Electronic Supporting Information

Predicted $M(H_2)_{12}^{n+}$ (M = Ac, Th, Pa, U, La and n = 3, 4) Complexes with Twenty Four Hydrogen Atoms Bound to the Metal Ion

Meenakshi Joshi^{a,b} and Tapan K. Ghanty^{*a,b}

^aTheoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai–400085 (India).

E-mail: tapang@barc.gov.in

^bHomi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400094 (India).

Computational Details

In the present work, all the calculations have been carried out using Turbomole 7.2 program.^[1]. We have used dispersion-corrected density functional theory (DFT-D3) using BHLYP, PBE, and B3LYP with def-TZVPP basis set for optimization of all the La/Ac(III) centered H_n , (n = 1-15) clusters.^[2] Relativistic effective core potential (RECP) has also been employed for heavier elements, viz., 60 core electrons for An (Ac, Th, Pa, U) and 28 core electrons for La.^[3] The D3-Dispersion correction is used in all calculations because in the weakly interacted systems it can lead to significant improvements in accuracy.^[4] Basis set superposition error (BSSE) has been calculated using BHLYP-D3/def-TZVPP method. For a few small systems, we have performed CCSD(T)^[5], MP2^[6] calculations using MOLPRO2012^[7] and various DFT-D3^[2] calculations. Charge calculation has been done using natural population analysis (NPA) scheme.^[8] Furthermore, to obtain a clear insight into the nature of chemical bond existing between the constituent atoms quantitatively, the AIM (atoms-in-molecule) analysis^[9] has been carried at BHLYP-D3/def-TZVPP level employed with energy density function (EDF)^[10] utilizing Multiwfn program^[11]. To investigate the nuclear quantum effect (NQE) we have used the nuclear-electronic orbital (NEO) method in conjunction with MP2 level of theory (NEO-MP2) as implemented in GAMESS-2018 software.^[12] The double-zeta nuclear basis set including s, p and d functions, DZSPDN is used for the quantum hydrogen.^[13] The calculation is performed using def2-TZVPP^[3a] basis set for H and CRENBL basis set^[14] is used for Ac with an effective core potential (ECP=78). For comparison purpose we optimized few small systems with MP2 method using CRENBL basis for Ac (ECP 78). The optimized structural parameters using CRENBL basis set (ECP 78) are found in good agreement with that of the BHLYP-D3 method (ECP 60). Moreover, to study the relativistic effect we have performed optimization using scalar relativistic ZORA approach with 4f-frozen core as well as all electron basis set using PBE-D3BJ functional and TZ2P basis set in ADF2017 software.^[15] The charge calculation is also performed using Voronoi deformation density (VDD)^[16] method in ADF2017.

References

 TURBOMOLE is program package developed by the Quantum Chemistry Group at the University of Karlsruhe, Germany, 1988: Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys. Lett. 1989, 162, 165–169.

- a) J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* **1996**, 77, 3865-3868. b) J. Tao, J. Perdew, V. Staroverov, G. Scuseria, *Phys. Rev. Lett.* **2003**, *91*, 146401. c) A. D. Becke, *J. Chem. Phys.* **1993**, *98*, 1372–1377. d) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* **1988**, 37, 785–789. e) A. D. Becke, *Phys. Rev. A* **1988**, *38*, 3098-3100. f) J. P. Perdew, M. Ernzerhof, K., J. Burke, *Chem. Phys.* **1996**, *105*, 9982-9985. g) V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, *J. Chem. Phys.* **2003**, *119*, 12129-12137.
- a) F. Weigenda, R. Ahlrichsb, *Phys. Chem. Chem. Phys.* 2005, *7*, 3297–3305. b) A. Bergner, M. Dolg, W. Küchle, H. Stoll, H. Preuß, *Mol. Phys.* 1993, *80*, 1431–1441. c) X. Cao, M. Dolg, *J. Molec. Struct.* 2004, *673*, 203–209. d) M .Dolg, H. Stoll, H. Preuss, *J. Chem. Phys.* 1989, *90*, 1730–1734. e) X. Cao, M. Dolg, H. Stoll, *J. Chem. Phys.* 2003, *118*, 487–496. f) W. Küchle, M. Dolg, H. Stoll, H. Preuss, *Mol. Phys.* 1991, *74*, 1245–1263.
- a) S. Grimme, J. Antony, S. Ehrlich, H. A Krieg, J. Chem. Phys. 2010, 132, 154104. b)
 S. Grimme, A. Hansen, J. G. Brandenburg, C. Bannwarth, Chem. Rev. 2016, 116, 5105-5154.
- 5. C. Hampel, K. Peterson, H.-J. Werner, Chem. Phys. Lett. 1992, 190, 1-12.
- 6. M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 1990, 166, 275-280.
- H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schützet, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, et al. MOLPRO, version 2012.1, a Package of ab initio Programs, 2012; see http://www.molpro.net.
- 8. A. E. Reed, R. B. Weinstock, F. A. Weinhold, J. Chem. Phys. 1985, 83, 735
- a) R. F. W. Bader, Atoms in Molecules–A Quantum Theory; Oxford University Press: Oxford, U.K., 1990. b) W. Zou, D. Nori–Shargh, Boggs, J. Phys. Chem. A 2013, 117, 207-212.
- 10. T. A. Keith, M. J. Frisch, J. Phys. Chem. A. 2011, 115, 12879-12894.
- 11. T. Lu, F. W. Chen, J. Comput. Chem. 2012, 33, 580-592.
- a) M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen,
 S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, et al., *J. Comput. Chem.* 1993, *14*, 1347–1363. b) C. Swalina, M. V. Pak, S. Hammes-Schiffer, *Chem. Phys. Lett.* 2005, *404*, 394–399.
- 13. S. P. Webb, T. Iordanov, S. Hammes-Schiffer, J. Chem. Phys. 2002, 117, 4106.
- 14. W. C. Ermler, R.B. Ross, P.A. Christiansen, Int. J. Quant. Chem. 1991, 40, 829.

