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Experimental	section	

The	perdeuterated,	13C-	and	15N-labeled	samples	of	chicken	α-spectrin	SH3	domain	and	
human	 carbonic	 anhydrase	 II	 (hCAII)	 were	 expressed	 and	 purified	 as	 described	
earlier1,2,	with	exchangeable	sites	back-exchanged	along	purification	in	100	%	H2O.	For	
NMR	 experiments	 approximately	 1	mg	 of	 Cu-EDTA-doped	 protein3	 was	 needed	 each.	
NMR	experiments	were	carried	out	at	700	MHz	proton	Larmor	frequency	and	55.55	kHz	
MAS	 frequency,	 using	 a	 standard-bore	 1.3	mm	 triple-resonance	 probe	 on	 a	 Bruker	
AVANCE	 NEO	 spectrometer	 at	 approximately	 20	°C.	 RFDR	 spectra	 were	 recorded	 for	
0.29,	0.43,	0.58,	0.72,	0.86,	1.01,	1,15,	1.44,	1.73,	2.02,	2.30,	2.88,	3.46,	and	4.03	ms	RFDR	
mixing	time	for	SH3	and	0.18,	0.31,	0.61,	0.86,	1.15,	1.44,	2.02,	2.88,	4.03,	4.90,	and	5.76	
ms	 mixing	 time	 for	 hCAII.	 The	 180°	 pulse	 during	 RFDR	 had	 a	 pulse	 length	 of	 3	 µs,	
resulting	in	a	duty	factor	of	0.16	and	an	rf	frequency	of	166.6	kHz.	25	ms	t1max	in	the	15N,	
20	ms	 in	 the	 indirect	 1H,	 and	50	ms	acquisition	 time	 in	 the	direct	 1H-dimension	were	
used.	The	experimental	 time	of	each	3D	spectrum	was	approximately	20.5	hours.	 (The 
first 4 mixing times (up to 1 ms) were sufficient for the analysis (see Fig S4), which leads to a 
total experimental time of 82 hours or 3.5 days.) Data	 processing	 and	 assignments	were	
carried	 out	 using	 Topspin	 4	 and	 CcpNMR4,	 respectively	 with	 determination	 of	 peak	
intensities	as	peak	heights.			
	

	

Fig.	 S1:	Pulse	scheme	for	the	3D	15N-edited	1H-1H	RFDR	experiment.5,6	Filled	and	open	
bars	represent	90	and	180	°	pulses,	respectively.	Water	suppression	(light	gray	shapes)	
was	achieved	using	similar	means	as	proposed	by	Zhou	et	al.7	Asterisks	denote	phase-
sensitive	 incrementation	 according	 to	 States-TPPI,	 the	 phase	 φ	 represents	 an	 XY-88	
phase	 cycle	 during	 the	 RFDR	 mixing.	 CP	 (non-annotated	 dark	 gray	 shapes)	 duration	
amounted	 to	 300	 µs	 and	 used	 an	 80-100%	 ramp	 on	 the	 proton	 channel.	 Decoupling	
during	 indirect	 and	 direct	 acquisition	 was	 performed	 using	 XiX-129	 at	 14	 kHz	 and	
WALTZ-1610	 at	 10	 kHz,	 respectively.	 	 t1max	 and	 t2max	 amounted	 to	 20	 and	 25	 ms,	
respectively.	 The	 counter	 n	 was	 chosen	 such	 that	 overall	 RFDR	 mixing	 times	 were	
achieved	as	denoted	in	the	main	text.	

	

Numerical	 powder-averaged	 two-spin-model	 simulations	 of	 1H-RFDR	 cross-peak	
buildups	 were	 obtained	 using	 an	 in-house	 MATLAB11	 script,	 setting	 inter-proton	
distances	from	2.0	to	8	Å,	and	normalizing	the	intensity	to	the	diagonal-peak,	which	was	
simulated	equally.		

Structure	 calculations	were	 performed	 using	 CNS1.112	 calculating	 300	 trial	 structures	
with	 15000	 steps	 in	 the	 first	 and	 220000	 steps	 in	 the	 second	 slow-cooling	 annealing	
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stage.	The	eRFDR	structure	calculation	depicted	in	Figure	4C	(main	text)	was	carried	out	
using	 the	available	45	unidirectional	 and	30	bidirectional	 eRFDR	restraints	 (as	 shown	
on	the	average	structure	in	Figure	4B,	main	text),	 in	addition	to	47	conventional	RFDR	
restraints	 as	 well	 as	 dihedral-angle	 restraints.	 In	 terms	 of	 comparison,	 a	 structure	
calculation	 using	 122	 conventional	 RFDR	 restraints	 in	 addition	 to	 dihedral-angle	
restraints,	 as	 shown	 in	 Figure	 4A,	 was	 performed.	 In	 order	 to	 create	 an	 objective	
measure	for	the	quality	of	structural	improvement	using	eRFDR	restraints,	we	grouped	
all	 unambiguous	 cross-peaks	 from	 the	 2	ms	 mixing	 time	 dataset	 by	 their	 intensity	
relative	 to	 the	 diagonal	 peak,	 creating	 three	 tiers:	 Peaks	 showing	 an	 intense	 relative	
cross	peak	were	considered	close	and	converted	into	a	restraint	with	an	upper	distance	
limit	 of	 5	 Å.	 Peaks	 showing	 a	 medium	 or	 a	 small	 relative	 cross	 peak	 intensity	 were	
considered	 intermediate	 or	 far,	 with	 an	 upper	 distance	 limit	 of	 7.5	Å	 and	 9	Å,	
respectively.	 The	 computational	 time	 for	 structure	 calculation	 amounted	 to	
approximately	1.5	days	on	one	core	(an	Intel	i7	processor).	

