Supporting Information

Coordination-driven assembly of a supramolecular square and oxidation to a tetra-ligand radical species

Khrystyna Herasymchuk, ${ }^{\text {a }}$ Jessica J. Miller, ${ }^{\text {a }}$ Gregory A. MacNeil, ${ }^{\text {a }}$ Ania S. Sergeenko, ${ }^{\text {a Declan }}$ McKearney, ${ }^{\text {a }}$ Sébastien Goeb, ${ }^{\text {b }}$ Marc Sallé, ${ }^{\text {b }}$ Daniel B. Leznoff ${ }^{a}$ and Tim Storr*a
${ }^{\text {a }}$ Department of Chemistry, Simon Fraser University, Burnaby, Canada.
E-mail: *tim_storr@sfu.ca
${ }^{\mathrm{b}}$ Laboratoire MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 Bd Lavoisier, 49045 Angers Cedex, France
Table of Contents
1.0 Materials and Methods 4
2.0 Synthesis 5
2.1 Synthesis of $\mathbf{1}$ 5
2.2 Synthesis of $\mathbf{2}$ 5
3.0 X-Ray Analysis 6
Table S1. Selected Crystallographic Data for 1 6
4.0 Scanning Transmission Electron Microscopy (STEM) 7
5.0 Calculation of the Diffusion Rate for 2 using the Randles-Sevcik Equation 8
6.0 Hydrodynamic Radius Calculation using the Stokes-Einstein Equation 9
7.0 UV-Vis-NIR Spectroscopy: Oxidation Protocol and Titration 9
8.0 Electron Paramagnetic Resonance (EPR) Spectroscopy: Sample Preparation 9
9.0 Calculations 10
9.1 DFT and TD-DFT Calculations 10
9.2 Molecular Mechanics Force Field (MMFF) Calculations 10
10.0 Schemes and Figures 11
Scheme S1. Synthetic Pathway to 1 11
Figure S1. Crystal Structure of $\mathbf{1}$ 11
Figure S2. MMFF Calculation of 2 12
Figure S3. STEM Images of 2 12
Figure S4. Cyclic Voltammetry of NiSal ${ }^{\text {Bu }}$ 13
Figure S5. EPR Spectra of 1 13
Figure S6. Electronic Spectra of the Chemical Oxidation of 2 14
Figure S7. EPR Spectra of $\mathbf{2}$ and Oxidant 15
Figure S8. Structure of the fragment 15
Figure S9. TD-DFT Predicted Low Energy Transitions for [fragment] ${ }^{++}$ 16
Figure S10. Electronic Spectra of the Decay of [2] ${ }^{\boldsymbol{\bullet}+}$ 16
Figure S11. Electronic Spectra of the Regeneration of [2] $]^{4++}$ 17
Figure S12. Cyclic Voltammetry of 1 17
Figure S13. Mass Spectrometry of 1 18
Figure S14. Infrared Spectra of $\mathbf{1}$ and $\mathbf{2}$ 18
Figure S15. Diffusion Profile of 2 19
11.0 References. 20
12.0 Computational Data 21
12.1 Optimized Coordinates (\AA) for [fragment] ${ }^{0+}$ 21
12.2 TD-DFT Excitation Energies and Oscillator Strength for [fragment] ${ }^{0+}$. 24

1.0 Materials and Methods

All chemicals used were of the highest grade available and were further purified whenever necessary. $\operatorname{Pd}(\mathrm{en})\left(\mathrm{NO}_{3}\right)_{2}$ was synthesized according to a previous report. ${ }^{1}$ The syntheses of the aldehyde precursors, 5-bromo-3-(tert-butyl)-2-hydroxybenzaldehyde (1-Ald $\left.{ }^{\mathrm{Br}}\right)^{2}$ and 3-(tert-butyl)-2-hydroxy-5-(pyridin-4yl)benzaldehyde $\quad\left(\mathbf{2}-\text { Ald }^{\mathrm{PPy}}\right)^{3} \quad$ and $\quad(\mathrm{R}, \mathrm{R})-(-)-1,2$-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4pyridyl)salicylidene) ($\mathbf{H}_{\mathbf{2}} \mathbf{S a l ^ { \text { PPy } }) ^ { 4 }}$ have been previously reported. The tris(2,4-dibromophenyl)aminium hexafluoroantimonate radical chemical oxidant, $\left[\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{2}\right)_{3}\right]^{++}\left[\mathrm{SbF}_{6}\right]^{-}\left(E_{1 / 2}=1.14 \mathrm{~V} \text {, } \mathrm{MeCN}\right)^{5}$ was synthesized according to published protocols. ${ }^{6}$ Electronic spectra were obtained on a Cary 5000 spectrophotometer with a custom-designed immersion fiber-optic probe with a path-length of 10 mm (Hellma, Inc.). Cyclic voltammetry (CV) was performed using a PAR-263A potentiometer, equipped with an Ag wire pseudo-reference electrode, a glassy carbon working electrode and a Pt counter electrode with ${ }^{n} \mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M})$ solutions in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ under an inert atmosphere. Decamethylferrocene was used as an internal standard. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Bruker AV-400 or Bruker AVANCE II 600 MHz instruments and DOSY NMR was performed on Bruker AVANCE II 600 MHz instrument. Mass spectra were obtained on an Agilent 6210 (for 1) and an IonSpec (Agilent), 9.4 T hybride ESI q-Q-q in $\mathrm{CH}_{3} \mathrm{NO}_{2}\left(10^{-3} \mathrm{M}\right)$ (for 2). Elemental analyses (C, H, N) were performed by Mr. Paul Mulyk at Simon Fraser University on a Carlo Erba EA 1110 CHN elemental analyzer. Infrared (IR) measurements were collected on a Thermo Nicolet Nexus 670 FT-IR spectrometer equipped with a Pike MIRacle attenuated total reflection (ATR) sampling accessory. All EPR spectra were collected using a Bruker EMXplus spectrometer operating with a premiumX X-band ($\sim 9.5 \mathrm{GHz}$) microwave bridge. Low temperature measurements (100 K and 253 K) of frozen solutions used a Bruker nitrogen temperature-control system and a continuous flow cryostat. Samples for X-band measurements were placed in 4 mm outer-diameter sample tubes with sample volumes of $\sim 200 \mu \mathrm{~L}$. Samples were prepared in capillaries with EPR tubes filled with toluene as an insulator for measurement at 253 K . STEM experiments were run on a FEI Tecnai Osiris S/TEM.