- a) ADF2017; SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam, The Netherlands. http://www.scm.com. b) G. te Velde, F. M. Bickelhaupt, S. A. van Gisbergen, C. Fonseca Guerra, E. J. Baerends, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931–967. c) E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1994, 101, 9783–9792. d) E. van Lenthe, A. E. Ehlers, E. J. Baerends, J. Chem. Phys. 1999, 110, 8943–8953. e) E. van Lenthe, E. J. Baerends, J. Comput. Chem. 2003, 24, 1142–1156.
- C. F. Guerra, J. W. Handgraaf, E. J. Baerends, F. M. Bickelhaupt, J. Comput. Chem. 2004, 25, 189–210.

List of Tables

Table S1. Optimized Bond Lengths ($R_{(Ac-H)}$, $R_{min(H-H)}$, in Å), Binding Energy (BE, in eV), of Ac(H₂)_n³⁺ (n = 1-3) Calculated using MP2, CCSD(T) Methods and PBE-D3, PBE0-D3, B3LYP-D3, BHLYP-D3, TPSS-D3, TPSSH-D3 Functional with def-TZVPP Basis Set

Table S2. Optimized Bond Lengths ($R_{(Ac-H)}$, $R_{min(H-H)}$, in Å), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV), Charge on Ac (q_{Ac}) and Average Charge on H ($q_{avg(H)}$) Atoms (in, e) in Ac(H_2)_n³⁺ (n = 1 - 12) Calculated using BHLYP-D3/def-TZVPP Method

Table S3. Optimized Bond Lengths ($R_{(La-H)}$, $R_{min(H-H)}$, in Å), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV), Charge on La (q_{La}) and Average Charge on H ($q_{avg(H)}$) Atoms (in, e) in La(H_2)_n³⁺ (n = 1 - 15) Calculated using BHLYP-D3/def-TZVPP Method

Table S4. Optimized Bond Lengths ($R_{(M-H)}$, $R_{min(H-H)}$, in Å), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV), Binding Energy as well as Binding Energy per H₂ molecule (BE, in eV) Charge on M (q_M) and Average Charge on H ($q_{avg(H)}$) Atoms (in, e) in Th(H₂)₁₂³⁺ and M(H₂)₁₂⁴⁺ (M = Th, Pa and U) Calculated with PBE-D3 and B3LYP-D3 Functionals using def-TZVPP Basis Set

Table S5. Optimized Bond Lengths ($R_{(Ac-H)}$, $R_{min(H-H)}$, in Å), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV), Charge on Ac (q_{Ac}) and Average Charge on H ($q_{avg(H)}$) Atoms (in, e) in Ac(H_2)_n³⁺ (n = 1 - 15) Calculated using PBE-D3/def-TZVPP Method

Table S6. Optimized Bond Lengths ($R_{(La-H)}$, $R_{min(H-H)}$, in Å), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV), Charge on La (q_{La}) and Average Charge on H ($q_{avg(H)}$) Atoms (in, e) in La(H_2)_n³⁺ (n = 1 - 15) Calculated using PBE-D3/Def-TZVPP Method

