}_{78} \mathrm{Li}_{6} \mathrm{O}_{6} \mathrm{Si}_{6}$	$\mathrm{C}_{78} \mathrm{H}_{90} \mathrm{Li}_{6} \mathrm{O}_{6} \mathrm{Si}_{6}$	$\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{Si}_{6}$	$\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{Hg}_{3} \mathrm{~N}_{2} \mathrm{Si}_{6}$
$M_{\text {r }}$	961.28	1333.67	649.28	1246.99
$T[\mathrm{~K}]$	100.0(1)	200.0(1)	100.0(1)	100.0(1)
Crystal size [mm]	$0.16 \times 0.12 \times 0.08$	$0.19 \times 0.13 \times 0.10$	$0.29 \times 0.22 \times 0.14$	$0.30 \times 0.19 \times 0.18$
Crystal system	triclinic	trigonal	monoclinic	orthorhombic
Space group	$P \overline{1}$	$R \overline{3}$	$P 2_{1} / \mathrm{c}$	Pbca
a [A]	10.2617(8)	12.1176(2)	10.6904(1)	15.5413(6)
b [A]	11.8325(13)	12.1176(2)	32.0784(2)	17.0430(9)
$c[\AA]$	13.6055(10)	44.8866(8)	12.7259(1)	30.480(12)
$\alpha\left[^{\circ}\right]$	108.60(1)	90	90	90
$\beta\left[{ }^{\circ}\right]$	104.45(1)	90	113.99(1)	90
$\gamma\left[{ }^{\circ}\right]$	104.86(1)	120	90	90
$V\left[\AA^{3}\right]$	1410.9(2)	5708.0(2)	3987.0(1)	8073(3)
Z	1	3	4	8
$\rho_{\text {calcd }}\left[\mathrm{g} \cdot \mathrm{cm}^{-1}\right]$	1.131	1.164	1.082	2.052
$\mu\left[\mathrm{mm}^{-1}\right]$	0.189	1.406	2.116	11.585
$F(000)$	516	2124	1392	4656
2Θ range [${ }^{\circ}$]	3.90 to 60.00	5.91 to 143.91	8.09 to 152.45	4.44 to 60.28
Index range	$-14 \leq h \leq 14$	$-14 \leq h \leq 14$	$-13 \leq h \leq 13$	$-21 \leq h \leq 21$
	$-16 \leq \mathrm{k} \leq 16$	$-14 \leq k \leq 14$	$-39 \leq k \leq 40$	$-24 \leq \mathrm{k} \leq 24$
	$-19 \leq 1 \leq 19$	$-55 \leq l \leq 55$	$-15 \leq l \leq 16$	$-43 \leq 1 \leq 43$
Reflns collected	27424	63931	90276	387982
Unique reflns	8221	4146	8336	11876
reflns with $I>2 \sigma(I)$	6372	3872	8240	11143
$R_{\text {int }}$	0.0420	0.0328	0.0212	0.0851
Data/restr./param	8221 / 0 / 301	4146/21/168	8336/0/572	11876 / 0 / 412
$\mathrm{GoF}\left(F^{2}\right)$	1.040	1.038	1.038	1.184
$R_{1}, \mathrm{w} R_{2}[I>2 \sigma(I)]$	0.0453, 0.1036	0.0366, 0.1039	0.0272, 0.0730	0.0212, 0.0436
$R_{1}, \mathrm{w} R_{2}$ (all data)	0.0648, 0.1128	0.0386, 0.1063	0.0274, 0.0732	0.0240, 0.0443
$\Delta \rho_{(\text {max min })}\left[e \cdot \AA^{-3}\right]$	0.65 / -0.36	0.22/-0.19	0.36 / -0.37	1.91/-1.10
CCDC-no.	1418361	1901920	1901921	1418362

Additional NMR spectra of compounds 2 and 3:

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a}$ in $\left[\mathrm{D}_{8}\right]$ THF at 298 K .
$\stackrel{n}{n}$

Figure S2. ${ }^{7} \mathrm{Li}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2a in $\left[\mathrm{D}_{8}\right]$ THF at 298 K .

Figure S3. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2a in $\left[\mathrm{D}_{8}\right]$ THF at 298 K .
$\stackrel{\text { in }}{\stackrel{\infty}{1}}$

Figure S4. ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2a in $\left[\mathrm{D}_{8}\right]$ THF at 298 K .

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}$ in $\left[\mathrm{D}_{8}\right]$ THF at 298 K .

Figure S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4 a}$ in $\left[\mathrm{D}_{8}\right]$ THF at 298 K .

Figure S7. ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4 a}$ in $\left[\mathrm{D}_{8}\right]$ THF at 298 K .

Figure S8. ${ }^{199} \mathrm{Hg}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4 a}$ in $\left[\mathrm{D}_{8}\right]$ THF at 298 K .

Figure S9. Molecular structure of $\mathbf{4 a}$ with $\pi \cdots \mathrm{Hg}(3)$ interaction. The distance between pyridine plane and $\mathrm{Hg}(3)$ is $3.517(2) \AA$, between $\mathrm{Hg}(3)$ and $\mathrm{H}(11 \mathrm{~A})$ with symmetry code $3 / 2-x,-1 / 2+y$, z is $2.842(2) \AA$.

Figure S10. Mercury carbon bond length distribution diagram of $\mathrm{Hg}-\mathrm{C} \equiv \mathrm{C}$ fragment. Mean:

Figure S11. Mercury-nitrogen bond length distribution diagram of $\mathrm{Hg}-\mathrm{Hg}$ fragment. Mean: 2.944 Å.

References

[1] a) S. Hilpert, G. Grüttner, Ber. Dtsch. Chem. Ges. 1913, 46, 1675-1687; b) W. A. Herrmann, Synthetic methods of organometallic and inorganic chemistry. (Herrmann/Brauer), Georg Thieme Verlag; Thieme Medical Publishers, Stuttgart, 19962002.
[2] E. Weisheim, C. G. Reuter, P. Heinrichs, Y. V. Vishnevkiy, A. Mix, B. Neumann, H.-G. Stammler, N. W. Mitzel, Chem. Eur. J. 2015, 21, 12436-12448.
[3] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K.Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
[4] G. M. Sheldrick, Acta Crystallogr. A, Found. Crystallogr. 2008, 64, 112-122.