2.0 Synthesis

2.1 Synthesis of 1

A solution of $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~g}, 1.0 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added to a solution of $\mathrm{H}_{2} \mathrm{Salp}{ }^{\mathrm{pPy}}$ $(0.59 \mathrm{~g}, 1.0 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$, followed by triethylamine $(0.28 \mathrm{~mL}, 2.0 \mathrm{mmol})$. The solution was then refluxed for 4 hours. Upon cooling of the reaction mixture, an olive-green precipitate was collected via vacuum filtration. The precipitate was washed with cold methanol. Crystals suitable for X-ray crystallography analysis were isolated via slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Yield: ($0.566 \mathrm{~g}, 88 \%$). Elemental analysis (\%) calcd for $\mathbf{1}\left(\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{NiO}_{2}\right)$: C, $70.71 ; \mathrm{H}, 6.56$; N, 8.68. Found: C, 70.41; H, 6.70; $\mathrm{N}, 8.78$. ESI-MS $m / z: 645.27\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$. IR (ATR): $1591.95 \mathrm{~cm}^{-1}\left(\mathrm{~s}, v_{\text {as }}(\mathrm{C}=\mathrm{N})\right.$ and $v_{\text {as }}(\mathrm{C}=\mathrm{C})$), $816.71 \mathrm{~cm}^{-1}(\mathrm{~s}, w(\mathrm{CH})) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{~s}, 4 \mathrm{H}), 7.65-7.35(\mathrm{~m}, 10 \mathrm{H}), 3.10(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, 2.56-2.46 (br m, 2H), 2.02-1.92 (br m, 2H), 1.47 (s, 18H), 1.40-1.31 (m, 4H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.36,158.16,149.96,141.90,129.76,129.01,123.31,120.87,120.28,70.08,35.85,29.55$, 29.25, 28.88, 24.38.

2.2 Synthesis of 2

A solution of $1(14 \mathrm{mg}, 21.7 \mu \mathrm{~mol})$ in THF $(2.5 \mathrm{~mL})$ was added to a solution of $\mathrm{Pd}(\mathrm{en})\left(\mathrm{NO}_{3}\right)_{2}(6.3 \mathrm{mg}$, $21.7 \mu \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(7.5 \mathrm{~mL}) . \mathrm{NH}_{4} \mathrm{PF}_{6}(70.7 \mathrm{mg}, 0.434 \mathrm{mmol})$ was added to the orange solution after 2 hours of stirring at room temperature. The resultant mixture was further stirred at room temperature overnight. A red precipitate was then collected via vacuum filtration to afford $\mathbf{2}$. Note $\mathbf{2}$ is used as the designation for $[2]^{8+}\left(\mathrm{PF}_{6}\right)_{8}$ in the manuscript. Yield: ($22.8 \mathrm{mg}, 96 \%$). Elemental analysis (\%) calcd for 2 $\left(\mathrm{C}_{160} \mathrm{H}_{200} \mathrm{~F}_{48} \mathrm{~N}_{24} \mathrm{Ni}_{4} \mathrm{O}_{8} \mathrm{P}_{8} \mathrm{Pd}_{4}\right)$: C, 43.60; H, 4.57; N, 7.63. Found: C, 43.60; H, 4.58; N, 7.24. ESI-MS m / z :
 and $v_{\text {as }}(\mathrm{C}=\mathrm{C})$), $840.81-837.92 \mathrm{~cm}^{-1}\left(\mathrm{~s} \mathrm{br}, v_{\mathrm{as}}(\mathrm{FP})\right.$ from $\left.\mathrm{PF}_{6}\right) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}\right) \delta 8.60(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.82-7.60(\mathrm{~m}, 10 \mathrm{H}), 4.26(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.25-3.05(\mathrm{~m}, 6 \mathrm{H}), 2.62-2.47(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.85(\mathrm{~m}$, $2 \mathrm{H}), 1.55-1.30(\mathrm{~m}, 20 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}$) $\delta-144.56$ (hept, $J=708.2 \mathrm{~Hz}, \mathrm{PF}_{6}$).

3.0 X-Ray Analysis

Single crystal X-ray crystallographic analysis of A was performed on a Bruker SMART ApexII Duo CCD diffractometer with a TRIUMPH graphite-monochromated $\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184 \AA$) Incoatec microsource. Sample A was mounted on a MiTeGen dual-thickness MicroMounts using Paratone oil. Data was collected at 299 K in a series of φ and ω scans with 1.00° image widths and 15 and 30 second exposures. Additional crystallographic information can be found in Tables S1 in the Supporting Information and in cif format at CCDC deposition \#1903336.

All single-crystal diffraction data were processed and initial solutions found with the Bruker ApexII software suite. Subsequent refinements were performed in SHELXL. ${ }^{1}$ Hydrogen atoms for the molecule excluding the cyclohexyl backbone were added geometrically and refined using a riding model. The cyclohexyl ring was modeled as disordered, with hydrogens placed using the difference map and refined without constraint.

Table S1. Selected Crystallographic Data for 1.