	

	

Data	processing	to	generate	eRFDR-restraints	by	help	of	eNORA2		
In	 order	 to	 generate	 exact	 distance	 restraints	 from	RFDR	 buildup	 the	 following	 error	
sources	 have	 to	 be	 addressed:	 i)	 Site	 specificity	 of	 the	 polarization	 transfer	 efficiency	
during	 the	 heteronuclear	 correlation	 part.	 ii)	 Site-specific	 relaxation	 and	 pulse	
imperfections.	iii)	Relayed	polarization	transfer	via	third	spins.		

In	 order	 to	 correct	 for	 differential	 polarization	 transfer	 efficiency,	 the	 cross-peak	
buildup	Hj	→	Hi	is	divided	by	the	diagonal-peak	intensity	at	zero	mixing	time	Iii(0),		

	

𝐼!",!"#$ 𝑡 = !!"(!)
!!!(!)

	 ,	 	 																	 								(S1)	
	

which	is	extrapolated	from	a	mono-exponential	fit.	
	

𝐼!! 𝑡 = 𝐼!!(0) ∙ 𝑒!!!!!	.	 	 	 	 											(S2)	
	
Iii(t)	 is	 the	 diagonal-peak	 intensity	 of	 spin	 i	 measured	 at	 mixing	 time	 t,	 Iii(0)	 is	 the	
diagonal-peak	intensity	of	spin	i	at	zero	mixing	time,	and	kii	represents	the	decay	rate	of	
the	diagonal	 peak.	While	 in	 liquid-state	NOESY	kii	 is	 the	 auto-relaxation	 rate	 of	 spin	 i,	
this	behavior	is	dominated	by	losses	induced	by	the	RFDR	pulse	train	in	the	solid-state	
counterpart.	 In	 the	 normalized	 intensity	 the	 polarization	 transferred	 via	 neighboring	
spins	in	terms	of	spin	diffusion	is	corrected	using	an	initial	structural	model,	considering	
all	relay	pathways	in	addition	to	the	direct	transfer:	
	

𝐼!",!"##(𝑡) = 𝑝!"(𝑡) ∙ 𝐼!",!"#$(𝑡)	,	 	 	 						 			(S3)	
	

Inorm(t)	 being	 the	 cross-peak	 intensity	 normalized	 with	 the	 diagonal-peak	 intensity	 at	
zero	 mixing	 time,	 Icorr(t)	 the	 corrected	 cross-peak	 intensity,	 and	 p(t)	 the	 correction	
coefficient	for	intensities	at	mixing	time	t.	(For	more	details	see	Orts	et	al.13)	
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The	 correction	 coefficient	 p(t)	 can	 be	 derived	 on	 the	 basis	 of	 the	 spin	 network	
geometries	using	either	the	simulated	cross-peak	intensity	originating	from	polarization	
relay-transferred	through	individual	third	spins	(option	“three	spin”	in	the	masterscript	
of	eNORA2):13	
	

𝑝 𝑡 = !!"#$%&'(!)
!!"#$%&' ! ! !!!!""#$%&! ! !!!"#$%&'(!)!

	 	 	 (S4.1)	

	
Alternatively,	p(t)	can	be	derived	from	the	simulated	ratio	of	the	transfers	in	a	two-spin	
system	and	in	a	multi-spin	system,	if	the	option	“full	matrix”	is	chosen:14	
	

𝑝 𝑡 = !!"#$%&'(!)
!!"#$%&'%( !

	 	 	 							 	 							(S4.2)	

	
	

Itwospin(t)	 is	 the	 simulated	 intensity	 using	 an	 ideal	 two-spin	 model	 and	 Ithreespin	 or	
Imultispin(n)(t)	 (using	 the	 option	 “three	 spin”	 or	 “full	matrix”,	 respectively)	 the	 simulated	
intensity	 originating	 from	 polarization	 transfer	 through	 the	 neighboring	 spins	 within	
spheres	 of	 a	 user-chosen	 radius	 (12	Å	 in	 this	 study).	Whereas	 the	 data	 shown	 in	 the	
manuscript	 is	 based	 on	 the	 “three-spin	 approach”,	 no	 significant	 differences	 were	
observed	upon	usage	of	the	“full-matrix	approach”	
In	 order	 to	 further	 correct	 for	 polarization	 loss	 during	 application	 of	 the	 RFDR	 pulse	
train,	 the	diagonal-peak	decay	kii	 values	obtained	 from	 fits	 in	 equation	S2	are	used	as	
fixed	input	values	to	extract	the	cross-relaxation	rates	from	fits	of	the	buildup	intensities	
Iij(t)	and	Iji(t).		

