Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2019

Nickel-Catalysed Dehydrogenative Coupling of Aromatic Diamines with Alcohols: Selective Synthesis of Substituted Benzimidazoles and Quinoxalines

Atanu Bera, Motahar Sk, Khushboo Singh and Debasis Banerjee*

Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India. E-mail: <u>dbane.fcy@iitr.ac.in</u>

Table of Contents

General Experimental Details	S2
General Experimental Procedure	S2
Optimisation studies for the synthesis of benzimidazoles	S 3
Analytical Data	S12
References	S 18
¹ H NMR and ¹³ C NMR Spectra for selected compounds	S 19

[1.1] General Experimental Details:

All solvents and reagents were used, as received from the suppliers. TLC was performed on Merck Kiesel gel 60, GF₂₅₄ plates with the layer thickness of 0.25 mm. Column chromatography was performed on silica gel (100-200 mesh) using a gradient of ethyl acetate and hexane as mobile phase. ¹H NMR spectral data were collected at, 400 MHz (JEOL), 500 MHz (Bruker) and ¹³C NMR were recorded at 100 MHz. ¹H NMR spectral data are given as chemical shifts in ppm followed by multiplicity (s- singlet; d- doublet; t- triplet; q- quartet; m-multiplet), number of protons and coupling constants. ¹³C NMR chemical shifts are expressed in ppm. Elemental analysis data were recorded in Vario Micro Cube. GC-MS were recorded using Agilent GC Mass Spectrometer. All the reactions were performed in a closed system using Schlenk tube. All nickel salts were purchased from Sigma Aldrich. Nickel(II) chloride (Assay- 98%; CAS Number 13462-88-9; EC Number 236-665-0; Pack Size- No 217891-10G). Potassium *tert*-butoxide was purchased from Avra Synthesis Pvt. Ltd., India. (Purity-98%, CAS No: 865-47-4, Catalog No- ASP2012).

[1.2] General Procedure for Nickel-Catalysed Synthesis of substituted Benzimidazoles and Quinoxaline *via* Dehydrogenative Coupling of Aromatic diamines and Alcohols: <u>Procedure A:</u>

In a 15 mL oven dried Schlenk tube, *o*-phenylenediamine (0.5 mmol), *t*-BuOK (0.5 mmol), NiCl₂ (2.5 mol%), Phen (3.0 mol%), and alcohols (1.0 mmol) were added followed by toluene 2.0 mL under an atmosphere of N_2 and the reaction mixture was heated at 140 °C for 24 h in a closed system. The reaction mixture was cooled to room temperature and 3.0 mL of ethyl acetate was added and concentrated *in vacuo*. The residue was purified by column chromatography using a gradient of hexane and ethyl acetate (eluent system) to afford the pure product.

Procedure B:

In a 15 mL oven dried Schlenk tube, *o*-phenylenediamine (0.5 mmol), *t*-BuOK (0.5 mmol), NiCl₂ (2.5 mol%), Phen (3.0 mol%) and alcohols (0.5 mmol) were added followed by toluene 2.0 mL under an atmosphere of N₂ and the reaction mixture was heated at 140 °C for 24 h in a closed system. The reaction mixture was cooled to room temperature and 3.0 mL of ethyl acetate was added and concentrated *in vacuo*. The residue was purified by column

chromatography using a gradient of hexane and ethyl acetate (eluent system) to afford the pure product.

Procedure C:

In a 15 mL oven dried Schlenk tube, *o*-phenylenediamine (0.5 mmol), *t*-BuOK (1.0 mmol), NiCl₂ (6.0 mol%), Phen (12.0 mol%) and alcohols (2.5 mmol) were added followed by toluene 2.0 mL under an atmosphere of N₂ and the reaction mixture was heated at 140 °C for 36 h in a closed system. The reaction mixture was cooled to room temperature and 3.0 mL of ethyl acetate was added and concentrated *in vacuo*. The residue was purified by column chromatography using a gradient of hexane and ethyl acetate (eluent system) to afford the pure product.

[1.3] Optimisation studies for the synthesis of Benzimidazole from diamine and benzyl alcohol:

Table S1: Screening of catalyst ^a

Entry	Ni-Catalyst	GC-MS Conversion 3a (%)	GC-MS Conversion 4a (%)
1	NiBr ₂	65	5
2	NiCl ₂	98 (91%) ^b	2
2	Ni(acac) ₂	56	11
3	NiCl ₂ (DME)	54	6
5	No Catalyst	21	0

Reaction condition: [a] *o*-phenylenediamine **1a** (0.5 mmol), benzyl alcohol **2a** (1.0 mmol), **Ni Cat. (2.5 mol%)**, phen (3.0 mol%), *t*-BuOK (0.5 mmol), toluene (2.0 mL), Schlenk tube under N₂ atmosphere, 140 °C oil bath, 24 h reaction time. [b] Isolated yield.