	$\mathbf{1}$
Formula	$\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{NiO}_{2}$
Formula weight	645.47
Crystal dimensions (mm)	$0.050,0.193,0.267$
Crystal system	Triclinic
Space group	$\mathrm{P}-1$
$a(\AA)$	$11.0566(3)$
$\mathrm{b}(\AA)$	$12.9924(3)$
$c(\AA)$	$13.9528(3)$
$\alpha\left({ }^{\circ}\right)$	$102.6010(10)$
$\beta\left({ }^{\circ}\right)$	$107.7680(10)$
$\gamma\left({ }^{\circ}\right)$	$112.9790(10)$
$V\left[\AA^{3}\right]$	$1622.02(7)$
Z	2
$T(\mathrm{~K})$	$299(2)$
$\rho_{\text {calcd }}(\mathrm{g} \mathrm{cm}$	
$\mu\left(\mathrm{cm}^{-3}\right)$	1.322
$2 \theta_{\text {max }}(\mathrm{deg})$	1.172
Total reflections	66.707
Observed reflections $\left[\mathrm{I}_{0} \geq 2 \sigma\left(\mathrm{I}_{0}\right)\right]$	5556
wR_{2}	5107
R_{1}	0.1966
GOF	0.0740
Largest difference peak/hole (e-/ $\AA 3)$	1.250
	$0.726 /-0.400$

4.0 Scanning Transmission Electron Microscopy (STEM)

The 400 mesh Copper grid with Ultrathin Lacey Carbon film support was suspended onto a droplet of the solution containing $2(100 \mu \mathrm{M})$ in $\mathrm{CH}_{3} \mathrm{CN}$. The grid was then placed onto a filter paper to absorb the excess of the remaining solution. Images were taken on a STEM 1 - FEI Tecnai Osiris operating at 200 kV and $225,000 \times$ magnification. The average particle diameter was measured using ImageJ software. At least 40 measurements were obtained per image (Figure S3a). Elemental mapping experiment on 2 (Figure S3b) confirmed the presence of both Ni (red) and Pd (green) in the sample, further supporting a self-assembly composition.

5.0 Calculation of the Diffusion Rate for 2 using the Randles-Sevcik Equation

The diffusion coefficient for $\mathbf{2}$ was estimated from cyclic voltammetry measurements at different scan rates:

$$
\begin{equation*}
i_{p a}=2.69 \times 10^{5} n^{\frac{3}{2}} A C_{0} D_{0}^{\frac{1}{2}} \frac{1}{2} \tag{1}
\end{equation*}
$$

where $\boldsymbol{i}_{\boldsymbol{p} \boldsymbol{a}}$ - anodic peak current (in amperes), \boldsymbol{n} - number of electrons passed per molecule oxidized, \boldsymbol{A} - area of the electrode (in cm^{2}), $\boldsymbol{C}_{\boldsymbol{0}}$ - bulk concentration of the analyte (in moles $/ \mathrm{cm}^{3}$), $\boldsymbol{D}_{\boldsymbol{0}}$ - diffusion coefficient of the analyte (in $\mathrm{cm}^{2} / \mathrm{s}$), \boldsymbol{v} - potential scan rate (in V / s).

Plotting the change in current at the anode as a function of the square root of scan rate, provided a linear regression:

$$
\begin{equation*}
j_{p a}=f\left(v^{\frac{1}{2}}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
j_{p a}=\frac{i_{p a}}{A} \tag{3}
\end{equation*}
$$

From the slope of the linear regression, D was calculated to be $\mathbf{2 . 2 2} \times \mathbf{1 0}^{-\mathbf{1 0}} \mathbf{m}^{\mathbf{2}} / \mathbf{s}$ for $n=4$.

$$
\begin{equation*}
\text { slope }=2.69 \times 10^{5} n^{\frac{3}{2}} C_{0} D_{0}^{\frac{1}{2}} \tag{4}
\end{equation*}
$$

From the ${ }^{1} \mathrm{H}$ DOSY experiment, D was determined to be $\mathbf{2 . 4 5} \times \mathbf{1 0}^{-\mathbf{1 0}} \mathbf{m}^{\mathbf{2}} / \mathbf{s}$.
The ratio of the experimentally determined D_{NMR} and D_{CV} for $\mathbf{2}$ is 1.10 , which agrees with published approximation (Eq. 5) that accounts for different solvent system used in the NMR experiment (deuterated solvent) vs. electrochemistry experiment (solvent with supporting electrolyte). ${ }^{8}$

$$
\begin{equation*}
1.04 \times D_{\mathrm{NMR}}=D_{\mathrm{CV}} \tag{5}
\end{equation*}
$$

6.0 Hydrodynamic Radius Calculation using the Stokes-Einstein Equation

The hydrodynamic radius, R_{h}, of 2 can be approximated using Stokes-Einstein equation (Eq. 6) ${ }^{9}$ to be $1.48 \times 10^{-9} \mathrm{~m}$ or $14.8 \AA$. The diffusion rate $\left(D=2.45 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s}\right)$ determined through ${ }^{1} \mathrm{H}$ DOSY experiment in $\mathrm{CD}_{3} \mathrm{NO}_{2}$ at 298 K was used for the calculation.

$$
\begin{equation*}
R_{h}=\frac{k T}{6 \pi \eta D} \tag{6}
\end{equation*}
$$

where $\boldsymbol{R}_{\boldsymbol{h}}$ - hydrodynamic radius (in m), \boldsymbol{k} - Boltzman constant (in J K${ }^{-1}$), \boldsymbol{T} - temperature (in K), $\boldsymbol{\eta}$ - viscosity of the solvent (in Pas), \boldsymbol{D} - diffusion rate of the analyte (in $\mathrm{m}^{2} / \mathrm{s}$).