For	description	of	any	magnetization	transfers,	eNORA	uses	the	solution	for	the	Solomon	
equation,	which	for	a	two-spin	system	is:	

            (S5) 

with 

 ,           (S6) 

	

where	σij	 is	the	magnetization	transfer	rate	between	protons	Hi	and	Hj,	and	kii	was	the	
diagonal	decay	rate	of	the	proton	Hi.	

	

For	simulation	of	relay	 transfers,	eNORA2	makes	use	of	 the	 transfer	matrix	describing	
the	time	evolution	of	all	possible	cross	peak	intensities.	

	

𝐼 𝑡 = 𝐼(0) ∙ 𝑒!!!	 	 	 	 	 			(S7)	
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With	

𝑅 =
𝑘!! 𝜎!" … 𝜎!!
𝜎!" 𝑘!! … 𝜎!!
𝜎!! 𝜎!! … 𝑘!!

	 	 	 	 	 (S8)	

	

“Bidirectional”	distance	restraints	were	obtained	using	the	average	of	the	build-up	rate	
σ	of	cross-peaks	Hj	→	Hi	and	Hi	→	Hj	:		

𝜎!"#"$ = 𝑠𝑞𝑟𝑡(𝜎!"𝜎!")	 	 	 	 													(S9)	

The	 first-order	 dipolar	 recoupling	 Hamiltonian	 during	 RFDR	 being	 dependent	 on	 r-3	
terms,	the	buildups	were	associated	with	distances	using	the	equation	

𝑦 = 𝑎 ∙ 𝑟!!.		 	 	 	 	 				(S10)	

The	 computational	 time	 for	 the	 relay	 transfer	 correction	 is	 approximately	 2	 minutes	
using	one	core	of	an	Intel	i7	processor.		

Comparison	of	distance	correlation	functions	
In	 solution	 state	 NMR,	 the	 mechanism	 for	 through-space	 polarization	 transfer	 is	
precisely	known	as	cross	relaxation	according	to	zero-	and	double-quantum	transitions	
and	described	by	the	Solomon	equation.15	

	

𝜎!" =
!!
!!

!
∙ !

!!!

!"
𝜏! ∙ 𝑟!!	 	 	 	 													(S11)	

	

By	contrast,	in	the	case	of	RFDR,	the	practical	consequences	of	polarization	transfer	with	
respect	 to	 the	relation	between	effective	 transfer	 rate	and	 internuclear	distance	 is	not	
fully	understood.	The	effective	Hamiltonian	of	(finite-pulse)	RFDR	scales	inversely	with	
the	 MAS	 rotor	 frequency	 and	 is	 dependent	 on	 various	 other	 parameters.	 Artifacts	
resulting	from	varying	chemical	shift	differences	between	recoupled	nuclei	are	removed	
by	 super-cycles	 (in	 this	 case	 XY-8),	which	 eliminate	 higher-order	 (cross)	 terms	 in	 the	
average	 Hamiltonian.	 From	 a	 theoretical	 analysis	 using	 a	 quantized-field	
approach/average	Hamiltonian	theory,	or	Floquet	 theory,	 transfer	probability	of	RFDR	
in	a	two-spin	system	is	expected	to	scale	with	r-3,	as	a	coherent-driven	type	of	transfer.16	
However,	 for	 multi-spin	 interactions	 in	 praxis	 a	 less	 clear	 dependency,	 effectively	
somewhere	 between	 r-3	 and	 r-6,	 has	 been	 described.17	 As	 the	 correlation	 known	 from	
proton-driven	spin	diffusion18	has	been	experimentally	 found	to	be	proportional	to	r-6,	
we	 were	 interested	 to	 experimentally	 determine	 the	 practically	 most	 relevant	
expression,	assuming	any	potency	between	r-3	and	r-6	(Figure	S2	and	S3)		

	

𝜎!" = 𝑎 ∙ 𝑟!! + 𝑏		 	 	 	 	 						(S12)	
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Figure	 S3	 shows	 uni-	 and	 bidirectional	 eRFDR	 restraints	 analyzed	 using	 an	 adapted	
version	of	the	freely	available	program	eNORA219.	In	order	to	determine	the	most	useful	
correlation	between	buildup	rate	and	distance	we	modified	the	program	by	changing	the	
functions	for	distance	determination	and	relay	transfer	correction	according	to	equation	
S12	with	x	=	3,	4,	5,	and	6.	Interestingly,	the	R2	values	of	the	four	different	correlations	of	
measured	 versus	 X-ray	 distances	 of	 SH3	 show	 very	 similar	 values	 of	 around	 0.9.	
Regarding	 this	 consistency,	 for	 further	 analysis	 we	 still	 used	 the	 correlation	 function	
containing	 r-3,	 since	 this	 represents	 the	 first-order	 average	 Hamiltonian	 for	 dipolar	
recoupling.	