Table S7. Optimized Bond Lengths ($R_{(Ac-H)}$, $R_{min(H-H)}$, in Å), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV), Charge on Ac (q_{Ac}) and Average Charge on H ($q_{avg(H)}$) Atoms (in, e) in Ac(H_2)_n³⁺ (n = 1 - 15) Calculated using B3LYP-D3/def-TZVPP Method

Table S8. Optimized Bond Lengths ($R_{(La-H)}$, $R_{min(H-H)}$, in Å), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV), Charge on La (q_{La}) and Average Charge on H ($q_{avg(H)}$) Atoms (in, e) in La(H_2)_n³⁺ (n = 1 - 15) Calculated using B3LYP-D3/def-TZVPP Method

Table S9. Calculated Value of Relative Energy (RE, in eV) of Mixed Species $([Ac(H)_2(H_2)_y^{3+}])$ and $[Ac(H)_4(H_2)_y^{3+}]$, where y = 1, 2, 9-10 with Respect to the Corresponding Similar Composition $Ac(H_2)_n^{3+}$ System and their Binding Energy (BE, in eV) at BHLYP/def-TZVPP Level of Theory. Binding Energy of $Ac(H_2)_n^{3+}$ (BE, in eV) Systems is Provided within Parenthesis

Table S10. Calculated Value of Optimized Bond Lengths (in Å), HOMO-LUMO Gap (ΔE_{gap} , in eV), Charge on Metal ion (q_{Ac} , in e) and Average NPA Charge on H atom (q_{H} , in e) and on H atom of H₂ Molecule (q_{H2} , in e) in Mixed Species at BHLYP-D3/def-TZVPP Level of Theory

Table S11. Binding Energy and Binding Energy per H₂ Molecule (BE, in eV) of $Ac(H_2)_n^{3+}$ (n = 1 - 12) Calculated using PBE-D3, B3LYP-D3, BHLYP-D3 Functionals with def-TZVPP Basis Set.

Table S12. Binding Energy and Binding Energy per H₂ Molecule (BE, in eV) of $La(H_2)_n^{3+}$ (n = 1 - 12) Calculated using PBE-D3, B3LYP-D3, BHLYP-D3 Functionals with def-TZVPP Basis Set.

Table S13. Basis Set Superimposition Error (BSSE, in eV) Calculated Using BHLYP-D3/def-TZVPP Method.

Table S14. Binding Energy (BE, in eV) and Binding Energy per H_2 Molecule (BE/ H_2 , in eV) Calculated Using MP2 and NEO-MP2 Method with def2-TZVPP Basis set for H and CRENBL Basis set of Ac. (DZSPDN Nuclear Basis set is used for the Quantum Hydrogen)

Table S15. Calculated Values of Bond Critical Point Electron Density (ρ in e a_0^{-3}), Laplacian of Electron Density ($\nabla^2 \rho$ in e a_0^{-5}), Local Electron Energy Density (E_d in au), and Ratio of Local Electron Kinetic Energy Density and Electron Density (G(r)/ ρ in au) of Ac(H₂)_n³⁺ (n = 1 - 12), Th(H₂)₁₂³⁺, Th(H₂)₁₂⁴⁺, Pa(H₂)₁₂⁴⁺, U(H₂)₁₂⁴⁺ Clusters as obtained by using BHLYP-D3/def-TZVPP Method along with Small Core ECP Employed with EDF

Table S16. Calculated Values of Bond Critical Point Electron Density (ρ in e a_0^{-3}), Laplacian of Electron Density ($\nabla^2 \rho$ in e a_0^{-5}), Local Electron Energy Density (E_d in au), and Ratio of Local Electron Kinetic Energy Density and Electron Density ($G(r)/\rho$ in au) of $La(H_2)_n^{3+}$ (n = 1 - 12) Clusters as obtained by using BHLYP-D3/def-TZVPP Method along with Small Core ECP Employed with EDF

Table S17. Calculated Value of Optimized Bond Lengths (in Å), Binding Energy (BE, in eV), Binding Energy Per Hydrogen Molecule (BE/H₂, in eV), Energy Gain on H₂ addition (EG, in eV), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV) and Voronoi Deformation Density Charge (VDD) on Metal ion (q_M, in e) in Ac(H₂)_n³⁺ (n = 1-12) and M(H₂)₁₂^{3+/4+} (M = La, Th, U) System using Scalar Relativistic ZORA Approach at PBE-D3BJ/TZ2P at Level of Theory with 4f-Frozen Core