However, the calculated hydrodynamic radius ($R_{h}=14.8 \AA$) is likely inaccurate due to the non-spherical structure of $\mathbf{2} .{ }^{10}$ Hence the value does not correlate with the MMFF calculated size of 2. Furthermore, the large pore size of 2, likely contributes to a calculated hydrodynamic radius that is smaller than expected based on the MMFF calculation. ${ }^{11}$

7.0 UV-Vis-NIR Spectroscopy: Oxidation Protocol and Titration

Samples of $\mathbf{1}^{+}(0.25 \mathrm{mM})$ and $[\mathbf{2}]^{4 \bullet+}(0.125 \mathrm{mM})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ were prepared at 253 K under nitrogen atmosphere in the immersion fiber-optic probe through the addition of a saturated solution of $\left[\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{2}\right)_{3}\right]^{\bullet+}\left[\mathrm{SbF}_{6}\right]^{-}$in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $20 \mu \mathrm{~L}$ additions.

8.0 Electron Paramagnetic Resonance (EPR) Spectroscopy: Sample Preparation

Samples for EPR spectroscopy were prepared by taking an aliquot out of the immersion fiberoptic probe after 1 and 4 equivalents of $\left[\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{2}\right)_{3}\right]^{++}\left[\mathrm{SbF}_{6}\right]^{-}$were added to $\mathrm{CH}_{3} \mathrm{NO}_{2}$ solutions
of $\mathbf{1}$ and 2, respectively, under inert atmosphere and transferred into each EPR tube. EPR tubes containing the $[\mathbf{1}]^{+}$and $[\mathbf{2}]^{4 \cdot+}$ solutions were frozen at 77 K and stored until measurement at 100 K. Samples of $[2]^{4++}$ and $\left[\left(\mathrm{N}_{6} \mathrm{H}_{3} \mathrm{Br}_{2}\right)_{3}\right]^{0+}\left[\mathrm{SbF}_{6}\right]^{-}$for EPR measurements at 253 K were prepared by placing each sample into a capillary, which was placed directly into an empty EPR tube.

9.0 Calculations

9.1 DFT and TD-DFT Calculations

Geometry optimization calculations for the [fragment] ${ }^{+}$(a 5^{+}cation) were completed using the Gaussian 16 program (Revision B.01), ${ }^{12}$ the B3LYP ${ }^{13}$ functional, the $6-31 \mathrm{G}(\mathrm{d})$ basis set $(\mathrm{C}, \mathrm{H}$, $\mathrm{N}, \mathrm{O}, \mathrm{Ni})$, LanL2DZ ${ }^{14}(\mathrm{Pd})$, with a polarized continuum model (PCM) for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (dielectric $\varepsilon=$ 8.94). ${ }^{15}$ Frequency calculations at the same level of theory confirmed that the optimized structure was located at a minimum on the potential energy surface. Single-point calculations and the intensities of 10 lowest energy transitions using TD-DFT ${ }^{16}$ calculations were performed using the B3LYP functional, the TZVP ${ }^{17}$ basis set ($\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O}, \mathrm{Ni}$), LanL2DZ (Pd), with a PCM for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

9.2 Molecular Mechanics Force Field (MMFF) Calculations

Merck Molecular Force Field (MMFF) ${ }^{18}$ calculations were performed on 2 using Spartan'18 Parallel Suite from Wavefunction Inc. to obtain a potential ground state geometry and approximate size of the positively charged macrocycle (Figure S2). Counterions were omitted in the calculation. Calculations at a higher level of theory were not successful due to the size and charge of 2. The diameter of $\mathbf{2}$ was also estimated via Stokes-Einstein equation utilizing DOSY NMR data, to be $29.6 \AA$ (vide supra, Section 6).

10.0 Schemes and Figures

Scheme S1. Synthetic pathway to 1

Figure S1. Crystal structure of 1, hydrogen atoms excluded. Coordination sphere distances $[\AA]$ and angles [deg]: Ni-O(1): 1.842(4), Ni-O(2): 1.848(2), Ni-N(1): 1.845(3), Ni-N(2): 1.847(5); angles: $\mathrm{O}(1)-\mathrm{Ni}-\mathrm{O}(2): 85.2(1), \mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(1): 94.3(2), \mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(2): 177.6(2), \mathrm{O}(2)-\mathrm{Ni}-\mathrm{N}(1)$: 178.1(2), $\mathrm{O}(2)-\mathrm{Ni}-\mathrm{N}(2): 94.5(2), \mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(2): 86.0(2)$.

Figure S2. MMFF calculation of $\mathbf{2}$ (Outer diameter $=37 \AA$, Inner diameter $=20 \AA$).

Figure S3. a) STEM image of 2. b) STEM-Energy-dispersive X-ray (EDX) spectrum image of of Ni (red) and Pd (green), Conditions: $100 \mu \mathrm{M}$, magnification: $225,000 \times$.

Figure S4. Cyclic voltammetry of $\mathrm{NiSal}^{\mathrm{tBu}}$ (black) and $\mathrm{NiSal}^{\mathrm{tBu}}+200$ eq. of pyridine (red). This experiment shows the change to an irreversible process for the first redox process in the presence of pyridine, due to axial pyridine binding to Ni . Conditions: 1.0 mM , with 0.1 M $\mathrm{NBu}_{4} \mathrm{ClO}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 233 K .

Figure S5. a) EPR of [1] ${ }^{+}(0.25 \mathrm{mM})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ at 100 K (estimated $\left.g_{\text {avg }}=2.19\right)$; Low temperature measurements in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ resulted in a broadened low intensity spectrum likely due to aggregation. b) EPR of $[\mathbf{1}]^{+}(0.5 \mathrm{mM})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $100 \mathrm{~K}(g=2.141)$; The oxidation of $\mathbf{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ also results in the formation of $\mathrm{Ni}(\mathrm{III})$ species and an isotropic signal likely associated with aggregation upon intermolecular coordination of para-pyridyl groups. Conditions: frequency $=9.39 \mathrm{GHz}$, power $=2.0 \mathrm{~mW}$, modulation frequency $=100 \mathrm{kHz}$, modulation amplitude $=0.6 \mathrm{mT}$.