	

	

Figure	S2.	Buildup	rates	obtained	by	eNORA2	as	a	function	of	the	distance	read	out	from	
the	 crystal	 structure	 2NUZ.	A-D:	 The	 plotted	 buildup	 curves	 were	 corrected	 for	 spin	
diffusion	using	the	full-transfer-matrix	approach	considering	an	r-3,	r-4,	r-5,	or	r-6	buildup-
distance	 correlation	 and	 fitted	with	 the	 equation	 shown	 in	 the	 respective	 figure.	 The	
data	 point	 with	 shortest	 amide-amide	 distance	 (shown	 in	 gray)	 stands	 out	 from	 the	
expected	behavior.	For	this	pair	with	unusually	short	distance	(residues	18	and	19),	the	
protons	 are	 at	 the	 tip	 of	 a	 dynamic	 loop.20	 As	 such,	 at	 room	 temperature,	 both	 their	
effective	distance	 is	 expected	 to	be	 increased	and	 their	dipolar	 interaction	 is	 reduced.	
Compare	Figures	S3	and	S10A.	(This	pair	is	omitted	from	the	fit,	also	see	below.)		
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Figure	S3.	Correlations	between	distances	measured	by	eRFDR	and	distances	read	out	
from	 the	 crystal	 structure	 (2NUZ).	 In	 A,	 B,	 C,	 and	 D	 the	 eRFDR	 distances	 were	
determined	with	the	equation	shown	in	the	respective	figure.	In	all	cases	the	measured	
distances	 correlate	 well	 with	 the	 ones	 read	 out	 from	 the	 crystal	 structure.	 Distances	
which	are	greater	 than	5.5	Å	 in	 the	crystal	structure	show	a	 larger	deviation	probably	
caused	 by	 dipolar	 truncation	 and	 increasing	 spin	 diffusion	 contributions.	 The	
comparison	shows	that	the	exponent	of	the	distance	dependency	of	the	RFDR	buildup	is	
less	relevant	than	expected.	Other	errors	have	a	higher	impact	on	the	accuracy.	For	the	
data	 point	 with	 shortest	 amide-amide	 distance,	 which	 stands	 out	 from	 the	 expected	
behavior,	this	is	most	probably	due	to	loop	dynamics	(see	above,	also	compare	Figures	
S2	and	S10).	

	

Validation	of	uniform	fitting	up	to	1	ms	of	mixing	time	
In	order	 to	practically	 apply	 the	 initial-regime	approach	 to	 the	 experimental	 data,	 the	
transfers	 were	 grouped	 into	 “fast	 buildup”,	 in	 which	 intensities	 were	 fitted	 till	 1	 ms	
mixing	 time,	and	“slow-buildup”,	which	were	 fitted	 till	2	ms	mixing	 time,	based	on	 the	
time	 point	 when	 the	 maximum	 intensity	 is	 reached.	 For	 purely	 automated	 data	
processing	 we	 also	 verified	 if	 buildups	 could	 be	 fitted	 absolutely	 uniformly	 (without	
manual	 interference),	 therefore	we	 fitted	all	 cross	peaks	only	 till	1	ms	mixing	 time.	 In	
fact,	this	only	shows	minor	differences	regarding	the	determined	distances	(see	Figures	
S4	and	S8)	and	at	the	same	time	demonstrates	that	RFDR	buildups	consisting	of	4	to	5	
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spectra	(here	with	a	total	experimental	time	of	around	80	hours)	are	fully	sufficient	to	
determine	eRFDR	restraints.	

	

	

	

Figure	S4.	 Validation	 of	 uniformly	 fitting	 up	 to	 1	ms	 of	mixing	 time.	A)	 Bidirectional	
(red)	and	unidirectional	(gray)	eRFDR	restraints,	determined	by	fitting	the	cross	peaks	
of	fast	buildup	with	a	fit	up	to	1ms	and	those	with	slower	buildup	with	a	fit	up	to	2	ms	of	
mixing	time.	B)	eRFDR	restraints	determined	by	fitting	all	peaks	uniformly	up	to	1	ms	of	
mixing	time.		
	