Table S2: Screening of ligands^a

Entry	Ligand	GC-MS Conversion 3a (%)	GC-MS Conversion 4a (%)
1		98 (91%) ^b	2
2		57	20
3		76	12
4		55	6
5		33	5
6	No Ligand	35	4

Reaction condition: [a] *o*-phenylenediamine **1a** (0.5 mmol), benzyl alcohol **2a** (1.0 mmol), NiCl₂ (2.5 mol%), **ligand (3.0 mol%),** *t*-BuOK (0.5 mmol), toluene (2.0 mL), Schlenk tube under N₂ atmosphere, 140 °C oil bath, 24 h reaction time. [b] Isolated yield.

Table S3: Screening of base^a

Entry	Base	GC-MS Conversion 3a (%)	GC-MS Conversion 4a (%)
1	t-BuOK	98(91%) ^b	2
2	t-BuONa	75	9
3	K ₃ PO ₄	0	2
4	K ₂ CO ₃	0	3
5	Cs ₂ CO ₃	0	43

Reaction condition: [a] *o*-phenylenediamine **1a** (0.5 mmol), benzyl alcohol **2a** (1.0 mmol), NiCl₂ (2.5 mol%), phen (3.0 mol%), **base (0.5 mmol)**, toluene (2.0 mL), Schlenk tube under N₂ atmosphere, 140 °C oil bath, 24 h reaction time. [b] Isolated yield.

Table S4: Screening of solvents^a

Entry	Solvent	GC-MS Conversion 3a (%)	GC-MS Conversion 4a (%)
1	Toluene	98 (91%) ^b	2
2	P-Xylene	30	2
3	1,4-Dioxane	75	10
4	DMA	0	0
5	n-BuOH	2	0
6	DMF	4	2

Reaction condition: [a] *o*-phenylenediamine **1a** (0.5 mmol), benzyl alcohol **2a** (1.0 mmol), NiCl₂ (2.5 mol%), phen (3.0 mol%), *t*-BuOK (0.5 mmol), **solvent (2.0 mL)**, Schlenk tube under N₂ atmosphere, 140 °C oil bath, 24 h reaction time. [b] Isolated yield.

Table S5: Screening of base equivalents ^a

Entry	Base Equivalent	GC-MS Conversion 3a (%)	GC-MS Conversion 4a (%)
1	t-BuOK (1.0 equiv.)	98 (91%) ^b	2
2	<i>t</i> -BuOK (0.75 equiv.)	75	15
3	<i>t</i> -BuOK (0.50 equiv.)	50	9
4	<i>t</i> -BuOK (0.25 equiv.)	40	2
5	No base	0	0

Reaction condition: [a] *o*-phenylenediamine **1a** (0.5 mmol), Benzyl alcohol **2a** (1.0 mmol), NiCl₂ (2.5 mol%), phen (3.0 mol%), *t*-BuOK (X equiv.), Toluene (2.0 mL), Schlenk tube under N₂ atmosphere, 140 °C oil bath, 24 h reaction time. [b] Isolated yield.

Table S6: Screening of temperature^a

Entry	Temp.	GC-MS Conversion 3a (%)	GC-MS Conversion 4a (%)
1	140°C	98 (91%) ^b	2
2	130°C	85	5
3	120°C	30	4

Reaction condition: [a] *o*-phenylenediamine **1a** (0.5 mmol), benzyl alcohol **2a** (1.0 mmol), NiCl₂ (2.5 mol%), phen (3.0 mol%), *t*-BuOK (1.0 equiv.), toluene (2.0 mL), Schlenk tube under N₂ atmosphere, temp. (X $^{\circ}$ C) oil bath, 24 h reaction time. [b] Isolated yield.

[1.4] Synthesis of Quinoxaline from Diamine with ethylene glycol:

Table S7: Screening of Bases^a

S. No	Base	GC-MS Conversion (%)
1	<i>t</i> -BuONa	22
2	t-BuOK	17%
3	КОН	23%

Reaction Conditions: [a] *o*-phenylenediamine **1a** (0.25 mmol), ethylene glycol **5a** (1.25 mmol), NiCl₂ (6.0 mol %), Phen (12 mol %), **Base (0.50 mmol)**, toluene (2.0 mL), Pressure tube under N₂ atmosphere, 150 $^{\circ}$ C oil bath, 36 h reaction time.

Table S8: Screening of Catalysts^a

S. No	Base	GC-MS Conversion (%)
1	NiCl ₂	20%
2	NiBr ₂	26%
3	NiCl ₂ .DME	11%
4	Ni(acac) ₂	21%

Reaction Conditions: [a] *o*-phenylenediamine **1a** (0.25 mmol), ethylene glycol **5a** (1.25 mmol), **Ni-Catalyst (6.0 mol %)**, Phen (12 mol %), KOH (0.50 mmol), toluene (2.0 mL), Pressure tube under N₂ atmosphere, 150 $^{\circ}$ C oil bath, 36 h reaction time.