Figure S6. Electronic spectra of the chemical oxidation of $2\left(0.125 \mathrm{mM}\right.$, black) to [2] ${ }^{4 \bullet+}$ (red), Gaussian fit of low energy NIR band (green); Solvent peaks were removed for clarity (between $4130-4220 \mathrm{~cm}^{-1}$ and $4320-4615 \mathrm{~cm}^{-1}$). Conditions: in $\mathrm{CH}_{3} \mathrm{NO}_{2}$, at 253 K , titrated with 8 mM $\left[\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{2}\right)_{3}\right]^{++}\left[\mathrm{SbF}_{6}\right]^{-}$as oxidant.

Figure S7. a) EPR of [2] ${ }^{4 \bullet+}(0.5 \mathrm{mM})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ at 253 K ($g_{\text {avg }}=2.046$). The spectrum confirms ligand radical formation upon oxidation of $\mathbf{2}$. The low intensity of the signal is due to measurement in a capillary (polar solvent) combined with slow decay of $[2]^{40+}$ in solution. An additional signal (three-line pattern), observed in the spectrum, matches the free oxidant $\left[\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{2}\right)_{3}\right]^{\bullet+}\left[\mathrm{SbF}_{6}\right]^{-}$present in solution at $g_{\text {avg }}=2.008$. b) EPR of $[2]^{4+}(0.125 \mathrm{mM})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ at $100 \mathrm{~K}\left(g_{1}=2.258, g_{2}=2.234, g_{3}=2.024, g_{\text {avg }}=2.172, \mathrm{~A}_{3}=61 \mathrm{MHz}\right)$; Low temperature measurements resulted in a rhombic $S=1 / 2 \mathrm{Ni}($ III)-phenolate complex. This spectrum of $[\mathbf{2}]^{4+}$ (characterized as $\mathrm{Ni}(\mathrm{III})$) does not match that of $[\mathbf{1}]^{+}$in Figure S5a (or Figure $\mathbf{S 5 b}$), which is consistent with no disassembly of the macrocycle upon freezing. c) EPR of $\left[\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{2}\right)_{3}\right]^{0+}\left[\mathrm{SbF}_{6}\right]^{-}(0.5 \mathrm{mM})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ at $253 \mathrm{~K}\left(g_{\text {avg }}=2.008, \mathrm{~A}_{3}=23 \mathrm{MHz}\right)$. Conditions for a) and c): frequency $=9.39 \mathrm{GHz}$, power $=2.0 \mathrm{~mW}$, modulation frequency $=100 \mathrm{kHz}$, modulation amplitude $=1.0 \mathrm{mT}$. Conditions for b): frequency $=9.39 \mathrm{GHz}$, power $=2.0 \mathrm{~mW}$, modulation frequency $=100 \mathrm{kHz}$, modulation amplitude $=0.6 \mathrm{mT}$.

Figure S8. Structure of the fragment employed for DFT and TD-DFT calculations.

Figure S9. TD-DFT predicted low energy transitions for [fragment] ${ }^{\bullet+}$. Calculated NIR transitions at $5240 \mathrm{~cm}^{-1}$ (red arrow; β-HOMO $\rightarrow \beta$-LUMO (major contribution); oscillator strength, $f=0.2318$) and $9650 \mathrm{~cm}^{-1}$ (black arrow; β-HOMO-2 $\rightarrow \beta$-LUMO (major contribution); oscillator strength, $f=0.1247$).

Figure S10. Electronic spectra of the decay of [2] ${ }^{4 \bullet+}$ (at $\mathrm{t}=0 \mathrm{hr}, 10 \mathrm{hr}$ and 15 hr). Conditions: in $\mathrm{CH}_{3} \mathrm{NO}_{2}$, at 253 K , titrated with $8 \mathrm{mM}\left[\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{2}\right)_{3}\right]^{\bullet+}\left[\mathrm{SbF}_{6}\right]^{-}$as oxidant.

Figure S11. Electronic spectra of the regeneration of [2] ${ }^{4 \cdot+}$: chemical oxidation of $\mathbf{2}(0.125 \mathrm{mM}$, black solid line) to [2] $]^{4 \bullet+}$ (red solid line), chemical reduction of $[2]^{4 \cdot+}$ back to 2 (black dash line), second chemical oxidation of 2 to [2] $]^{4++}$ (red dash line). Conditions: in $\mathrm{CH}_{3} \mathrm{NO}_{2}$, at 253 K , titrated with $12 \mathrm{mM}\left[\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{2}\right)_{3}\right]^{++}\left[\mathrm{SbF}_{6}\right]^{-}$as an oxidant and $18 \mathrm{mM} \mathrm{Fe}\left(\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right)_{2}$ as a reductant.

Figure S12. Cyclic voltammetry of $\mathbf{1}(0.50 \mathrm{mM}, 100 \mathrm{mV} / \mathrm{s})$ - scan direction reversed after reaching first redox process; b) Potential scan rate dependence of $1(0.50 \mathrm{mM}) 50-500 \mathrm{mV} / \mathrm{s}$; Conditions: $0.1 \mathrm{M} \mathrm{NBu}_{4} \mathrm{PF}_{6}$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ at 295 K .

Figure S13. a) Mass spectrometry of 1. b) Isotopic pattern distribution of $m / z=645$ peak for $\mathbf{1}$.

Figure S14. Infrared spectra of $\mathbf{1}$ and 2.

