Facile synthesis of multicomponent heterobimetallic metallomacrocycles through selective metal-ligand coordination

Chang-You Tai, Jun-Hao Fu, Yin-Hsuan Lee, Yun-Jui He, Shi-Cheng Wang, and Yi-Tsu Chan*

Table of Contents

Materials and Methods	S2
Synthesis of Ligand L ¹	
NMR and MS Spectra of Ligand L ¹	
Synthesis of Ligands L^2 and L^3	S6
NMR and MS Spectra of Ligand L ²	S11
NMR and MS Spectra of Ligand L ³	S12
Synthesis of Complexes $[Zn_3L^{1_3}]$ and $[Zn_3Pd_3L^{1_3}]$	S13
NMR and MS Spectra of [Zn ₃ L ¹ ₃]	S15
NMR and MS Spectra of $[Zn_3Pd_3L^1_3]$	S17
Control Experiments	S20
Synthesis of Complexes $[Zn_3L^2_3]$ and $[Zn_3Pd_6L^2_3]$	S22
NMR and MS Spectra of [Zn ₃ L ² ₃]	S24
NMR and MS Spectra of $[Zn_3Pd_6L^2_3]$	S25
Synthesis of Complexes [Zn ₃ L ³ ₃] and [Zn ₃ Pt ₁₂ L ³ ₃]	S30
NMR and MS Spectra of [Zn ₃ L ³ ₃]	S32
NMR and MS Spectra of [Zn ₃ Pt ₁₂ L ³ ₃]	S33
AFM and TEM Images of [Zn ₃ Pt ₁₂ L ³ ₃]	
Energy-Minimized Structures of $[Zn_3Pd_3L^{1_3}]$, $[Zn_3Pd_6L^{2_3}]$, and $[Zn_3Pt_{12}L^{3_3}]$	
References	S40

Materials and Methods. Unless otherwise noted, reagents and solvents were used as received from Fisher Scientific and Sigma-Aldrich without further purification. Compounds S1a, S1b, S2, S3, S4, and S5 were prepared by following the reported procedures.^[1-5] Column chromatography was conducted using silica gel (75-200 µm) from Fuji Silysia GS series or basic Al₂O₃ (50-200 μ m) from Acros. ¹H and ¹³C NMR spectra were recorded at 25 °C on a Varian Mercury NMR 400 spectrometer, where chemical shifts (δ in ppm) were determined with respect to the nondeuterated solvents as a reference. ³¹P and 2D NMR spectra were recorded at 25 °C on a Bruker NMR 500 spectrometer or a Varian Mercury NMR 400 spectrometer. Atomic force microscopy (AFM) was conducted on a Bruker Dimension Icon AFM system with ScanAsyst and the data were processed by NanoScope Analysis version 1.5 (Bruker Software, Inc.). AFM samples were prepared by spin-coating (500 rpm for 1 min) a sample solution (1 $\times 10^{-8}$ M) on a freshly cleaved mica surface. Transmission electron microscope (TEM) images were recorded on a Hitachi Model H-7650 microscope operated at 120 kV. TEM samples were prepared by drop-casting a sample solution (1 \times 10⁻⁶ M) onto a carbon-coated copper grid and dried in vacuo for 24 h.

Mass Spectrometry and Ion Mobility. ESI mass spectrometry and traveling wave ionmobility (TWIM) experiments were conducted on a Waters Synapt HDMS G2 instrument with a LockSpray ESI using the reported parameters.^[6-7] Cold-spray ionization (CSI) experiments were performed on a Thermo Finnigan LCQ Classic LC/MS/MS spectrometer. An in-house fabricated nib was utilized for paper spray and liquid nitrogen was used to cool down the nebulizing gas.^[8] All samples were dissolved in MeCN or MeCN/MeNO₂ (1:1, v/v) and then infused into the ESI source at a flow rate of 6 µL/min by a syringe pump (KDS-100, KD Scientific). Matrix-assisted laser desorption/ionization coupled with time-of-flight detection mass spectrometry (MALDI-TOF MS) was conducted on a Bruker autoflexTM speed MALDI TOF/TOF mass spectrometer with a 355 nm frequency tripled Nd:YAG SmartBeam® laser. 1 µL of 2,5-dihydroxybenzoic acid (DHB) matrix solution (10 mg/mL in CH₃CN) or 1 µL of α-cyano-4-hydroxycinnamic acid (CHCA) matrix solution (10 mg/mL in a mixture of MeCN/H₂O/TFA = 50/49.9/0.1 wt%) was deposited on a MALDI plate and air-dried. Aliquots of a sample solution (1 mg/mL in CHCl₃) were added onto the matrix spots for the measurements acquired in reflection mode.

Molecular Modeling. Energy-minimized structures were obtained following the same settings in the literature.^[9] Calculations were proceeded with Anneal and Geometry Optimization functions in Forcite module of Materials Studio version 7.0 program

(Accelrys Software, Inc.). For each structure, 200 conformations after annealing were generated and converted to the corresponding collision cross-sections using projection approximation (PA) and trajectory method (TM) in MOBCAL.^[10-11]

Scheme S1. Synthesis of ligand L¹. *Reagents and conditions*: (a) 4-hydroxypyridine, PPh₃, DIAD, 25 °C; (b) TBAF, THF, 0 °C; (c) PPh₃, DIAD, 25 °C; (d) Pd(PPh₃)₄, Na₂CO₃, PhMe/H₂O/*t*-BuOH (3:3:1, v/v/v), reflux.