 Table S9: Screening of Solvents^a

Reaction Conditions: [a] *o*-phenylenediamine **1a** (0.25 mmol), ethylene glycol **5a** (1.25 mmol), NiBr₂ (6.0 mol %), Phen (12 mol %), KOH (0.50 mmol), **solvent (2.0 mL)**, Pressure tube under N₂ atmosphere, 150 $^{\circ}$ C oil bath, 36 h reaction time.

Table S10: Screening of Reaction temperature^a

Reaction Conditions: [a] *o*-phenylenediamine **1a** (0.25 mmol), ethylene glycol **5a** ($\overline{1.25 \text{ mmol}}$), NiBr₂ (6.0 mol %), Phen (12 mol %), KOH (0.50 mmol), toluene (2.0 mL), Pressure tube under N₂ atmosphere, **X** •**C** oil bath, 36 h reaction time.

[1.5] Table S11: Substrates with poor reactivity for 2-substituted benzimidazole reaction:

Reaction condition: [a] o-phenylenediamine **1a** (0.5 mmol), benzyl alcohol **2a** (0.5 mmol), NiCl₂ (2.5 mol %), phen (3.0 mol %), t-BuOK (1.0 equiv.), toluene (2.0 mL), Schlenk tube under N₂ atmosphere, 140 ° C in oil bath, 24 h reaction time. [b] Isolated yield.

[1.6] Deuterium Incorporation Experiments:

Scheme S1:

Reaction Conditions: **1a** (0.10 mmol), **2a-d1** (0.20 mmol), NiCl₂ (0.0025 mmol), Phen (0.0030 mmol), *t*-BuOK (0.10 mmol), toluene (1.0 mL) in a pressure tube under N₂ atmosphere at 140 $^{\circ}$ C in an oil bath for 24 h reaction time.

Conversion was calculated by ¹H NMR integration value:

		Deuterium incorporation in H position
Signal δ ppm	5.44 [s, -CH ₂ , (2H)]	5.45(2H)
Integral value	2.0	0.20
Calculated ratio		$(2-0.20) \times 100 = 180$
		Deuterium incorporation in per H =
		180/2 = 90%

Reaction Conditions: 1a (0.10 mmol), **2a-d2** (0.20 mmol), NiCl₂ (0.0025 mmol), Phen (0.0030 mmol), *t*-BuOK (0.10 mmol), toluene (1.0 mL) in a pressure tube under N₂ atmosphere at 140 $^{\circ}$ C in an oil bath for 24 h reaction time.

[1.7] Scheme S3: Plausible Mechanism

Initially, Ni-catalysed dehydrogenation of primary alcohol gave aldehyde **2'** followed by condensation with **1a** to imine intermediate **A**, which subsequently undergoes cyclisation and dehydrogenation to product **4** *via* intermediate **B**. It is noteworthy to mention that, in the GC-MS analysis of the crude reaction mixture we detected intermediate **2'** as well as intermediate **A**. Another possibility is that, intermediate **B** could couple with **2'** to intermediate **C**, which subsequently undergoes intra-molecular cyclisation and rearrange to 1,2-disubstituted imidazoles **3**.

[1.8] Quantitative determination of hydrogen gas produced in the reaction of 3a.

In a 10 mL oven dried Schlenk tube, o-Phenylenediamine (0.5 mmol), NiCl₂ (2.5 mol%), Phen (3.0 mol%), benzyl alcohol (1.0 mmol) and *t*-BuOK (0.5 mmol), were added followed by toluene 2.0 mL and connected to the gas burette as shown in **Fig. 1**. Then the reaction mixture was heated at 140 °C until the production of hydrogen gas ceased. The procedure was repeated three times to get concordant reading.

Fig. 1

Total volume of water displaced, V = 0.0155 L

Vapor pressure of water at 298K, $P_{H2O} = 23.7695$ Torr

Atmospheric pressure at 298K, Patm = 758.3124 Torr

Pressure of H₂ gas, $P_{H2} = P_{atm} - P_{H2O} = (758.3124 - 23.7695)$ Torr = 734.5429 Torr $P_{H2} * V = nH_2 * R*T$ $nH_2 = P_{H2} * V / R*T$ = 734.5429 Torr * 0.0155 L / 62.3635 L Torr K⁻¹ mol⁻¹ * 298K = 0.000612 mol ≈ 0.61 mmol

Quantitative determination of hydrogen gas produced in the reaction of 4a.

In a 10 mL oven dried Schlenk tube, o-Phenylenediamine (0.5 mmol), NiCl₂ (2.5 mol%), Phen (3.0 mol%), benzyl alcohol (0.5 mmol) and *t*-BuOK (0.5 mmol), were added followed by toluene 2.0 mL and connected to the gas burette as shown in **Fig. 1**. Then the reaction mixture was heated at 140 °C until the production of hydrogen gas ceased. The procedure was repeated three times to get concordant reading.