Table S18. Calculated Value of Optimized Bond Lengths (in Å), Binding Energy (BE, in eV), Binding Energy Per Hydrogen Molecule (BE/H₂, in eV), Energy Gain on H₂ addition (EG, in eV), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV) and Voronoi Deformation Density Charge (VDD) on Metal ion (q_M, in e) in Ac(H₂)_n³⁺ (n = 1-12) and M(H₂)₁₂^{3+/4+} (M = La, Th, U) System using Scalar Relativistic ZORA Approach with All Electron Basis Set at PBE-D3BJ/TZ2P Level of Theory

List of Figures

Figure S1. Optimized structures of $M(H_2)_n^{3+}$ (n = 1-15) using BHLYP-D3/def-TZVPP method

Figure S2. Optimized structures of $Ac(H)_2(H_2)_y^{3+}$ and $Ac(H)_4(H_2)_y^{3+}$ systems (where y = 1, 2, 9-10) using BHLYP-D3/def-TZVPP method

Figure S3. Energy Gain (EG, kJ mol⁻¹) of $La(H_2)_n^{3+}$ (n = 1 - 15) systems on addition of hydrogen molecule in $La(H_2)_{n-1}^{3+}$ systems

Figure S4. MOs Picture of Ac(H₂)₁₀³⁺ using BHLYP-D3/def-TZVPP method

Figure S5. MOs Picture of $Ac(H_2)_{11}^{3+}$ using BHLYP-D3/def-TZVPP method

Figure S6. MOs Picture of Ac(H₂)₁₂³⁺ using BHLYP-D3/def-TZVPP method

Figure S7. MOs Picture of La(H₂)₉³⁺ using BHLYP-D3/def-TZVPP method

Figure S8. Electron density plots of $Ac(H_2)_n^{3+}$ (n = 1-4) using BHLYP-D3/def-TZVPP method employed with energy density function.

Figure S9. Frequency Plot of a) $Ac(H_2)_n^{3+}$ and b) $La(H_2)_n^{3+}$ (n = 1-2) clusters using BHLYP-D3/def-TZVPP method

Methods	R _{min(Ac-H)}	R _{max(Ac-H)}	R _{min(H-H)}	BE (eV)
		Ac(H ₂) ³⁺	1	1
PBE-D3	2.716	2.716	0.786	-0.939
B3LYP-D3	2.734	2.734	0.774	-0.845
TPSS-D3	2.701	2.701	0.776	-0.895
PBE0-D3	2.700	2.700	0.778	-0.887
TPSSH-D3	2.698	2.698	0.774	-0.878
BHLYP-D3	2.722	2.722	0.766	-0.809
MP2	2.722	2.722	0.766	-0.776
CCSD(T)	2.724	2.724	0.771	-0.780
	I E	$Ac(H_2)_2^{3+}$		1
PBE-D3	2.726	2.730	0.783	-1.805
B3LYP-D3	2.761	2.764	0.772	-1.628
TPSS-D3	2.704	2.719	0.774	-1.720
PBE0-D3	2.708	2.715	0.776	-1.709
TPSSH-D3	2.701	2.717	0.772	-1.689
BHLYP-D3	2.753	2.755	0.764	-1.563
MP2	2.727	2.733	0.764	-1.512
CCSD(T)	2.729	2.736	0.770	-1.520
	l I	$Ac(H_2)_3^{3+}$	1	1
PBE-D3	2.727	2.743	0.781	-2.610
B3LYP-D3	2.746	2.760	0.770	-2.354
TPSS-D3	2.711	2.724	0.772	-2.489
PBE0-D3	2.715	2.727	0.774	-2.477
TPSSH-D3	2.714	2.726	0.770	-2.446
BHLYP-D3	2.735	2.746	0.762	-2.270
MP2	2.737	2.744	0.763	-2.211
CCSD(T)	2.739	2.746	0.768	-2.223

Table S1. Optimized Bond Lengths ($R_{(Ac-H)}$, $R_{min(H-H)}$, in Å), Binding Energy (BE, in eV),of $Ac(H_2)_n^{3+}$ (n = 1-3) Calculated using MP2, CCSD(T) Methods and PBE-D3, PBE0-D3,B3LYP-D3, BHLYP-D3, TPSS-D3, TPSSH-D3 Functional with def-TZVPP Basis Set.