Compound 1

To a solution of **S1a** (3.0 g, 11.5 mmol), 4-hydroxypyridine (1.4 g, 14.4 mmol), and triphenylphosphine (3.8 g, 14.4 mmol) in anhydrous THF (80 mL), a solution of DIAD (2.9 g, 14.4 mmol) in THF (25 mL) was added dropwise at 0 °C. The resulting dark-green solution was allowed to warm to 25 °C and the mixture was stirred for additional 24 h. The mixture was evaporated to dryness under reduced pressure and the residue was purified by column chromatography (SiO₂, CH₂Cl₂/EtOAc = 20:1, v/v) to give the crude product, which was dissolved in THF (20 mL). The solution was treated with TBAF (1M in THF, 17.3 mL, 17.3 mmol) at 0 °C and stirred at 25 °C for 2 h. The solvent was removed *in vacuo* and the residue was purified by column chromatography (SiO₂, CH₂Cl₂/EtOAc = 20:1, v/v) to afford **1** (1.3 g, 5.6 mmol) in 49 % yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.36 (s, 2H), 6.76 (d, *J* = 5.3 Hz, 2H), 3.96 (t, *J* = 6.5 Hz, 2H), 3.60 (t, 2H), 2.25 (s, 1H), 1.82–1.66 (m, 2H), 1.59–1.48 (m, 2H), 1.49–1.37 (m,

2H), and 1.37–1.26 (m, 6H).¹³C NMR (100 MHz, CDCl₃): δ (ppm) 165.34, 151.03, 110.52, 68.08, 62.98, 32.95, 29.50, 29.46, 29.04, 26.05, and 25.90. MALDI-TOF-MS: calcd for C₁₃H₂₂NO₂ [M+H]⁺: m/z = 224.1651; found: 224.1627.

Compound 2

By a similar procedure to that for **1**, **2** was obtained in 29% yield (0.2 g, 0.1 mmol) from **S2** (0.1 g , 0.3 mmol), **1** (0.3 g, 1.4 mmol), triphenylphosphine (0.4 g, 1.4 mmol), and DIAD (0.3 g, 1.4 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.38 (d, J = 6.2 Hz, 4H), 6.77 (dd, J = 5.1 and 1.2 Hz, 4H), 4.17 (t, J = 6.4 Hz, 4H), 3.98 (t, J = 6.5 Hz, 4H), 1.93–1.83 (m, 4H), 1.83–1.73 (m, 4H), 1.59–1.48 (m, 4H), 1.49–1.42 (m, 4H), and 1.42–1.34 (m, 8H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 165.39, 156.58, 151.04, 129.87, 112.58, 110.54, 109.46, 76.85, 68.08, 30.14, 29.35, 29.04, 26.05, and 25.78. MALDI-TOF-MS: calcd for C₃₄H₄₁Br₂N₄O₄ [M+H]⁺: m/z = 727.1495; found: 727.1489.

Compound L¹

To a degassed two-neck flask containing 2 (0.1 g, 0.2 mmol), 4'-(4-boronophenyl)-2,2':6',2"-terpyridine (0.2 g, 0.5 mmol), and Na₂CO₃ (0.1 g, 0.9 mmol), a mixed solvent (350 mL) of toluene/H₂O/t-BuOH (3:3:1, v/v/v) was added. After being purged with N₂ for 30 min, Pd(PPh₃)₄ (40.0 mg, 33.0 µmol) was added into the mixture, which was then refluxed for 1 day under N₂. After cooling to 25 °C, the mixture was extracted with CHCl₃. The combined organic extract was dried over anhydrous MgSO₄ and then evaporated to dryness under reduced pressure. The residue was subjected to column chromatography (Al₂O₃, CHCl₃) and then recrystallized by CHCl₃/MeOH to give L^1 in 51% yield (0.1 g, 0.1 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.67 (s, 4H), 8.61 (d, J = 4.6 Hz, 4H), 8.57 (d, J = 8.0 Hz, 4H), 8.28 (dd, J = 5.6 and 0.7 Hz, 4H), 7.86-7.75 (m, 8H), 7.28 (dd, J = 4.4 and 3.0 Hz, 4H), 7.20 (d, J = 8.1 Hz, 4H), 6.60 (d, J =6.3 Hz, 4H), 3.72–3.64 (m, 8H), 1.57–1.40 (m, 8H), 1.26–1.17 (m, 4H), and 1.17–1.01 (m, 12H). ¹³C NMR (100 MHz, CDCl₃): δ 165.21, 156.92, 156.15, 156.11, 150.94, 149.23, 149.16, 142.33, 138.18, 137.11, 134.46, 131.08, 127.12, 124.13, 121.49, 118.77, 113.56, 110.41, 110.04, 76.01, 67.91, 29.97, 29.34, 29.17, 28.89, 25.92, and 25.63. MALDI-TOF-MS: calcd for C₇₆H₆₉N₁₀O₄ $[M+H]^+$: m/z = 1185.5503; found: 1185.5525.

Figure S2. MALDI-TOF MS spectrum of L^1 . S5

Scheme S2. Synthesis of ligands L² and L³. *Reagents and conditions*: (a) PPh₃, DIAD, 25 °C; (b) Pd(PPh₃)₄, Na₂CO₃, PhMe/H₂O/*t*-BuOH (3:3:1, v/v/v), reflux; (c) TBAF, THF, 0 °C; (d) PPh₃, DIAD, 25 °C; (e) Pd(PPh₃)₄, Na₂CO₃, PhMe/H₂O/*t*-BuOH (3:3:1, v/v/v), reflux.

Compound 3a

To a solution of **S1a** (4.9 g, 18.9 mmol), **S2** (2.0 g, 6.3 mmol) and triphenylphosphine (5.0 g, 18.9 mmol) in anhydrous THF (20 mL), a THF solution (20 mL) of DIAD (5.1 g, 25.4 mmol) was then added dropwise at 0 °C. The resulting dark-green solution was allowed to warm to 25 °C and the mixture was stirred for additional 24 h. The solvent

was evaporated under reduced pressure and the residue was purified by column chromatography (SiO₂, EtOAc/hexane = 1/20, v/v) to afford **3a** (1.8 g, 2.3 mmol) in 36% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 4.16 (t, J = 6.5 Hz, 4H), 3.56 (t, J = 6.5 Hz, 4H), 1.97–1.82 (m, 4H), 1.54–1.44 (m, 8H), 1.41–1.20 (m, 12H), 0.86 (s, 18H), and 0.02 (d, J = 0.7 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.53, 129.79, 112.52, 109.39, 76.87, 63.41, 33.00, 30.13, 29.46, 29.45, 26.18, 25.91, 25.77, 18.55, and -5.05. ESI-MS: calcd for C₃₆H₆₃Br₂N₂O₄Si₂ [M+H]⁺: m/z = 801.2688; found: 801.2650.