Verification	of	the	applied	analytical	routines	using	powder-averaged	numerical	
simulations	
In	the	course	of	verifying	the	used	data	processing	approach,	we	run	powder-averaged	
2-	and	3-spin	simulations	and	used	the	simulated	buildup	and	diagonal-decay	curves	as	
an	 input	 for	 the	 modified	 eNORA2	 program.	 We	 used	 an	 in-house	 written	 MATLAB	
script	including	the	following	propagators:	
	

𝑈! = 𝑒𝑥𝑝 −𝑖 𝑑𝑡!.!!!!!.!!!
! 1.5𝜔! 𝑡 𝐼!!𝐼!!  	 	 	 			(S13a)	

𝑈! = 𝑇𝑒𝑥𝑝 −𝑖 𝑑𝑡!.!!!!!.!!!
!.!!!!!.!!!

1.5𝜔! 𝑡 𝐼!!𝐼!! + 𝜔!" 𝐼!! + 𝐼!! 	 						(S13b)	

𝑈! = 𝑒𝑥𝑝 −𝑖 𝑑𝑡!!
!.!!!!!.!!!

1.5𝜔! 𝑡 𝐼!!𝐼!!  	 	 	 				(S13c)	

𝑈! = 𝑇𝑒𝑥𝑝 −𝑖 𝑑𝑡!.!!!!!.!!!
!.!!!!!.!!!

1.5𝜔! 𝑡 𝐼!!𝐼!! + 𝜔!" 𝐼!! + 𝐼!! 				 								(S13d)	

𝑈!"#! = 𝑈! ∙ 𝑈! ∙ 𝑈! ∙ 𝑈! ∙ 𝑈! ∙ 𝑈! 	 	 	 																				(S13e)	

	

where	𝜔! 𝑡 	is	 the	dipolar	 function21,22,	dependent	on	 time,	 spinning	 speed,	 and	Euler	
angles7,	TR	is	the	rotor	period,		𝑡!	is	the	width	of	the	π	–	pulses,	and	𝑇	is	the	time-ordered	
Dyson	operator.		
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U2	and	U4	are	corresponding	to	the	x-	and	y-π	pulses	of	an	XY-8	phase	cycle,	respectively.	
A	 Dyson-dependent	 propagator	 can	 be	 departed	 in	 a	 series	 of	N	 Dyson-independent	
propagators23	as	follows:	

	

𝑈 = 𝑇𝑒𝑥𝑝 −𝑖 𝑑𝑡𝐻 𝑡!
! ≈ 𝑒!! !"# !!

!!! !/! … 𝑒!! !"# !!!/!
!/! 𝑒!! !"# !!/!

! 	 	 	(S14)	

	

Figure	S5	 shows	 exemplary	 comparisons	 of	 the	 simulated	 buildup	 curve	 with	 the	
experimental	data	 from	the	SH3	domain.	The	shape	of	 the	simulated	curves	 is	 in	good	
agreement	with	the	experimental	values,	however,	with	this	direct	fitting	(without	any	
correction)	the	fitted	distance	is	significantly	off	in	each	case.	

	

	

Figure	S5.	Comparison	of	experimental	data	(red	stars)	with	the	exact	numerical	2-spin	
model	solution	(black	 line),	directly	 fitting	the	data	without	correction.	RFDR	buildups	
for	 the	 exemplary	 distances:	 A)	 Leucines	 8	 and	 33,	 with	 a	 distance	 for	 the	 best-
correlating	 simulation	 of	 3.6	 Å	 and	 a	 distance	 read	 out	 from	 the	 crystal	 structure	 of	
4.6	Å.	B)	Gln	16	and	Met	25,	with	a	distance	for	the	best-correlating	simulation	of	3.6	Å	
and	a	distance	read	out	from	the	crystal	structure	of	5.1	Å.	C)	Gln	16	and	Lys	27,	with	a	
distance	 for	 the	best-correlating	 simulation	of	 4.6	Å	 and	 a	 distance	 read	out	 from	 the	
crystal	structure	of	8.4	Å.	Bottom	panels	depict	RMSDs	between	experimental	data	and	
simulated	curve	as	a	function	of	simulation	distance.	

	

The	 best-correlating	 simulation	 distances	 are	 significantly	 shorter	 than	 the	 distances	
read	out	from	the	crystal	structure	2NUZ.	This	deviation,	which	cannot	be	accounted	for	
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by	 simple	 scaling	 using	 a	 constant	 factor,	 underlines	 that	 an	 uncorrected	 2-spin	
simulation	 is	 not	 suitable	 for	 exact	 distance	 determination.	 In	 order	 to	 confirm	 the	
influence	of	 spin	diffusion	via	 third	spins,	we	performed	3-spin	simulations.	Figure	S6	
shows	the	simulation	of	Leu	8	–	Leu	33,	the	same	pair	of	nuclei	also	used	in	Figure	S5A.	
In	 fact,	 the	 deviation	 of	 the	 simulated	 distance	 from	 the	 crystal	 structure	 distance	 is	
reduced,	 demonstrating	 the	 significance	 of	 spin	 diffusion	 via	 third	 spins.	 Simulations	
involving	all	spins	playing	a	role	in	the	polarization	transfers,	also	involving	refinement	
cycles	that	are	potentially	necessary,	are	not	suitable	due	to	computational	effort.	This	
makes	the	simplified	analytical	solution	presented	in	this	work	more	favorable.		