Total volume of water displaced, V = 0.0160 L

Vapour pressure of water at 298K, $P_{H2O} = 23.7695$ Torr

Atmospheric pressure at 298K, P_{atm} = 758.3124 Torr

Pressure of H₂ gas, $P_{H2} = P_{atm} - P_{H2O} = (758.3124 - 23.7695)$ Torr = 734.5429 Torr

 $P_{H2} * V = nH_2 * R * T$

 $nH_2 = P_{H2} * V / R * T$

= 734.5429 Torr * 0.0160 L / 62.3635 L Torr K^{-1} mol⁻¹ * 298K

= 0.000632 mol

 $\approx 0.63 \text{ mmol}$

[1.9] Spectroscopic and analytical data:

1-benzyl-2-phenyl-1*H***-benzo**[*d*]**imidazole** (**3a**)¹: Following the general procedure A, the title compound was isolated as a white solid using silica-gel column chromatography eluting with 15% ethyl acetate in hexane. (Yield: 91%, 129 mg); mp 132-133 ^oC; ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.86 (m, 1H), 7.70 – 7.67 (m, 2H), 7.47 – 7.42 (m, 3H), 7.34 – 7.25 (m, 4H), 7.23 – 7.19

(m, 2H), 7.09 (d, J = 6.7 Hz, 2H), 5.44 (s, 2H). ¹³C {1H} NMR (100 MHz, CDCl₃) δ 154.1, 143.1, 136.3, 136.0, 129.9, 129.2, 129.0, 128.7, 127.7, 125.9, 123.0, 122.6, 119.9, 110.5, 48.3.

1-(4-ethylbenzyl)-2-(4-ethylphenyl)-1H-benzo[d]imidazole (3b)²: Following the general

procedure A, the title compound was isolated as a white solid using silicagel column chromatography eluting with 15% ethyl acetate in hexane. (Yield: 72%, 122 mg); mp 148-149 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 8.2 Hz, 2H), 7.30 – 7.25 (m, 3H), 7.21 –

7.18 (m, 2H), 7.15 (d, J = 8.1 Hz, 2H), 7.02 (d, J = 8.1 Hz, 2H), 5.42 (s, 2H), 2.72 – 2.60 (m, 4H), 1.27 – 1.20 (m, 6H). ¹³C{1H} NMR (100 MHz, CDCl₃) δ 154.3, 146.2, 143.7, 143.0, 136.0, 133.6, 129.2, 128.5, 128.2, 127.2, 125.9, 122.8, 122.5, 119.7, 110.5, 48.1, 28.7, 28.4, 15.4, 15.3.

1-(4-isopropylbenzyl)-2-(4-isopropylphenyl)-1H-benzo[d]imidazole (3c)³: Following the

general procedure A, the title compound was isolated as a white solid using silica-gel column chromatography eluting with 15% ethyl acetate in hexane. (Yield: 70%, 128 mg); mp 170-172 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.0 Hz, 1H), 7.65 – 7.62 (m, 2H), 7.31 – 7.25 (m,

3H), 7.21 – 7.16 (m, 4H), 7.03 (d, J = 8.3 Hz, 2H), 5.43 (s, 2H), 2.98 – 2.85 (m, 2H), 1.24 (dd, J = 13.9, 6.9 Hz, 12H). ¹³C{1H} NMR (125 MHz, CDCl₃) δ 154.4, 151.0, 148.5, 143.3, 136.2, 133.9, 129.4, 127.1, 126.9, 126.0, 122.9, 122.6, 119.9, 110.7, 48.3, 34.1, 33.8, 24.0, 23.9.

1-(4-methoxybenzyl)-2-(4-methoxyphenyl)-1*H***-benzo**[*d*]**imidazole** $(3d)^{1}$: Following the general procedure A, the title compound was isolated as a brownish solid using silica-gel column chromatography eluting with 20% ethyl acetate in hexane. (Yield: 64%, 110 mg); mp 131-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 1H), 7.63 – 7.61 (m, 2H), 7.28 – 7.25 (m,

1H), 7.21 – 7.19 (m, 2H), 7.03 – 7.01 (m, 2H), 6.97 – 6.95 (m, 2H), 6.85 – 6.83 (m, 2H), 5.37 (s, 2H), 3.83 (s, 3H), 3.77 (s, 3H). $^{13}C\{1H\}$ NMR (125 MHz, CDCl₃) δ 161.0, 159.2, 154.2, 143.3, 136.2, 130.8, 128.6, 127.3, 122.8, 122.6, 122.5, 119.8, 114.5, 114.3, 110.5, 55.5, 55.4, 48.0.