Compound 3b

By a similar procedure to that for **3a**, **3b** was obtained in 45% yield (1.3 g, 1.4 mmol) from **S1a** (3.0 g, 9.4 mmol), **S2** (1.0 g, 3.1 mmol), triphenylphosphine (2.5 g, 9.5 mmol), and DIAD (1.9 g, 9.4 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 4.17 (t, J = 6.6 Hz, 4H), 3.58 (t, J = 6.6 Hz, 4H), 1.92–1.78 (m, 4H), 1.53–1.43 (m, 8H), 1.41–1.19 (m, 28H), 0.87 (s, 18H), and 0.03 (s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.62, 129.87, 112.61, 109.43, 63.59, 33.14, 30.21, 29.87, 29.81, 29.73, 29.69, 29.53, 26.24, 26.05, 25.88, 18.63, and -5.00. ESI-MS: calcd for C₄₄H₇₉Br₂N₂O₄Si₂ [M+H]⁺: m/z = 913.3945; found: 913.3961.

Compound 4a

To a degassed two-neck flask containing **3a** (0.8 g, 1.0 mmol), 4'-(4-boronophenyl)-2,2':6',2"-terpyridine (1.1 g, 3.0 mmol), and Na₂CO₃ (3.2 g, 30.2 mmol), a mixed solvent (350 mL) of toluene/H₂O/*t*-BuOH (3:3:1, v/v/v) was added. After being purged with N₂ for 30 min, Pd(PPh₃)₄ (0.2 g, 0.2 mmol) was added into the mixture, which was then refluxed for 1 day under N₂. After cooling to 25 °C, the mixture was extracted with CHCl₃. The combined organic extract was dried over anhydrous MgSO₄ and then evaporated to dryness under reduced pressure. The residue was subjected to column chromatography (Al₂O₃, CHCl₃) and then recrystallized by CHCl₃/MeOH to give the crude product, which was dissolved in THF (20 mL). The solution was treated with TBAF (1 M in THF, 4.6 mL, 4.6 mmol) at 0 °C. The resulting solution was allowed to warm to 25 °C and then stirred for 12 h. The solvent was evaporated under reduced pressure and the residue was recrystallized by CHCl₃/MeOH to give **4a** as an off-white solid (0.7 g, 0.7 mmol) in 70% yeild. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.64 (s,

4H), 8.62 (d, J = 4.8 Hz, 4H), 8.57 (d, J = 8.0 Hz, 4H), 7.86–7.79 (m, 8H), 7.34–7.26 (m, 4H), 7.19 (d, J = 8.3 Hz, 4H), 3.68 (t, J = 6.2 Hz, 4H), 3.44–3.36 (m, 4H), 2.48 (s, 2H), 1.50–1.40 (m, 4H), 1.35–1.22 (m, 4H), 1.18–1.08 (m, 4H), and 1.08–0.92 (m, 12H).¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.89, 156.22, 156.08, 149.21, 149.03, 142.36, 137.88, 137.22, 134.54, 131.15, 127.05, 124.16, 121.64, 118.80, 113.60, 109.96, 76.02, 62.79, 32.84, 29.89, 29.26, 29.06, 25.74, and 25.54. MALDI-TOF-MS: calcd for C₆₆H₆₃N₈O₄ [M+H]⁺: m/z = 1031.4972; found: 1031.4966.

Compound 4b

By a similar procedure to that for **4a**, **4b** was obtained in 71% yield (1.1 g, 1.0 mmol) from **3a** (1.2 g, 1.4 mmol), 4'-(4-boronophenyl)-2,2':6',2"-terpyridine (1.5 g, 4.2 mmol), and Na₂CO₃ (0.9 g, 8.5 mmol), and Pd(PPh₃)₄ (0.3 g, 0.3 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.65 (s, 4H), 8.62 (d, *J* = 4.8 Hz, 4H), 8.59 (d, *J* = 7.9 Hz, 4H), 7.84–7.76 (m, 8H), 7.32–7.26 (m, 4H), 7.19 (d, *J* = 8.4 Hz, 4H), 3.67 (t, *J* = 6.4 Hz, 4H), 3.52 (t, *J* = 6.7 Hz, 4H), 1.81 (s, 2H), 1.50–1.35 (m, 8H), and 1.26–0.99 (m, 32H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.93, 156.25, 156.13, 149.26, 142.34, 138.24, 137.11, 134.48, 131.09, 127.17, 124.09, 121.55, 118.93, 113.62, 110.00, 76.15, 63.19, 32.97, 30.01, 29.64, 29.60, 29.59, 29.50, 29.31, 25.85, and 25.71. MALDI-TOF-MS: calcd for C₇₄H₇₉N₈O₄ [M+H]⁺: *m/z* = 1143.6224; found: 1143.6341.

Compound 5a

By a similar procedure to that for **3a**, **5a** was obtained in 60% yield (95.0 mg, 59.0 µmol) from **4a** (0.1 g, 0.1 mmol), **S4** (0.1 g, 0.4 mmol), triphenylphosphine (0.1 g, 0.4 mmol), and DIAD (80.2 mg, 0.4 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.67 (s, 4H), 8.62 (d, *J* = 3.9 Hz, 4H), 8.59 (d, *J* = 7.9 Hz, 4H), 7.84–7.76 (m, 8H), 7.40 (s, 4H), 7.30–7.25 (m, 4H), 7.21 (d, *J* = 8.3 Hz, 4H), 3.78 (t, *J* = 6.5 Hz, 4H), 3.67 (t, *J* = 6.4 Hz, 4H), 1.73–1.59 (m, 4H), 1.54–1.43 (m, 4H), 1.38–1.30 (m, 4H), 1.27–1.19 (m, 22H), and 1.13 (s, 8H).¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.94, 156.26, 156.16, 151.15, 149.71, 149.28, 142.33, 138.32, 137.05, 134.45, 131.09, 129.96, 127.21, 124.06, 121.52, 118.95, 118.06, 113.62, 110.05, 76.13, 73.56, 34.75, 31.38, 30.09, 30.03, 29.48, 29.33, 25.97, and 25.74. MALDI-TOF-MS: calcd for C₈₆H₈₃Br₄N₈O₄ [M+H]⁺: *m/z* = 1607.3271; found: 1607.3265.