	

	

Figure	S6.	Powder	averaged	3-spin	simulation	(black	line)	and	experimental	intensities	
(red	stars)	of	the	buildup	Leu	8	–	Leu	33.	The	distance	of	the	third	spin	(to	either	of	the	
two	 others)	 was	 set	 to	 4.6	 Å.	 The	 minimum	 RMSD	 regarding	 simulated	 curve	 and	
experimental	data	changed	from	3.6	Å	in	case	of	the	2-spin	simulation	to	3.9	Å,	which	is	
closer	to	the	crystal	structure	distance	of	4.6	Å.	

	

For	verification	of	the	presented	analytical	approach	with	a	simplified	buildup	function,	
we	conducted	2-spin	model	simulations	as	described	above	with	inter-nuclear	distances	
from	2	to	8	Å,	spinning	speed	of	55.555	kHz,	and	a	Larmor	frequency	of	700	MHz.	The	
resulting	buildup	curves	(partly	shown	in	Figure	2B	main	text)	were	fitted	up	to	the	first	
maximum	using	a	linear	(Figure	S7A),	a	trigonometric	(Figure	S7B),	and	an	exponential	
function	 (Figure	 S7C).	 The	 resulting	 rates	 were	 fitted	 using	 equation	 S15.	 All	 fits	
correlate	 nearly	 perfectly	 with	 an	 R2	 value	 of	 above	 0.99,	 meaning	 that	 all	 3	 fitting	
procedures	would	be	practically	suitable	to	determine	polarization	buildup	rates	in	the	
initial	 regime.	 Such	 fitting	 of	 the	 initial	 regime	 only	 has	 been	 used	 in	 other	 contexts	
previously.24	

	

𝜎!" = 𝑎 ∙ 𝑟!!	 	 	 	 	 	 		(S15)	
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To	examine	further	the	applicability	of	the	combined	exponential	fitting	routines	used	in	
eNORA2,	 simulated	cross-peak	buildup	and	diagonal-decay	 intensity	values	were	used	
as	 an	 input	 for	 the	 eNORA2	 program,	 modified	 as	 described	 above.	 The	 distances	
determined	using	eNORA2	and	the	distances	set	for	creating	the	simulated	input	show	a	
good	 correlation	 (Figure	 S7D).	 According	 to	 the	 results	 of	 the	 simulations,	 fitting	 the	
experimental	intensities	exponentially	represents	a	sufficient	approximation.			

	

	

	

Figure	 S7.	 Comparison	 of	 different	 fitting	 routines	 to	 determine	 the	 polarization	
buildup	 rates.	 A)	 Linearly	 fitted	 buildup	 rates.	 B)	 Buildup	 rates	 as	 the	 inverse	
frequencies	 of	 a	 trigonometric	 function.	 C)	 Exponentially	 fitted	 buildup	 rates.	 In	A-C	
simulations	 (compare	main	 text	 Figure	 2B)	 according	 to	 inter-nuclear	 distances	 from	
2	Å	up	to	8	Å	were	fitted	till	the	first	maximum	and	correlated	using	equation	S15	with	a	
resulting	R2	value	above	0.99	in	all	cases.	D)	Verification	of	the	modified	(exponential)	
fitting	procedure	of	eNORA2	using	simulated	buildup	and	decay	curves.	Distances	from	
2	 to	6	Å	were	used	as	 the	 “experimental”	 input	 for	 the	program	eNORA2	to	verify	 the	
fitting	 procedure.	Determined	distances	 and	distances	 set	 for	 the	 simulation	 correlate	
linearly.	
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Figure	S8.	Fitting	of	the	simulated	buildups	uniform	up	to	1	ms	of	mixing	time	only.	A)	
Exponential	buildup	rates	according	to	Figure	S7C,	fitted	uniformly	up	to	1	ms	of	mixing	
time.	B)	Verification	of	 the	 fitting	procedure	 in	eNORA2.	Simulated	buildup	and	decay	
curves	 up	 to	 1	ms	 of	 mixing	 time,	 for	 distances	 from	 2	 to	 6	Å,	 were	 used	 as	
“experimental”	input	for	the	program	eNORA2,	according	to	Figure	S7D.	