Figure S15. Diffusion profile of 2. Plot of the peak decay (natural \log of the intensity of each peak, $\ln \mathrm{I}$) as a function of gradient strength $\left(\mathrm{G}^{2}\right)$ of ${ }^{1} \mathrm{H}$ DOSY NMR of $\mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{NO}_{2}$. Linear correlation of each peak supports the presence of a unique supramolecular species in the solution with an average diffusion rate (D) of $2.45 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$.

11.0 References

1. M. T. Ma, H. N. Hoang, C. C. Scully, T. G. Appleton and D. P. Fairlie, J. Am. Chem. Soc., 2009, 131, 4505-4512.
2. W.-S. Kim, K. Y. Lee, E.-H. Ryu, J.-M. Gu, Y. Kim, S. J. Lee and S. Huh, Eur. J. Inorg. Chem., 2013, 4228-4233.
3. K. Senthil Murugan, T. Rajendran, G. Balakrishnan, M. Ganesan, V. K. Sivasubramanian, J. Sankar, A. Ilangovan, P. Ramamurthy and S. Rajagopal, J. Phys. Chem. A, 2014, 118, 4451-4463.
4. G. A. Morris, H. Zhou, C. L. Stern and S. T. Nguyen, Inorg. Chem., 2001, 40, 32223227.
5. N. G. Connelly and W. E. Geiger, Chem. Rev., 1996, 96, 877-910.
6. Y. Murata, F. Cheng, T. Kitagawa and K. Komatsu, J. Am. Chem. Soc., 2004, 126, 88748875.
7. I. Noviandri, K. N. Brown, D. S. Fleming, P. T. Gulyas, P. A. Lay, A. F. Masters and L. Phillips, J. Phys. Chem. B, 1999, 103, 6713-6722.
8. H. Sun, W. Chen and A. E. Kaifer, Organometallics, 2006, 25, 1828-1830.
9. Y. Cohen, L. Avram and L. Frish, Angew. Chem. Int. Ed., 2005, 44, 520-554.
10. L. H. Tong, S. Clifford, A. Gomila, S. Duval, L. Guenee and A. F. Williams, Chem. Coттии., 2012, 48, 9891-9893.
11. S. Goeb, S. Bivaud, P. I. Dron, J. Y. Balandier, M. Chas and M. Salle, Chem. Commun., 2012, 48, 3106-3108.
12. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16 Rev. B.01, 2016.
13. (a) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623-11627; (b) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
14. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270-283.
15. (a) J. Tomasi, B. Mennucci and E. Cances, J. Mol. Struct., 1999, 464, 211-226; (b) V. Barone, M. Cossi and J. Tomasi, J. Comput. Chem., 1998, 19, 404-417; (c) V. Barone, M. Cossi and J. Tomasi, J. Chem. Phys., 1997, 107, 3210-3221; (d) S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys., 1981, 55, 117-129.
16. (a) R. E. Stratmann, G. E. Scuseria and M. J. Frisch, J. Chem. Phys., 1998, 109, 82188224; (b) M. E. Casida, in In Recent Advances in Density Functional Methods, ed. D. P. Chong, World Scientific, Singapore, 1995, p. 155.
17. (a) A. Schafer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829-5835; (b) A. Schafer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571-2577.
18. A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard and W. M. Skiff, J. Am. Chem. Soc., 1992, 114, 10024-10035.

12.0 Computational Data

12.1 Optimized Coordinates (\AA) for [fragment] ${ }^{++}$

N	-9.68662325	-0.48835413	-0.15043466
C	-8.97343927	-1.41468404	0.52204476
C	-9.02464643	0.44305068	-0.86710896
C	-7.58732794	-1.43969639	0.49747043
H	-9.53527290	-2.14502026	1.09212622
C	-7.64085449	0.47300517	-0.93975688
H	-9.63088702	1.16851270	-1.39689110
C	-6.87355160	-0.48158913	-0.24630787
H	-7.07775946	-2.19617864	1.08240699
H	-7.17396410	1.22901412	-1.56018099
C	-5.39673734	-0.47386742	-0.29430768
C	-4.68828856	0.70292837	-0.49778206
C	-4.65719988	-1.67375914	-0.11651841
C	-3.28428524	0.69465534	-0.52628189
H	-5.20183920	1.65356315	-0.59962917
C	-3.27471826	-1.75430731	-0.13290842
H	-5.21801871	-2.58870889	0.01778249
C	-2.61159987	1.94207758	-0.70918036
C	-2.54623980	-0.52553532	-0.35571532
C	-2.55095522	-3.09565172	0.07785002
N	-1.32481605	2.11408450	-0.71727677
H	-3.24568438	2.81431203	-0.85145664
O	-1.24569227	-0.53377607	-0.40105947
C	-1.71049968	-3.43903269	-1.17600906
C	-3.53804315	-4.25899696	0.30502733
C	-1.65161274	-3.00314311	1.33628841
Ni	-0.02954765	0.82095722	-0.50448692
C	-0.72207869	3.45488904	-0.92227098
H	-0.96180155	-2.67431047	-1.38352402
H	-1.19301060	-4.39285871	-1.02250803
H	-2.35670533	-3.54430662	-2.05555397
H	-4.16145267	-4.10758600	1.19391205
H	-4.19333269	-4.42225185	-0.55828680
H	-2.96673108	-5.18013265	0.45934685
H	-0.91168660	-2.20572904	1.25195317
H	-2.25950916	-2.81972775	2.23007270
H	-1.12017674	-3.95072558	1.47952548
O	1.28162897	-0.44051603	-0.65384841
N	1.16426611	2.19350304	-0.20388522
C	0.46652350	3.47926390	0.04611234