Compound 5b

By a similar procedure to that for **3a**, **5b** was obtained in 71% yield (1.1 g, 0.6 mmol) from **4b** (1.1 g, 0.9 mmol), **S4** (0.9 g, 2.8 mmol), triphenylphosphine (0.7 g, 2.8 mmol), and DIAD (0.6 g, 2.8 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.67 (s, 4H), 8.63 (d, J = 4.7 Hz, 4H), 8.61 (d, J = 7.9 Hz, 4H), 7.85–7.76 (m, 8H), 7.44 (s, 4H), 7.31–7.25 (m, 4H), 7.20 (d, J = 8.4 Hz, 4H), 3.88 (t, J = 6.7 Hz, 4H), 3.68 (t, J = 6.4 Hz, 4H), 1.49–1.41 (m, 4H), 1.39–1.31 (m, 4H), 1.25 (s, 18H), and 1.20–1.00 (m, 32H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.94, 156.24, 156.13, 151.20, 149.79, 149.25, 142.33, 138.26, 137.06, 134.45, 131.07, 130.01, 127.17, 124.06, 121.50, 118.89, 118.07, 113.60, 110.01, 76.15, 73.72, 34.76, 31.37, 30.21, 30.04, 29.75, 29.72, 29.61, 29.39, 26.02, and 25.76. MALDI-TOF-MS: calcd for C₉₄H₉₉Br₄N₈O₄ [M+H]⁺: m/z = 1719.4523; found: 1719.4465.

Compound L²

By a similar procedure to that for L¹, L² was obtained in 65% yield (0.1 g, 47.2 µmol) from **S5** (0.1 g, 0.4 mmol), **5a** (0.1 g, 72.6 µmol), Na₂CO₃ (0.2 g, 1.9 mmol), and Pd(PPh₃)₄ (56.2 mg, 48.6 µmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.65–8.61 (m, 12H), 8.58 (d, *J* = 8.5 Hz, 4H), 8.56 (d, *J* = 8.0 Hz, 4H), 7.81–7.76 (m, 4H), 7.73 (d, *J* = 8.3 Hz, 4H), 7.71–7.63 (m, 16H), 7.53 (d, *J* = 6.3 Hz, 8H), 7.35 (s, 4H), 7.28–7.24 (m, 4H), 7.13 (d, *J* = 8.3 Hz, 4H), 3.51 (t, *J* = 6.2 Hz, 4H), 3.09 (t, *J* = 6.1 Hz, 4H), 1.37 (s, 18H), 1.31–1.20 (m, 4H), 1.09–0.99 (m, 4H), 0.95–0.87 (m, 4H), and 0.86–0.68 (m, 12H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.85, 156.17, 156.12, 152.13, 150.35, 149.21, 148.18, 147.10, 142.22, 140.44, 138.15, 137.04, 136.59, 134.70, 130.99, 130.48, 127.68, 127.08, 126.74, 124.04, 121.64, 121.47, 118.86, 110.02, 75.94, 73.54, 34.75, 31.71, 29.90, 29.86, 29.24, 29.09, 25.85, and 25.64. MALDI-TOF-MS: calcd for C₁₃₀H₁₁₅N₁₂O₄ [M+H]⁺: *m/z* = 1907.9164; found: 1907.9126.

Compound L³

By a similar procedure to that for L¹, L³ was obtained in 69% yield (0.1 g, 83.5 µmol) from **S5** (0.3 g, 1.1 mmol), **5b** (0.2 g, 0.1 mmol), Na₂CO₃ (0.1 g, 0.9 mmol), and Pd(PPh₃)₄ (34.0 mg, 33.6 µmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.66 (s, 4H), 8.63 (d, J = 5.9 Hz, 8H), 8.60 (d, J = 4.5 Hz, 4H), 8.57 (d, J = 8.0 Hz, 4H), 7.80–7.76 (m, 8H), 7.76–7.64 (m, 16H), 7.53 (d, J = 6.0 Hz, 8H), 7.38 (s, 4H), 7.28–7.21 (m, 4H),

7.19 (d, J = 8.1 Hz, 4H), 3.66 (t, J = 6.3 Hz, 4H), 3.18 (t, J = 6.1 Hz, 4H), 1.50–1.40 (m, 8H), 1.38 (s, 18H), and 1.13–0.66 (m, 32H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.94, 156.25, 156.13, 152.19, 150.41, 149.28, 149.25, 148.22, 147.21, 142.33, 140.48, 138.23, 137.03, 136.74, 134.78, 134.49, 131.08, 130.53, 127.77, 127.17, 126.81, 124.03, 121.68, 121.49, 118.92, 113.63, 110.06, 76.15, 73.68, 34.80, 31.75, 30.05, 29.97, 29.93, 29.72, 29.71, 29.69, 29.38, 29.31, 25.97, and 25.76. MALDI-TOF-MS: calcd for C₁₃₈H₁₃₁N₁₂O4 [M+H]⁺: m/z = 2020.0413; found: 2020.0424.

Figure S3. ¹H and ¹³C NMR spectra of L².

Figure S4. MALDI-TOF MS spectrum of L². S11

Figure S5. ¹H and ¹³C NMR spectra of L³.

Figure S6. MALDI-TOF MS spectrum of L³. S12

Complex Synthesis

Scheme S3. Synthesis of complexes [Zn₃L¹₃] and [Zn₃Pd₃L¹₃].

$[Zn_3L^1_3]$

To a stirred solution of L^1 (9.2 mg, 7.7 µmol) in CHCl₃ (5 mL), a solution of Zn(OTf)₂ (3.0 mg, 8.2 µmol) in MeOH (3 mL) was added. The mixture was stirred at 25 °C for 1 h and then diethyl ether was added to the solution to precipitate the complex. The precipitate was filtered and then washed by H₂O to afford complex [Zn₃L¹₃] as a white solid (12.0 mg, 2.6 µmol) in 99% yield. ¹H NMR (400 MHz, CD₃CN): δ (ppm) 9.00 (s, 12H), 8.74 (d, *J* = 8.2 Hz, 12H), 8.21 (t, *J* = 7.4 Hz, 24H), 8.01 (t, *J* = 7.7 Hz, 12H), 7.79 (d, *J* = 5.0 Hz, 12H), 7.61 (d, *J* = 8.1 Hz, 12H), 7.32–7.24 (m, 12H), 6.58–6.52 (m,

12H), 3.98 (t, J = 6.0 Hz, 12H), 3.86 (t, J = 6.8 Hz, 12H), 1.66–1.51 (m, 24H), and 1.39–1.07 (m, 48H). ESI-MS (*m/z*): 1399.7247 [M-3OTf]³⁺ (calcd *m/z* 1399.7606), 1012.4131 [M-4OTf]⁴⁺ (calcd *m/z* 1012.3305), and 780.2885 [M-5OTf]⁵⁺ (calcd *m/z* 780.2772).