	

Modifications	of	eNORA	for	solid-state	NMR	RFDR	
	
With	the	data	processing	strategies	for	solid-state	NMR	demonstrated	to	be	applicable	in	
the	 described	 way,	 it	 is	 possible	 to	 make	 use	 of	 the	 eNORA219	 program,	 which	 was	
originally	written	for	liquid-state	eNOE,	if	modified	for	solid-state	NMR	as	described	in	
the	following.	The	program	allows	to	generate	eRFDR	restraints	in	a	fast	and	convenient	
manner.	 Differences	 between	 the	 exact-NOE	 approach	 and	 the	 exact-RFDR	 approach	
concern	 the	 buildup	 behavior	 and	 the	 correlation	 of	 polarization	 transfer	 with	
internuclear	 distance.	 For	 the	 buildup	 behavior	 no	 simple	 analytical	 function	
(approximated	 rather	 via	 more	 complicated	 Bessel-functions	 sometimes)	 is	 known.	
However,	we	 showed	 that	 this	obstacle	 can	be	 circumvented	by	assessing	 the	 relative	
magnetization	 transfer	 rate	 using	 a	mono-exponential	 buildup	 function	 followed	 by	 a	
calibration.	 This	 holds	 perfectly	 true	 only	 as	 long	 as	 all	 buildups	 are	 fitted	 up	 to	 a	
comparable	(relative)	 time	point,	 like	 the	 first	maximum	of	 the	buildup.	 If	all	buildups	
are	fitted	equally	up	to	a	fixed	time,	for	example	1	ms,	discrepancies	between	the	fitting	
function	and	the	nature	of	the	buildup	do	invoke	errors.	However,	as	shown	in	Fig.	S8,	
for	buildups	corresponding	 to	 internuclear	distances	 in	 the	 range	of	2-6	Å,	 in	practice	
these	 errors	 are	 reasonably	 low.	Regarding	 the	 scaling	between	buildup	and	distance,	
the	dipolar	recoupling	in	RFDR	follows	a	cubic	correlation	when	exclusively	taking	the	
first-order	Hamiltonian	 into	 account.	 By	 including	 higher-order	 terms,	 the	 correlation	
gets	less	clean.	Additionally,	using	finite-pulse	RFDR,	also	mechanisms	contribute	to	the	
polarization	 transfer	 that	 are	 different	 from	 dipolar	 recoupling.	 Consequently,	 our	
experimental	 data	 seems	 to	 obey	 a	 correlation	 between	 r-4	 and	 r-5.	 However,	 these	
differences	have	only	a	small	impact	on	the	accuracy	of	the	determined	distances,	such	
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that	a	cubic	correlation	as	predicted	by	the	first-order	Hamiltonian	was	chosen	as	a	good	
approximation.		
	

The	 code	 of	 eNORA2	 was	 modified	 regarding	 the	 equations	 for	 the	 spin	 diffusion	
correction	 and	 conversion	 of	 buildup	 rates	 into	 distances,	 which	 can	 be	 found	 in	 the	
following	eNORA2	MATLAB	scripts:	

eNORA2/eNOEprogram/shared/R.m,		

eNORA2/eNOEprogram/shared/S.m,	

eNORA2/eNOEprogram/shared/sigma2distance.m.		

Since	the	initial	parameters	for	converging	the	fit	are	set	for	NOE-buildup,	which	covers	
hundreds	of	ms,	 the	values	of	 the	applied	RFDR	mixing	 times	 should	be	multiplied	by	
1000.	 This	 factor	 is	 equated	 by	 the	 calibration	 using	 the	 input	 parameter	 correlation	
time	τc		in	the	master	script.	

	

Note:	

As	the	distance	dependency	scaling	exponent	does	not	largely	influence	the	accuracy	of	
the	distances	obtained	(as	shown	in	Figures	S2	and	S3),	it	is	also	possible	to	successfully	
use	a	completely	unmodified	version	of	eNORA2	(assuming	an	r-6	dependency),	which	is	
kindly	provided	at	the	homepage	of	Prof.	Dr.	Beat	Vögeli.	

	

	

eRFDR	distance	restraints	recorded	for	the	29kDa	human	carbonic	anhydrase	II	
The	 triply	 labeled,	 100%	 back-exchanged	 sample	 of	 human	 carbonic	 anhydrase	 II	
(hCAII)	 was	 prepared	 as	 described	 earlier25.	 NMR	 experiments	 were	 carried	 out	 as	
described	 in	 the	 Experimental	 Section.	 From	 the	 RFDR-spectra	 176	 through-space	
connections	 were	 assigned	 unambiguously.	 43	 of	 these	 through-space	 connections	
contain	 one	 unambiguous	 pair	 of	 cross-	 and	 diagonal	 peak,	 leading	 to	 unidirectional	
eRFDR	 restraints	 (in	 Figure	 S9A:	 orange	 connections,	 in	 B:	 orange	 cycles),	 and	 33	
contain	2	pairs	of	unambiguous	cross-	and	diagonal	peaks,	yielding	bidirectional	eRFDR	
restraints	 (in	Figure	S9A:	red	connections,	 in	B:	 red	cycles).	The	determined	distances	
and	the	distance	read	out	from	the	crystal	structure	(2CBA)	are	in	very	good	agreement,	
with	an	RMSD	of	0.29	Å	regarding	bidirectional	restraints	shorter	than	5.5	Å.	
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Figure	 S9.	 A)	 Bidirectional	 (red)	 and	 unidirectional	 (orange)	 eRFDR	 as	 well	 as	
conventional	 (gray)	 RFDR	 restraints	 depicted	 on	 the	 X-ray	 structure	 of	 carbonic	
anhydrase	II.	B)	Correlation	between	bidirectional	eRFDR	restraints	(shown	in	red)	or	
unidirectional	 eRFDR	 restraints	 (shown	 in	 light	 orange)	 and	 the	 corresponding	
distances	read	out	from	the	X-ray	structure.	The	buildup	curves	were	fitted	uniformly	up	
to	1	ms	of	mixing	time.	Distances	 larger	than	5.5	Å	show	larger	deviation	due	to	error	
caused	 by	 dipolar	 truncation	 and	 strong	 spin	 diffusion.	 The	 shortest	 distance	
corresponding	 to	 HN37->HN38	 shows	 a	 larger	 deviation	 presumably	 caused	 by	
dynamics	(compare	Figure	S10B).	