C	-1.63486648	4.66955216	-0.74401303
H	-0.32011217	3.45480495	-1.94495454
C	2.57916479	-0.34010741	-0.64226632
C	2.45911672	2.10626627	-0.16465190
C	1.29178739	4.76073810	-0.08429016
H	0.06360131	3.41327085	1.06640698
C	-0.80786951	5.96169432	-0.87922781
H	-2.10922294	4.63247435	0.24549741
H	-2.43036236	4.66589416	-1.49695625
C	3.40337263	-1.49970092	-0.90206200
C	3.22143184	0.91565193	-0.36887234
H	3.02672424	3.01098205	0.04186894
C	0.37598124	5.98597478	0.09516434
H	2.08437059	4.78625208	0.67124678
H	1.77011434	4.79161192	-1.07202207
H	-0.43862274	6.05086482	-1.90972516
H	-1.46058709	6.82314959	-0.70319450
C	4.77561399	-1.33108122	-0.81692029
C	2.78819395	-2.86799482	-1.24474062
C	4.62059560	1.01406357	-0.29898535
H	0.96633742	6.89690277	-0.04947627
H	0.00294695	6.01234638	1.12801605
C	5.41855722	-0.10230157	-0.50781888
H	5.40455350	-2.19813067	-0.96803039
C	1.93979227	-3.36763493	-0.05066243
C	1.91856230	-2.74330587	-2.52085218
C	3.86556753	-3.93507871	-1.52800297
H	5.06096204	1.98674575	-0.10555964
C	6.89039722	-0.01921338	-0.40978187
H	1.13510823	-2.67290899	0.19039008
H	1.49286245	-4.33816322	-0.29452123
H	2.56682118	-3.49940059	0.83914592
H	1.10603602	-2.02643362	-2.39365019
H	2.52971746	-2.42836181	-3.37489090
H	1.48088663	-3.71839125	-2.76228300
H	4.50799466	-3.66281709	-2.37372339
H	4.49951129	-4.12767475	-0.65491307
H	3.36926795	-4.87707094	-1.78342268
C	7.51721513	0.92778044	0.42140094
C	7.73815283	-0.88158441	-1.12952773
C	8.89929831	0.97753367	0.50530314
H	6.93994102	1.61288424	1.03113345
C	9.11489327	-0.78343585	-0.99133915
H	7.34066784	-1.62102606	-1.81445415
H	9.39460541	1.69926813	1.14349923
N	9.69091303	0.13099324	-0.18411777

H	9.78197888	-1.44407519	-1.53335966
Pd	-11.76416562	-0.47661163	-0.05901230
N	-11.98163148	-1.74056492	-1.71235558
H	-11.33528143	-1.50543118	-2.46739705
N	-13.85841088	-0.51914898	-0.08480013
H	-14.18370884	0.38420640	-0.43749322
C	-14.31503036	-1.62701225	-0.98331280
H	-15.35539003	-1.47376642	-1.28443078
H	-14.25600662	-2.55739394	-0.41316871
C	-13.39784241	-1.66740795	-2.19291840
H	-13.63032866	-2.51926881	-2.83833096
H	-13.49436646	-0.75064337	-2.78040774
H	-11.74596827	-2.69238039	-1.42161268
H	-14.26171808	-0.62250895	0.84755085
Pd	11.75666553	0.22587973	0.02557732
N	13.83985073	0.39420020	0.11451006
H	14.18379017	0.48892037	1.07171731
N	11.98215521	1.53934312	-1.58683029
H	11.66507781	2.46288399	-1.28305599
C	13.42567645	1.58243182	-1.98111284
H	13.63496706	2.47251689	-2.58131960
H	13.62382444	0.69872044	-2.59305729
C	14.26500686	1.56498487	-0.71518012
H	15.33197579	1.50534107	-0.94754006
H	14.08940654	2.46531572	-0.12127589
H	14.24313412	-0.47129479	-0.25135558
H	11.39724575	1.28236876	-2.38336500
C	11.56263635	-0.57383652	2.90232451
C	11.75379512	-2.39592724	1.46135874
C	11.52092506	-1.40999681	4.01234665
H	11.50521040	0.50364148	3.00158340
C	11.71711631	-3.28884128	2.52606995
H	11.84344171	-2.73580778	0.43660605
C	11.59918127	-2.79011979	3.82373415
H	11.43042998	-0.97735316	5.00224434
H	11.78154004	-4.35339619	2.33136525
H	11.56972944	-3.46472669	4.67318175
C	-11.67994309	2.12979510	1.39676222
C	-11.61437475	0.29438831	2.83127853
C	-11.61070411	3.01506007	2.46613386
H	-11.73887920	2.47826010	0.37226808
C	-11.54354749	1.12205545	3.94614136
H	-11.62493458	-0.78526015	2.92323730
C	-11.54106930	2.50510135	3.76304142
H	-11.61379821	4.08225231	2.27540024
H	-11.49301773	0.68114432	4.93519124

H	-11.48776279	3.17348339	4.61626254
N	11.67749083	-1.06306357	1.65109661
N	-11.68311037	0.79356836	1.58094366

12.2 TD-DFT Excitation Energies and Oscillator Strength for [fragment] ${ }^{\bullet+}$

Excited State 1: 2.019-A $0.6495 \mathrm{eV} 1908.81 \mathrm{~nm} \mathbf{f}=\mathbf{0 . 2 3 1 8}<\mathrm{S} * * 2>=\mathbf{0 . 7 6 9}$

$$
\begin{array}{lc}
\text { 249B }->263 B & -0.15379 \\
250 \mathrm{~B}->263 \mathrm{~B} & -0.21368 \\
\text { 260B -> 263B } & 0.24549 \\
\text { 262B -> 263B } & 0.92332
\end{array}
$$