[Zn₃Pd₃L¹₃] (Stepwise)

To a stirred CD₃CN solution (0.45 mL) of [Zn₃L¹₃] (6.0 mg, 1.3 µmol), a solution of Pd(dppp)(OTf)₂ (3.2 mg, 3.9 µmol) in CD₃CN (0.2 mL) was added. The mixture was stirred at 25 °C for 3 h. The solvent was evaporated *in vacuo* to afford [Zn₃Pd₃L¹₃] (9.2 mg, 1.3 µmol) in 99% yield. ¹H NMR (400 MHz, CD₃CN): δ (ppm) 8.98 (s, 12H), 8.73 (d, *J* = 8.1 Hz, 12H), 8.27 (br d, *J* = 5.2 Hz, 12H), 8.20 (d, *J* = 8.1 Hz, 12H), 7.96 (br t, *J* = 7.8 Hz, 12H), 7.72 (br, 12H), 7.61 (d, *J* = 8.2 Hz, 12H), 7.59–7.31 (m, 60H), 7.22 (br, 12H), 6.33 (br, 12H), 3.99 (br t, *J* = 4.8 Hz, 12H), 3.63 (br, 12H), 3.06 (br, 12H), 2.18 (br, 6H), 1.66–1.50 (m, 12H), 1.43 (br, 12H), 1.17 (br, 36H), and 1.05 (br, 12H). ³¹P NMR (162 MHz, CD₃CN): δ (ppm) 13.52 (s, 6P). ESI-MS (*m/z*): 2216.7979 [M-3OTf]³⁺ (calcd *m/z* 2216.7205), 1625.3704 [M-4OTf]⁴⁺ (calcd *m/z* 1625.3004), and 1270.4955 [M-5OTf]⁵⁺ (calcd *m/z* 1270.4468).

$[Zn_3Pd_3L^{1}_3]$ (One-pot)

To a stirred CD₃CN solution (0.45 mL) of L^1 (6.0 mg, 5.1 µmol), a solution of Pd(dppp)(OTf)₂ (4.1 mg, 5.1 µmol) and Zn(OTf)₂ (1.8 mg, 5.1 µmol) in CD₃CN (0.2 mL) was added. The mixture was stirred at 25 °C for 3 h. The solvent was evaporated *in vacuo* to afford [Zn₃Pd₃L¹₃] (11.9 mg, 1.7 µmol) in 99% yield.

Figure S7. ¹H NMR spectra of [Zn₃L¹₃].

Figure S8. Partial NOESY spectrum of [Zn₃L¹₃].

Figure S9. ESI-MS spectrum of $[Zn_3L^{1}_3]$ and its experimental and theoretical isotope patterns.

Figure S10. ESI-TWIM-MS plot of [Zn₃L¹₃].

Table S1. Experimental and calculated collision cross-sections of [Zn₃L¹₃].

Experimental and Calculated CCSs (Å ²)				
Charge 3+	$[Zn_3L^{1}_3]^{3+}$	Charge 4+	$[Zn_3L^{1}_3]^{4+}$	
	Exp.	PA	ТМ	
[Zn ₃ L ¹ ₃]	640.9 (26.7)	627.0 (23.5)	733.0 (28.0)	

Figure S11. ¹H NMR spectra of [Zn₃Pd₃L¹₃].

Figure S12. ESI-MS spectra of $[Zn_3Pd_3L^{1}_3]$ and its experimental and theoretical isotope patterns.

Figure S13. ESI-TWIM-MS plot of [Zn₃Pd₃L¹₃].

Experimental and Calculated CCSs (Å²) $[Zn_3Pd_3L^{1}_3]^{5+}$ $[Zn_{3}Pd_{3}L^{1}{}_{3}]^{4+}$ Charge Charge 4+ 822.7 5+ 838.1 PA ΤM Exp. $[Zn_3Pd_3L^1_3]$ 830.4 (7.7) 733.0 (42.5) 878.3 (56.3)

Table S2. Experimental and calculated collision cross-sections of [Zn₃Pd₃L¹₃].

Figure S14. ¹H DOSY spectrum of [Zn₃Pd₃L¹₃] taken in CD₃CN.

Figure S15. Partial COSY spectrum of [Zn₃Pd₃L¹₃].

Figure S16. Partial ROESY spectrum of $[Zn_3Pd_3L^{1}_3]$. The correlations between the alkyl chains and aromatic rings indicate the inter-ligand connection between pyridines.

Control Experiments

Scheme S4. Synthesis of complex [Pd2].

[Pd2]

To a stirred CD₃CN solution (0.45 mL) of **2** (5.0 mg, 7.4 µmol), a solution of Pd(dppp)(OTf)₂ (6.0 mg, 7.4 µmol) in CD₃CN (0.2 mL) was added. The mixture was stirred at 25 °C for 3 h, and then the solvent was removed *in vacuo* to afford [Pd**2**] in 99% yield (10.9 mg, 7.4 µmol). ¹H NMR (400 MHz, CD₃CN : CD₃NO₂ = 1:1): δ (ppm) 8.29 (br, 4H), 7.67–7.52 (m, 8H), 7.47 (t, *J* = 7.5 Hz, 4H), 7.37 (t, *J* = 7.6 Hz, 8H), 6.59 (br, 4H), 4.18 (br, 4H), 3.90 (br, 4H), 3.08 (br, 4H), 2.20–2.16 (m, 2H), 1.86–1.77 (m, 4H), 1.70–1.62 (m, 4H), 1.52–1.42 (m, 4H), and 1.39–1.28 (m, 12H). ³¹P NMR (162 MHz, CD₃CN : CD₃NO₂ = 1:1): δ (ppm) 13.57 (s, 2P). ESI-MS (*m/z*): 1396.1459 [M-OTf]¹⁺ (calcd *m/z* 1396.1487) and 623.5966 [M-2OTf]²⁺ (calcd *m/z* 623.5983).