1-benzyl-5-methyl-2-phenyl-1*H***-benzo**[*d*]**imidazole** $(3e)+(3e')^4$: Following the general procedure A, the title compound was isolated as a mixture of two isomers of ratio 3:1 and appears as white solid using silica-gel column chromatography eluting with 15% ethyl acetate in hexane. (Yield: 69%, 102 mg); mp 189-190 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.2 Hz, 1H), 7.68 – 7.66 (m, 3H), 7.45 – 7.43 (m,

4H), 7.35 - 7.31 (m, 4H), 7.15 - 7.08 (m, 4H), 7.01 (d, J = 0.6 Hz, 1H), 5.43 (s, 1H), 5.42 (s, 2H), 2.50 (s, 1H), 2.44 (s, 3H). ${}^{13}C{1H}$ NMR (100 MHz, CDCl₃) δ 153.9, 141.4, 136.8, 136.5, 133.3, 130.0, 129.4, 129.3, 128.9, 127.9, 126.1, 124.5, 119.7, 110.5, 48.4, 22.1.

1-(4-chlorobenzyl)-2-(4-chlorophenyl)-5-methyl-1*H*-benzo[*d*]imidazole $(3f)+(3f')^2$:

Following the general procedure A, the title compound was isolated as a mixture of two isomers of ratio 3:1 and appears as a white solid using silica-gel column chromatography eluting with 15-18% ethyl acetate in

hexane. (Yield: 56%, 102 mg); mp 131-133 $^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.2Hz, 1H), 7.60 – 7.54 (m, 3H), 7.45 – 7.40 (m, 3H), 7.34 – 7.28 (m, 3H), 7.16 (dd, J = 8.3, 1.1 Hz, 1H), 7.10 – 7.06 (m, 1H), 7.04 – 6.97 (m, 4H), 5.37 (s, 2H), 5.36 (s, 2H), 2.50 (s, 3H), 2.45 (s, 3H).¹³C{1H} NMR (100 MHz, CDCl₃) δ 152.5, 141.2, 136.3, 134.9, 133.7, 130.4, 130.3, 129.7, 128.6, 128.5, 128.0, 127.3, 124.8, 119.8, 110.1, 48.0, 22.1.

1-benzyl-6-chloro-2-phenyl-1*H*-benzo[*d*]imidazole (3g)⁴: Following the general procedure A, the title compound was isolated as a white solid using silica-gel column chromatography eluting with 15-18% ethyl acetate in hexane. (Yield: 59%, 94 mg); mp 168-170 0 C; ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.85 (m, 1H), 7.69 – 7.67 (m, 2H), 7.46 – 7.44 (m, 2H), 7.35 – 7.29 (m, 4H), 7.25 – 7.21 (m, 2H), 7.11 – 7.09 (m, 2H), 5.45 (s, 2H). ${}^{13}C{1H}$ NMR (100 MHz, CDCl₃) δ 154.1, 143.1, 136.4, 136.0, 130.0,

129.9, 129.2, 129.0, 128.7, 127.7, 125.9, 123.0, 122.6, 120.0, 110.5, 48.4.

6-chloro-1-(4-ethylbenzyl)-2-(4-ethylphenyl)-1H-benzo[d]imidazole (3h): Following the

general procedure A, the title compound was isolated as a brownish solid using silica-gel column chromatography eluting with 15-18% ethyl acetate in hexane. (Yield: 67%, 125 mg), mp 100-102 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.85 (d, J = 8.0 Hz, 1H), 7.63-7.61 (d, J = 8.1 Hz,

2H), 7.31 - 7.26 (m, 3H), 7.22 - 7.20 (m, 1H), 7.17 - 7.15 (d, J = 8.0 Hz, 2H), 7.04 - 7.02 (d, J = 1007.9 Hz, 2H), 5.43 (s, 2H), 2.71 – 2.63 (m, 4H), 1.28 - 1.22 (m, 6H). ¹³C{1H} NMR (100 MHz, CDCl₃) *δ* 154.3, 146.3, 143.7, 143.2, 136.1, 133.7, 129.2, 128.5, 128.2, 127.3, 125.9, 122.8, 122.5, 119.8, 110.5, 48.2, 28.7, 28.4, 15.4, 15.3. Elemental Analysis: C₂₄H₂₃ClN₂: Calculated C, 76.89; H, 6.18; N, 7.47; Found C, 85.44; H, 7.10; N, 8.30. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calculated for C₂₄H₂₃ClN₂ 375.1623; Found 375.1616.