This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-DFT) $=-4482.63623683$
Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2:	$2.020-\mathrm{A}$	0.8958 eV $1384.11 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.770$
247B -> 263B	-0.11541	
$253 \mathrm{~B}->263 \mathrm{~B}$	0.52405	
256B -> 263B	0.74580	
257B -> 263B	-0.33777	

Excited State 3: 3.165-A $1.0936 \mathrm{eV} 1133.70 \mathrm{~nm} \mathrm{f}=0.0516<\mathrm{S}^{* *} 2>=2.254$ $251 \mathrm{~A}->264 \mathrm{~A} \quad 0.11306$ $254 \mathrm{~A}->264 \mathrm{~A} \quad 0.49485$ $257 \mathrm{~A}->264 \mathrm{~A} \quad 0.24416$ 249B -> 263B -0.19376 250B -> 263B -0.20469 253B $->266 \mathrm{~B}-0.40988$ 253B -> 267B 0.13257 256B -> 266B -0.39266 256B -> 267B 0.13546 257B -> 266B 0.24886 260B -> 263B 0.32895
262B -> 263B -0.22081 $254 \mathrm{~A}<-264 \mathrm{~A} \quad 0.13487$ $253 \mathrm{~B}<-266 \mathrm{~B} \quad-0.12281$ $256 \mathrm{~B}<-266 \mathrm{~B} \quad-0.10645$

Excited State 4:	2.456-A	1.1966 eV $1036.15 \mathrm{~nm} \mathrm{f}=0.1247<\mathrm{S}^{* *} 2>=1.258$
254 A -> 264A	-0.39276	
$257 \mathrm{~A}->264 \mathrm{~A}$	-0.14340	
249B $->$ 263B	-0.30552	
250B -> 263B	-0.33782	
253B -> 266B	0.14966	
256B $->$ 266B	0.16980	
260B -> 263B	0.61477	
261B -> 263B	-0.16647	

$$
\text { 262B -> 263B } \quad-0.29005
$$

Excited State	5:	$2.050-\mathrm{A}$
253B $->$ 263B	-0.13416	
256B $->$ 263B	0.13428	
257B $->$ 263B	0.31528	
260B $->$		
261B $->$ 263B	0.14446	
263	0.87038	

Excited State 6:	3.417-A	$1.3642 \mathrm{eV} 908.84 \mathrm{~nm} \mathrm{f}=0.0008<\mathrm{S}^{*} 2>=2.669$
$237 \mathrm{~A}->264 \mathrm{~A}$	-0.10936	
$246 \mathrm{~A}->264 \mathrm{~A}$	0.54671	
$258 \mathrm{~A}->264 \mathrm{~A}$	0.27756	
$262 \mathrm{~A}->264 \mathrm{~A}$	0.18878	
$249 \mathrm{~B}->266 \mathrm{~B}$	-0.34089	
249B -> 267B	0.11716	
250B -> 266B	-0.41894	
250B -> 267B	0.14192	
256B -> 263B	-0.10261	
260B -> 266B	0.32098	
$261 \mathrm{~B}->263 \mathrm{~B}$	0.16145	
262B -> 266B	0.19243	
246 A <- 264A	0.12220	

Excited State 7: 2.899-A $1.5141 \mathrm{eV} 818.85 \mathrm{~nm} \mathrm{f}=0.0001<\mathrm{S}^{* *} 2>=1.851$ 224A -> 264A -0.15968 $226 \mathrm{~A}->264 \mathrm{~A} \quad 0.13444$ $231 \mathrm{~A}->264 \mathrm{~A} \quad 0.13076$ 234 A -> 264A 0.24059 236A -> 264A 0.10529 238A -> 264A -0.11644 $240 \mathrm{~A}->264 \mathrm{~A} \quad 0.11203$ $245 \mathrm{~A}->264 \mathrm{~A}-0.16599$ 251 A -> 264A 0.18755 254A -> 264A -0.12737 $257 \mathrm{~A}->264 \mathrm{~A} \quad 0.15796$ $259 \mathrm{~A}->264 \mathrm{~A} \quad 0.19053$
$263 \mathrm{~A}->264 \mathrm{~A} \quad 0.46919$

$$
\text { 241B -> 266B } \quad-0.16090
$$

$$
\text { 247B -> 266B } 0.14323
$$

$$
253 B->266 B \quad-0.11955
$$

$$
\text { 257B -> 266B } \quad-0.28800
$$

$$
\text { 261B -> 266B } \quad-0.45573
$$

$$
\text { 261B -> 267B } 0.15034
$$

Excited State 8: 2.086-A $\quad 1.5338 \mathrm{eV} 808.35 \mathrm{~nm} \mathrm{f}=0.0060<\mathrm{S}^{* *} 2>=0.838$

246A $->264 \mathrm{~A}$	0.17813
233B $->263 \mathrm{~B}$	-0.22094
253B $->263 \mathrm{~B}$	-0.38631
256B -> 263B	0.55821
257B $->263 \mathrm{~B}$	0.52350
261B $->263 B$	-0.34281

Excited State 9:	$2.029-\mathrm{A}$	$1.9318 \mathrm{eV} 641.81 \mathrm{~nm} \mathrm{f}=0.0013<\mathrm{S}^{*} * 2>=0.779$
233B $->$ 263B	0.11673	
241B -> 263B	0.17848	
247B -> 263B	-0.23257	
253B $->$ 263B	0.59031	
256B -> 263B	-0.15042	
257B -> 263B	0.67011	
261B -> 263B	-0.15344	

Excited State 10: 2.032-A $1.9692 \mathrm{eV} 629.62 \mathrm{~nm} \mathrm{f}=0.0017<\mathrm{S}^{* *} 2>=0.782$
$254 \mathrm{~A}->264 \mathrm{~A} \quad 0.10653$
249B -> 263B 0.42389
250B -> 263B 0.59139
260B -> 263B 0.63020