Figure S17. ¹H NMR spectra of a) **2** in CDCl₃ and b) [Pd**2**] in CD₃CN/CD₃NO₂ (1/1, v/v).

Figure S18. ³¹P NMR spectra of a) $Pd(dppp)(OTf)_2$ in CD₃CN and b) [Pd2] in CD₃CN/CD₃NO₂ (1/1, v/v).

Figure S20. a) ESI-MS spectrum and b) ESI-TWIM-MS plot of [Pd2].

Table S3. Experimental	l and theoretical	collision cro	ss-sections	of []	Pd2].
------------------------	-------------------	---------------	-------------	-------	-----	----

Experimental and Calculated CCSs (Å ²)				
Charge	$[Pd2]^{1+}$	Charge	$[Pd2]^{2+}$	
1+	265.0	2+	244.6	
	Exp.	РА	TM	
[Pd 2]	254.8 (10.2)	226.5 (10.9)	245.7 (11.9)	

S21

Scheme S5. Synthesis of complexes $[Zn_3L^2_3]$ and $[Zn_3Pd_6L^2_3]$.

$[Zn_3L^2_3]$

To a stirred solution of L^2 (51.0 mg, 26.7 µmol) in CHCl₃ (7 mL), a solution of Zn(OTf)₂ (9.9 mg, 27.3 µmol) in MeOH (7 mL) was added. The mixture was stirred at 25 °C for 1 h and then diethyl ether was added to the solution to precipitate the complex. The precipitate was filtered and then washed by H₂O to afford complex [Zn₃L²₃] as a white solid (60.2 mg, 8.8 µmol) in 99% yield. ¹H NMR (400 MHz, CD₃CN): δ (ppm) 8.94 (s, 12H), 8.66 (d, *J* = 8.3 Hz, 12H), 8.65–8.58 (m, 24H), 8.15 (d, *J* = 7.9 Hz, 12H), 7.93 (t, *J* = 7.9 Hz, 12H), 7.78 (d, *J* = 8.4 Hz, 24H), 7.71 (d, *J* = 8.5 Hz, 24H), 7.66 (d, *J* = 5.1 S22

Hz, 12H), 7.67–7.59 (m, 24H), 7.54 (d, J = 7.9 Hz, 12H), 7.40 (s, 12H), 7.22–7.13 (m, 12H), 3.76 (t, J = 6.2 Hz, 12H), 3.06 (t, J = 5.6 Hz, 12H), 1.36 (s, 54H), 1.07–0.99 (m, 12H), 0.98–0.80 (m, 48H), and 0.79–0.71 (m, 12H). ESI-MS (*m/z*): 2122.7888 [M-30Tf]³⁺ (calcd *m/z* 2122.8350), 1554.8350 [M-40Tf]⁴⁺ (calcd *m/z* 1554.8555), and 1214.1444 [M-50Tf]⁵⁺ (calcd *m/z* 1214.0925).

$[Zn_3Pd_6L^2_3]$ (Stepwise)

To a stirred CD₃CN solution (0.5 mL) of [Zn₃L²₃] (5.7 mg, 0.8 mmol), a solution of *trans*-Pd(PEt₃)₂(OTf)₂ (3.2 mg, 5.0 mmol) in CD₃CN (0.20 mL) was added. The mixture was stirred at 25 °C for 3 h, and then the solvent was evaporated *in vacuo* to afford [Zn₃Pd₆L²₃] (8.9 mg, 0.8 mmol) in 99% yield. ¹H NMR (500 MHz, CD₃CN : CD₃NO₂ = 1:1) δ (ppm) 9.13 (d, *J* = 5.7 Hz, 12H), 9.07 (s, 12H), 8.95 (d, *J* = 6.3 Hz, 12H), 8.79 (d, *J* = 8.2 Hz, 12H), 8.27–8.20 (m, 36H), 8.10–7.93 (m, 60H), 7.89 (d, *J* = 5.0 Hz, 12H), 7.72–7.64 (m, 18H), 7.64–7.60 (m, 6H), 7.33 (t, *J* = 6.3 Hz, 12H), 3.98 (br t, *J* = 6.2 Hz, 12H), 3.29 (br, 12H), 1.69–1.60 (m, 36H), and 1.55–0.76 (m, 270H). ³¹P NMR (162 MHz, CD₃CN) δ 20.90 (s, 6P) and 20.31 (s, 6P). ESI-MS (*m*/*z*): 1373.8236 [M-7OTf]⁷⁺ (calcd *m*/*z* 1373.7898), 1183.4886 [M-8OTf]⁸⁺ (calcd *m*/*z* 1183.4452), 1035.5345 [M-9OTf]⁹⁺ (calcd *m*/*z* 1035.5148), 916.9948 [M-10OTf]¹⁰⁺ (calcd *m*/*z* 916.9658), and 820.0613 [M-110Tf]¹¹⁺ (calcd *m*/*z* 820.0879).

$[Zn_3Pd_6L^2_3]$ (One-pot)

To a stirred CD₃CN solution (0.45 mL) of L^2 (5.0 mg, 2.6 µmol), a solution of *trans*-Pd(PEt₃)₂(OTf)₂ (3.4 mg, 5.2 µmol) and Zn(OTf)₂ (1.0 mg, 2.6 µmol) in CD₃CN (0.2 mL) was added. The mixture was stirred at 25 °C for 3 h, and then the solvent was evaporated *in vacuo* to afford [Zn₃Pd₆L²₃] (9.4 mg, 0.9 µmol) in 99% yield.

Figure S21. ¹H NMR spectra of $[Zn_3L^2_3]$.

Figure S22. ESI-MS spectra of $[Zn_3L^2_3]$ and its experimental and theoretical isotope patterns.

Figure S23. ESI-TWIM-MS plot of [Zn₃L²₃].