6-chloro-1-(4-isopropylbenzyl)-2-(4-isopropylphenyl)-1H-benzo[d]imidazole

Following the general procedure A, the title compound was isolated as a brownish solid using silica-gel column chromatography eluting with 15-18% ethyl acetate in hexane. (Yield: 71%, 143 mg); mp 165-166 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.84 (m, 1H), 7.65 – 7.63 (m, 2H),

7.32 – 7.26 (m, 3H), 7.22 – 7.17 (m, 3H), 7.03 (d, J = 8.2 Hz, 2H), 5.43 (s, 2H), 2.95 – 2.89 (m, 2H), 1.28 – 1.23 (m, 12H). ¹³C{1H} NMR (100 MHz, CDCl₃) δ 154.3, 150.8, 148.4, 143.2, 136.1, 133.8, 129.2, 127.5, 127.0, 126.8, 125.9, 122.8, 122.5, 119.8, 110.6, 48.2, 34.0, 33.7, 23.9, 23.8. Elemental Analysis: C₂₆H₂₇ClN₂: Calculated C, 77.50; H, 6.75; N, 6.95; Found C, 83.39; H, 7.55; N, 7.81. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calculated for C₂₄H₂₇ClN₂ 425.1755; Found 425.1762.

2-(pyridine-2-yl)-1-(pyridine-2-ylmethyl)-1*H*-benzo[*d*]imidazole (3j)¹: Following the

general procedure A, the title compound was isolated as a brownish solid using silica-gel column chromatography eluting with 20-25% ethyl acetate in hexane. (Yield: 78%, 112 mg); mp 102-103 0 C; ¹H NMR (400 MHz, CDCl₃) δ 8.51 – 8.47 (m, 2H), 8.40 – 8.38 (m, 1H), 7.82 – 7.71 (m, 2H), 7.41-7.37

(m, 1H), 7.31 - 7.14 (m, 4H), 7.08 - 7.02 (m, 1H), 6.81 (d, J = 7.9 Hz, 1H), 6.21 (s, 2H). ¹³C{1H} NMR (100 MHz, CDCl₃) δ 157.3, 150.2, 149.8, 149.1, 148.6, 142.6, 137.2, 136.6, 124.5, 123.9, 123.6, 122.9, 120.9, 120.0, 110.7, 51.0.

2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1*H*-benzo[*d*]imidazole $(3k)^1$: Following the general procedure A, the title compound was isolated as a pale yellow solid using silica-gel column chromatography eluting with 10-12% ethyl acetate in hexane. (Yield: 32%, 47 mg); mp 149-150 °C; ¹H NMR (400 MHz, CDCl₃) δ

7.84 - 7.82 (m, 1H), 7.53-7.51 (m, 1H), 7.47 - 7.46 (m, 1H), 7.38-7.36 (m,

1H), 7.31-7.30 (m, 2H), 7.28 – 7.24 (m, 1H), 7.16-7.12 (m, 1H), 6.97-6.93 (m, 1H), 6.95 – 6.86 (m, 1H), 5.71 (s, 2H). ¹³C{1H} NMR (100 MHz, CDCl₃) δ 143.1, 138.9, 136.0, 132.1, 129.0, 128.1, 128.0, 127.3, 125.6, 125.5, 123.4, 123.4, 123.1, 120.0, 110.0, 44.2.

2-(furan-2-yl)-1-(furan-2-ylmethyl)-1*H***-benzo**[*d*]**imidazole** (**3l**)¹: Following the general procedure A, the title compound was isolated as a white solid using silica-gel column chromatography eluting with 10-12% ethyl acetate in hexane. (Yield: 34%, 44 mg), mp 74-76 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.77 (m,

1H), 7.66 – 7.65 (m, 1H), 7.52 – 7.50 (m, 1H), 7.33 – 7.26 (m, 3H), 7.26 – 7.22 (m, 1H), 6.63 – 6.61 (m, 1H), 6.29 – 6.27 (m, 2H), 5.66 (s, 2H). $^{13}C\{1H\}$ NMR (100 MHz, CDCl₃) δ 149.7,

(**3i**):

145.5, 144.1, 143.1, 142.8, 135.6, 123.3, 123.0, 119.9, 113.0, 112.2, 110.6, 110.6, 110.1, 108.4, 41.8.

2-phenyl-1*H*-benzo[*d*]imidazole (4a)⁵: Following the general procedure B, the title compound

was isolated as a reddish solid using silica-gel column chromatography eluting with 15-20% ethyl acetate in hexane. (Yield: 52%, 50 mg); mp 289-290 0 C;

¹H NMR (500 MHz, CDCl₃) δ 8.10 – 8.08 (m, 2H), 7.68 – 7.67 (m, 2H), 7.52 – 7.50 (m, 3H), 7.32 – 7.29 (m, 2H). ¹³C {1H} NMR (100 MHz, CDCl₃ + DMSO d₆) δ 152.1, 130.4, 129.8, 128.8, 126.9, 122.4.