	

Comment	to	amide	proton	distances	of	residue	18	to	19	(SH3)	and	37	to	38	(hCAII)	
according	to	the	X-ray	structures	2NUZ	and	2CBA	
	

	

Figure	S10.	Depiction	of	 the	amide	protons	of	A)	 residue	18	and	19	 in	 the	SH3	X-ray	
structure	2NUZ	and	B)	37	and	38	in	the	hCAII	X-ray	structure	2CBA	(The	distances	are	
as	small	as	the	sum	of	the	two	van-der-Waals	radii,	represented	by	spheres).	Apart	from	
uncertainties	 in	 the	 reconstruction	 of	 proton	 locations	 from	 (heteronuclear-only)	
electron	densities	generally,	both	the	distal	loop	in	A	as	well	as	the	respective	loop	in	B	
are	also	known	to	undergo	motions	on	different	 timescales2,20,26,27.	Both	effects	will	be	
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sensed	within	the	RFDR	experiment,	rendering	the	effective	distance	larger	than	what	is	
suggested	by	the	reference	distance	determined	from	2NUZ	and	2CBA	crystal	structures.	

Iterative	structural	improvement	using	the	eRFDR	approach	
	

Figure	S11	shows	that	in	case	of	deuterated	and	100%	backexchanged	SH3,	a	standard	
solid-state	NMR	 structure	 is	 already	 sufficient	 to	 successfully	 perform	 the	 corrections	
for	 relayed	 magnetization	 transfer	 via	 third	 spins.	 An	 improved	 structure	 using	 the	
eRFDR	 approach	 can	 be	 obtained	 in	 the	 second	 step.	 The	 structural	 precision	 and	
accuracy	 are	 equal	 to	 those	 of	 the	 eRFDR	 structure	 obtained	 when	 using	 the	 crystal	
structure	in	terms	of	correction	for	relayed	transfer	via	third	spins.	

	

Figure	S11:		Structure	determination	using	the	eRFDR	approach	starting	from	standard	
RFDR	restraints.	A)	Structural	ensemble	of	the	10	lowest	energy	structures	determined	
by	conventional	RFDR	upper	 limit	 restraints	depicted	 in	gray,	 aligned	with	 the	crystal	
structure	 2NUZ	 shown	 in	 red.	 B)	 Distance	 restraints	 obtained	 by	 using	 the	 eRFDR	
approach	with	the	average	structure	of	A	employed	for	spin	diffusion	correction	(in	this	
terms	spin	diffusion	means	relayed	magnetization	transfer	via	third	spins)	plotted	over	
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the	 corresponding	 internuclear	 distances	 of	 the	 crystal	 structure	 2NUZ.	 C)	 Distance	
restraints	obtained	by	using	the	eRFDR	approach	plotted	over	the	internuclear	distances	
of	the	average	structure	of	the	ensemble	in	A.	D)	Structural	ensemble	of	the	10	lowest	
energy	 structures	 determined	 by	 the	 eRFDR-restraints	 obtained	 by	 using	 the	 average	
structure	of	A	for	spin	diffusion	correction.		E)	Distance	restraints	obtained	by	using	the	
average	 structure	 of	 D	 for	 relay	 transfer	 correction	 plotted	 over	 the	 corresponding	
internuclear	distances	of	the	crystal	structure	2NUZ.	F)	Distance	restraints	obtained	by	
using	 the	 eRFDR	 approach	 plotted	 over	 the	 internuclear	 distances	 of	 the	 average	
structure	of	the	ensemble	in	D.	G-I)	Additional	refinement	iteration	just	as	described	for	
E-F.	 J)	 Structural	 ensemble	 of	 the	 10	 lowest-energy	 structures	 obtained	 by	 using	 the	
eRFDR	approach	employing	the	crystal	structure	2NUZ	for	relay	transfer	correction.	K)	
Distance	 restraints	 obtained	 by	 using	 the	 eRFDR	 approach	with	 the	 crystal	 structure	
employed	for	relay	transfer	correction.	
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