Experimental and Calculated CCSs (Å ²)				
Charge 3+	$[Zn_3L^2_3]^{3+}$ 832.0	Charge 4+	$[Zn_3L^2_3]^{4+}$ 804.3	
Charge 5+	$[Zn_3L^2_3]^{5+}$ 784.4			
	Exp.	РА	TM	
$[Zn_3L^2_3]$	806.9 (19.5)	825.3 (56.9)	984.5 (61.3)	

Table S4. Experimental and calculated collision cross-sections of $[Zn_3L^2_3]$.

Figure S24. ¹H NMR spectra of $[Zn_3Pd_6L^2_3]$ taken in CD₃CN/CD₃NO₂ (1/1, v/v).

Figure S25. Partial COSY spectrum of [Zn₃Pd₆L²₃].

Figure S26. Partial ROESY spectrum of $[Zn_3Pd_6L^2_3]$ (brown: ROESY signals, black: COSY signals).

Figure S27. Partial ROESY spectra of [Zn₃Pd₆L²₃].

Figure S28. Partial a) COSY and b) ROESY spectra of [Zn₃Pd₆L²₃].

Figure S29. ¹H DOSY spectrum of $[Zn_3Pd_6L^2_3]$ in CD₃CN/CD₃NO₂ (1/1, v/v).

Figure S30. ESI-MS spectra of $[Zn_3Pd_6L^2_3]$ and its experimental and theoretical isotope patterns.

Figure S31. Fragmentation assignments for the ESI-MS spectra of $[Zn_3Pd_6L^2_3]$.

Scheme S6. Synthesis of complexes [Zn₃L³₃] and [Zn₃Pt₁₂L³₃].

$[Zn_3L^3_3]$

To a stirred solution of L^3 (51.5 mg, 25.5 µmol) in CHCl₃ (7 mL), a solution of Zn(OTf)₂ (9.5 mg, 26.0 µmol) in MeOH (7 mL) was added. The mixture solution was stirred at 25 °C for 1 h and then diethyl ether was added to the solution to precipitate the complex. The precipitate was filtered and then washed by H₂O to afford [Zn₃L³₃] as a white solid in (61.0 mg, 8.5 µmol) in 99% yield. ¹H NMR (400 MHz, CD₃NO₂): δ (ppm) 8.99 (s, 12H), 8.64 (d, *J* = 8.0 Hz, 12H), 8.60–8.52 (m, 24H), 8.20 (d, *J* = 7.5 Hz, 12H), 7.95 (t,

J = 7.6 Hz, 12H), 7.85–7.72 (m, 60H), 7.68 (d, J = 7.9 Hz, 12H), 7.64–7.59 (m, 24H), 7.49 (s, 12H), 7.21 (t, J = 6.4 Hz, 12H), 4.00 (t, J = 5.7 Hz, 12H), 3.12 (t, J = 5.6 Hz, 12H), 1.65–1.50 (m, 24H), 1.38 (s, 54H), 1.17–0.60 (m, 84H), and 0.50 (br, 12H). ESI-MS (m/z): 2234.8413 [M-3OTf]³⁺ (calcd m/z 2234.9219), 1638.9307 [M-4OTf]⁴⁺ (calcd m/z 1638.9495), and 1281.3573 [M-5OTf]⁵⁺ (calcd m/z 1281.3676).

$[Zn_3Pt_{12}L^3_3]$ (Stepwise)

To a stirred CD₃NO₂ solution (0.5 mL) of [Zn₃L³₃] (5.4 mg, 0.8 µmol), a solution of 1,4-bis(*trans*-Pt(PEt₃)₂(OTf))benzene (5.6 mg, 4.8 µmol) in CD₃NO₂ (0.20 mL) was added. The mixture was stirred at 25 °C for 3 h, and then the solvent was evaporated *in vacuo* to afford [Zn₃Pt₁₂L³₃] (11.0 mg, 0.8 µmol) in 99% yield. ¹H NMR (400 MHz, CD₃NO₂): δ (ppm) 9.04 (br, 12H), 8.92 (br, 12H), 8.86 (br, 12H), 8.74 (br d, *J* = 8.1 Hz, 12H), 8.19 (br, 12H), 8.13–7.98 (m, 60H), 7.95–7.85 (m, 42H), 7.61 (br, 18H), 7.28 (br, 24H), 7.19 (br, 12H), 3.85 (br, 12H), 3.22 (br, 12H), 1.57 (br, 84H), 1.53–1.38 (m, 138H), and 1.37–0.82 (m, 312H). ³¹P NMR (162 MHz, CD₃NO₂): δ (ppm) 17.15 (s, 12P, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 2752.89 Hz) and 17.05 (s, 12P, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 2752.89 Hz). ESI-MS (*m*/*z*): 1308.3623 [M-10OTf]¹⁰⁺ (calcd *m*/*z* 1308.3457), 1175.7887 [M-11OTf]¹¹⁺ (calcd *m*/*z* 1175.7725), 1065.3892 [M-12OTf]¹²⁺ (calcd *m*/*z* 1065.3820), and 972.0563 [M-13OTf]¹³⁺ (calcd *m*/*z* 972.0469).

$[Zn_3Pt_{12}L^3_3]$ (One-pot)

To a stirred CD₃NO₂ solution (0.45 mL) of L^3 (8.0 mg, 4.0 µmol), a solution of 1,4bis(*trans*-Pt(PEt₃)₂(OTf))benzene (9.8 mg, 7.9 µmol) and Zn(OTf)₂ (1.4 mg, 4.0 µmol) in CD₃CN (0.2 mL) was added. The mixture was stirred at 25 °C for 3 h, and then the solvent was evaporated *in vacuo* to afford [Zn₃Pt₁₂L³₃] (19.2 mg, 1.3 µmol) in 99% yield.

Figure S32. ¹H NMR spectra of $[Zn_3L^3_3]$.

Figure S33. ESI-MS spectra of $[Zn_3L^3_3]$ and its experimental and theoretical isotope patterns.

Figure S34. ESI-TWIM-MS plot of [Zn₃L³₃].