2-(4-bromophenyl)-1*H***-benzo[***d***]imidazole (4b)¹: Following the general procedure B, the title \overbrace{\mu}^{N} compound was isolated as a white solid using silica-gel column chromatography eluting with 15-20% ethyl acetate in hexane. (Yield: 35%, 47 mg); 290-291 °C; ¹H NMR (400 MHz, CDCl₃ + DMSO d₆) \delta 7.95 – 7.93 (m, 2H), 7.47 – 7.45 (m, 4H), 7.09 – 7.07 (m, 2H). ¹³C{1H} NMR (100 MHz, CDCl₃ + DMSO d₆) \delta 151.0, 132.0, 129.5, 128.4, 124.0, 122.6.**

2-[4-(trifluromethyl)phenyl)-1*H*-benzo[*d*]imidazole (4c)⁵: Following the general procedure B, the title compound was isolated as a white solid using silica-gel column chromatography eluting with 15-20% ethyl acetate in hexane. (Yield: 38%,

50 mg); mp 263-265 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.61 (s, 1H), 8.17 (d, *J* = 8.1 Hz, 2H), 7.77 (d, *J* = 8.2 Hz, 3H), 7.34 – 7.31 (m, 3H). ¹³C{1H} NMR (100 MHz, CDCl₃ + DMSO d₆) δ 145.6, 127.2, 125.8, 124.2, 123.3, 119.6, 39.5.

2-(naphthalene-2-yl)-1*H*-benzo[*d*]imidazole (4d)¹: Following the general procedure B, the

title compound was isolated as a white solid using silica-gel column chromatography eluting with 15-20% ethyl acetate in hexane. (Yield: 56%, 68 mg); mp 269-271 0 C; 1 H NMR (400 MHz, CDCl₃ +DMSO

d₆) δ 12.38 (s, 1H), 8.86 – 8.82 (m, 1H), 7.99 – 7.93 (m, 4H), 7.61-7.55 (m, 4H), 7.29 – 7.26 (m, 2H).

2-pentyl-1*H*-benzo[*d*]imidazole (4e)⁸: Following the general procedure B, the title compound

was isolated as a white solid using silica-gel column chromatography eluting with 15-20% ethyl acetate in hexane. (Yield: 56%, 53 mg); mp 157-158 0 C; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 2H), 7.25-7.20 (m, 2H), 2.92 – 2.88 (m, 2H), 1.87 – 1.81 (m, 2H), 1.38 – 1.36 (m, 4H), 0.88 (t, *J* = 7.1 Hz, 3H). ¹³C{1H} NMR (100 MHz, CDCl₃) δ 154.9, 122.3, 31.6, 29.4, 27.9, 22.4, 14.0. 2-hexyl-1H-benzo[d]imidazole (4f)⁵: Following the general procedure B, the title compound

was isolated as a white solid using silica-gel column chromatography eluting with 15-20% ethyl acetate in hexane. (Yield: 30%, 30 mg); mp

136-137 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.53 (m, 2H), 7.26 – 7.19 (m, 2H), 2.95 – 2.91 (m, 2H), 1.89 – 1.81 (m, 2H), 1.42 – 1.25 (m, 6H), 0.86 – 0.82 (m, 3H). ¹³C{1H} NMR (100 MHz, CDCl₃) δ 155.4, 122.2, 31.6, 29.5, 29.1, 28.4, 22.6, 14.1.

2-nonyl-1*H*-benzo[*d*]imidazole (4g)⁶: Following the general procedure B, the title compound

was isolated as a white solid using silica-gel column chromatography eluting with 15-20% ethyl acetate in hexane.

(Yield: 41%, 50 mg); mp 116-117 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 2H), 7.26 – 7.20 (m, 2H), 2.93 – 2.89 (m, 2H), 1.89 – 1.81 (m, 2H), 1.44 – 1.24 (m, 12H), 0.87 (t, *J* = 6.9 Hz, 3H). ¹³C{1H} NMR (100 MHz, CDCl₃) δ 155.0, 122.3, 31.9, 29.8, 29.5, 29.5, 29.4, 29.4, 29.4, 29.2, 28.3, 22.8, 14.2.

5-methyl-2-pentyl-1*H***-benzo**[*d*]**imidazole** (**4h**)⁵: Following the general procedure B, the title compound was isolated as white solid using silica-gel column chromatography eluting with 15-20% ethyl acetate in hexane. (Yield:

45%, 45 mg); mp 165-166°C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.43 (m, 1H), 7.32 (s, 1H), 7.05-7.03 (m, 1H), 2.90 – 2.86 (m, 2H), 2.45 (s, 3H), 1.86 – 1.80 (m, 2H), 1.35 – 1.34 (m, 4H), 0.89 – 0.86 (m, 3H). ¹³C{1H} NMR (100 MHz, CDCl₃) δ 154.8, 132.1, 123.7, 31.6, 29.4, 28.0, 22.4, 21.7, 14.0.