Table S5. Experimental and calculated collision cross-sections of $[Zn_3L^3_3]$.				
	Experimental and C	Calculated CCSs (Å ²))	
Charge	$[Zn_3L^3_3]^{3+}$	Charge	$[Zn_3L^3_3]^{4+}$	
3+	851.6	4+	813.5	
Charge	$[Zn_3L^3_3]^{5+}$	Charge	$[Zn_3L^3_3]^{6+}$	
5+	797.9	6+	793.4	
	Exp.	PA	TM	
$[Zn_3L^3_3]$	814.1 (22.9)	868.6 (56.1)	1029.2 (61.2)	
	$ \begin{array}{c} $	$ \begin{array}{c} f & e & d & c \\ i & & & \\ i $	2 (ppm) 5 S" Pt-phenylene Pt-phenylene	
9 8 9 8 3' 5' 9 9.2 9.0	^N ∈ 2 ⁷ 6 ^g 3" ^g 3" ^s 2 ² ^s 2 ² ^s 2 ² ^s 3 ³ ^g 3" ^s 2 ² ^s 2 ³ ^s 2 ³ ^s 3 ³	e^{4} 6 $e^{4''}$ 7 $e^{4''}$ 7 e^{4'	2 (ppm) 5 5" Pt-phenylene Pt-phenylene ** ** ** 7.4 7.2 (ppm)	

Figure S35. ¹H NMR spectra of [Zn₃Pt₁₂L³₃].

Figure S36. Partial COSY spectrum of [Zn₃Pt₁₂L³₃].

Figure S37. Partial NOESY spectrum of [Zn₃Pt₁₂L³₃] (brown: NOESY signals, black: COSY signals).

Figure S38. Partial NOESY spectrum of [Zn₃Pt₁₂L³₃].

Figure S40. Partial a) NOESY and b) COSY spectra of [Zn₃Pt₁₂L³₃].

Figure S42. ESI-MS spectrum of $[Zn_3Pt_{12}L^3_3]$ and its experimental and theoretical isotope patterns.

Figure S43. ESI-TWIM-MS plot of [Zn₃Pt₁₂L³₃].

Experimental and Calculated CCSs (Å ²)			
Charge 8+	$[Zn_3Pt_{12}L^3_3]^{8+}$ 1527.5	Charge 9+	$[Zn_3Pt_{12}L^3_3]^{9+}$ 1583.2
Charge 10+	$[Zn_3Pt_{12}L^3_3]^{10+}$ 1694.5	Charge 11+	$[Zn_3Pt_{12}L^3_3]^{11+}$ 1745.8
Charge 12+	$[Zn_3Pt_{12}L^3_3]^{12+}$ 1871.6		
	Exp.	PA	ТМ
$[Zn_3Pt_{12}L^3_3]$	1684.5 (121.5)	1429.6 (104.7)	1705.5 (142.4)

Table S6. Experimental and calculated collision cross-sections of [Zn₃Pt₁₂L³₃].

	3	50 nm	-		
4	2				Height
				1	1.73
	5			2	1.78
				3	1.75
		1		4	1.72
2	٨		-	5	1.65
1.5				6	1.73
0.5	۲ ۲	6		nm	1.73 ± 0.04
-0.5 0 5	10 15 20 25				

Figure S44. AFM image of [Zn₃Pt₁₂L³₃] and the statistical analysis for the height.

Average = 7.0 ± 0.9 nm

Figure S45. TEM images of $[Zn_3Pt_{12}L^3_3]$ and the statistical analysis for the diameter.

Figure S46. Energy-minimized structures of a) $[Zn_3Pd_3L^{1}_3]$, b) $[Zn_3Pd_6L^{2}_3]$, and c) $[Zn_3Pt_{12}L^{3}_3]$.

References

- S.-J. Su, D. Tanaka, Y.-J. Li, H. Sasabe, T. Takeda, J. Kido, Org. Lett. 2008, 10, 941-944.
- [2] J. S. Yadav, B. Ganganna, P. Dutta, K. K. Singarapu, J. Org. Chem. 2014, 79, 10762-10771.
- [3] H. Shokouhi Mehr, N. C. Romano, R. Altamimi, J. M. Modarelli, D. A. Modarelli, *Dalton Trans.* 2015, 44, 3176-3184.
- [4] A. Podgoršek, S. Stavber, M. Zupan, J. Iskra, *Tetrahedron* 2009, 65, 4429-4439.
- [5] M. J. Cook, M. J. Heeney, *Chem. Eur. J.* **2000**, *6*, 3958-3967.
- P. M. Lalli, B. A. Iglesias, D. K. Deda, H. E. Toma, G. F. de Sa, R. J. Daroda,
 K. Araki, M. N. Eberlin, *Rapid Comm. Mass Spectrom.* 2012, 26, 263-268.
- [7] Y.-T. Chan, X. Li, M. Soler, J.-L. Wang, C. Wesdemiotis, G. R. Newkome, J. Am. Chem. Soc. 2009, 131, 16395-16397.
- [8] C.-S. Jhang, H. Lee, Y.-S. He, J.-T. Liu, C.-H. Lin, *Electrophoresis* 2012, 33, 3073-3078.
- [9] Y.-T. Chan, X. Li, J. Yu, G. A. Carri, C. N. Moorefield, G. R. Newkome, C. Wesdemiotis, J. Am. Chem. Soc. 2011, 133, 11967-11976.
- [10] A. A. Shvartsburg, M. F. Jarrold, Chem. Phys. Lett. 1996, 261, 86-91.
- [11] M. F. Mesleh, J. M. Hunter, A. A. Shvartsburg, G. C. Schatz, M. F. Jarrold, J. Phys. Chem. 1996, 100, 16082-16086.
- [12] K. Thalassinos, M. Grabenauer, S. E. Slade, G. R. Hilton, M. T. Bowers, J. H. Scrivens, Anal. Chem. 2009, 81, 248-254.
- [13] S. D. Pringle, K. Giles, J. L. Wildgoose, J. P. Williams, S. E. Slade, K. Thalassinos, R. H. Bateman, M. T. Bowers, J. H. Scrivens, *Int. J. Mass Spectrom.* 2007, 261, 1-12.
- [14] Y.-P. Liang, Y.-J. He, Y.-H. Lee, Y.-T. Chan, *Dalton Trans.* 2015, 44, 5139-5145.