2-(2,6-dimethylhept-5-en-1-yl)-1*H*-benzo[*d*]imidazole $(4i)^7$: Following the general procedure B, the title compound was isolated as a white solid using silica-gel column chromatography eluting with 15-20% ethyl acetate in

hexane. (Yield: 37%, 45 mg); mp 94-95°C; ¹H NMR (400 MHz, CDCl₃) δ 9.49 (s, 1H), 7.58 (s, 2H), 7.26 – 7.20 (m, 2H), 5.08 – 5.05 (m, 1H), 2.96 – 2.90 (m, 1H), 2.73 – 2.68 (m, 1H), 2.09 – 2.06 (m, 3H), 2.05 – 1.98 (m, 3H), 1.66 – 1.53 (m, 3H), 1.44 – 1.30 (m, 1H), 1.29 – 1.27 (m, 1H), 0.97 (t, *J* = 5.8 Hz, 3H). ¹³C NMR{1H} (100 MHz, CDCl₃) δ 154.2, 131.8, 124.3, 122.3, 37.1, 37.0, 32.9, 25.8, 25.6, 19.7, 17.7.

2-cyclohexyl-1*H***-benzo[***d***]imidazole (4j)⁹: Following the general procedure B, the title compound was isolated as a white solid using silica-gel column chromatography eluting with 15-20% ethyl acetate in hexane. (Yield: 39%, 59 mg); mp >280 °C; ¹H NMR (400 MHz, CDCl₃ + DMSO d₆) \delta 7.46 (s, 2H), 7.09 – 7.07 (m, 2H), 2.86 – 2.80 (m, 1H), 2.07 – 2.04 (m, 2H), 1.81 – 1.77 (m, 2H), 1.66 – 1.60 (m, 3H), 1.35**

- 1.23 (m, 3H). ¹³C{1H} NMR (100 MHz, CDCl₃ + DMSO d₆) δ 159.5, 121.6, 40.5, 40.3, 40.1, 39.9, 39.7, 38.6, 31.8, 26.1, 25.9.

Quinoxaline (5a)¹¹: Following the general procedure C, the title compound was isolated as a

white semi solid using silica-gel column chromatography eluting with 10% ethyl acetate in hexane. (Yield: 25%, 16 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.87 – 8.86

(m, 1H), 8.15 – 8.11 (m, 1H), 7.81 – 7.78 (m, 1H). ${}^{13}C{1H}$ NMR (100 MHz, CDCl₃) δ 145.1, 143.1, 130.2, 129.6.

6-methoxyquinoxaline (**6b**)¹⁰: Following the general procedure C, the title compound was isolated as a pale yellow solid using silica-gel column chromatography eluting with 10% ethyl acetate in hexane. (Yield: 40%, 32 mg); mp 59-60 ^oC; ¹H NMR

(500 MHz, CDCl₃) δ 8.76 – 8.70 (m, 2H), 7.99 – 7.98 (m, 1H), 7.44 – 7.42 (m, 1H), 7.38 (d, 1H), 3.98 (s, 3H). ¹³C{1H} NMR (125 MHz, CDCl₃) δ 160.8, 144.9, 144.7, 142.4, 139.3, 130.4, 123.5, 106.7, 55.8.

[2.0] References:

1. K. Das, A. Mondal, and D. Srimani, J. Org. Chem. 2018, 83, 9553-9560.

2. Z. Xu, X. Yu, X. Sang, and D. Wang, Green Chem., 2018, 20, 2571.

3. S. Senthilkumar, and M. Kumarraja, *Tetrahedron Letters*, 2014, 55, 1971–1974.

4. C. Xie, X. Han, J. Gong, D. Lia and C. Ma, Org. Biomol. Chem., 2017, 15, 5811.

5. P. Daw, Y. Ben-David and D. Milstein, ACS Catal., 2017, 7, 7456-7460.

6. C. Chaudhari, S. M. A. H. Siddiki, and K. Shimizu, *Tetrahedron Letters*, 2015, **56** 4885–4888.

7. M. Curini, F. Epifano, F. Montanari, O. Rosati and S. Taccone, *SYNLETT*, 2004, **10**, 1832–1834.

8. L. Li, Q. Luo, H. Cui, R. Li, J. Zhang and T. Peng, ChemCatChem, 2018, 10, 1607-1613.

9. G.X. Li, C. A. M.Rivera, Y.Wang, F. Gao, G. He, P. Liu and G. Chen, *Chem. Sci.*, 2016, **7**, 6407.

F. Xie, M. Zhang, H. Jiang, M. Chen, W. Lv, A. Zhenga and X. Jiana, *Green Chem.*, 2015, 17, 279.

11. Y. Zhang, S. Pang, Z. Wei, H. Jiao, X. Dai, H. Wang and F. Shi, *Nature Communications*, 2018, **9**,1465.

[2.1] Copies of ¹H NMR & ¹³C NMR for selected compounds:

200