System	R _(Ac-H)		D	٨F		a
System	R _{min}	R _{max}	N min(H-H)	ΔLgap	4 La	<i>q</i> avg(H)
Ac@(H ₂) ³⁺	2.722	2.722	0.766	11.600	2.963	0.019
Ac@(H ₂) ₂ ³⁺	2.753	2.755	0.764	11.559	2.916	0.021
Ac@(H ₂) ₃ ³⁺	2.735	2.746	0.762	11.761	2.852	0.025
Ac@(H ₂) ₄ ³⁺	2.741	2.759	0.760	11.822	2.785	0.027
Ac@(H ₂) $_{5}^{3+}$	2.742	2.780	0.758	11.847	2.721	0.028
Ac@(H ₂) ₆ ³⁺	2.763	2.781	0.757	12.014	2.631	0.031
Ac@(H ₂) 7^{3+}	2.765	2.789	0.756	12.163	2.539	0.033
Ac@(H ₂) $_{8}^{3+}$	2.777	2.802	0.755	12.129	2.440	0.035
Ac@(H ₂)9 ³⁺	2.787	2.806	0.754	12.567	2.325	0.038
Ac@(H ₂) ₁₀ ³⁺	2.788	2.819	0.753	12.205	2.205	0.040
Ac@(H ₂) ₁₁ ³⁺	2.790	2.837	0.751	12.166	2.077	0.042
Ac@(H ₂) ₁₂ ³⁺	2.815	2.828	0.750	12.977	1.932	0.044

Table S2. Optimized Bond Lengths ($R_{(Ac-H)}$, $R_{min(H-H)}$, in Å), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV), Charge on Ac (q_{Ac}) and Average Charge on H ($q_{avg(H)}$) Atoms (in, e) in Ac(H_2)_n³⁺ (n = 1 - 12) Calculated using BHLYP-D3/def-TZVPP Method

System	R _(La-H)		D	٨F		<i>a</i> –
System	R _{min}	R _{max}	K _{min(H-H)}	ΔE_{gap}	q La	<i>q</i> _{avg(H)}
La(H ₂) ³⁺	2.627	2.627	0.769	10.399	2.950	0.025
La(H ₂) ₂ ³⁺	2.617	2.636	0.767	10.613	2.886	0.029
La(H ₂) ₃ ³⁺	2.647	2.658	0.765	10.710	2.809	0.032
La(H ₂) ₄ ³⁺	2.627	2.654	0.762	10.894	2.716	0.036
La(H ₂) ₅ ³⁺	2.628	2.678	0.760	10.952	2.631	0.037
La(H ₂) ₆ ³⁺	2.650	2.680	0.759	11.085	2.515	0.040
La(H ₂) ₇ ³⁺	2.646	2.688	0.757	11.293	2.396	0.043
La(H ₂) ₈ ³⁺	2.663	2.697	0.756	11.274	2.277	0.045
La(H ₂) ₉ ³⁺	2.674	2.699	0.755	11.787	2.134	0.048
La(H ₂) ₁₀ ³⁺	2.678	2.726	0.754	11.255	2.012	0.049
La(H ₂) ₁₁ ³⁺	2.681	2.760	0.752	11.166	1.894	0.050
La(H ₂) ₁₂ ³⁺	2.730	2.743	0.751	11.860	1.744	0.052
La(H ₂) ₁₃ ³⁺	2.663 4.354 ^a	2.754	0.750 0.742 ^d	8.406	1.742	0.049
La(H ₂) ₁₄ ³⁺	2.664 4.309 ^a 4.444 ^b	2.755	0.751 0.742 ^d	8.485	1.741	0.045
La(H ₂) ₁₅ ³⁺	$\begin{array}{c} 2.668 \\ 4.345^{a} \\ 4.363^{b} \\ 4.477^{c} \end{array}$	2.760	0.750 0.742 ^d	8.478	1.741	0.042

Table S3. Optimized Bond Lengths ($R_{(La-H)}$, $R_{min(H-H)}$, in Å), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV), Charge on La (q_{La}) and Average Charge on H ($q_{avg(H)}$) Atoms (in, e) in La(H_2)_n³⁺ (n = 1 - 15) Calculated using BHLYP-D3/def-TZVPP Method

^{a,b,c} Represent minimum M-H₂ distance of first, second and third detached H₂ molecule, ^dH-H bond distance in detached H₂ molecules

Table S4. Optimized Bond Lengths ($R_{(M-H)}$, $R_{min(H-H)}$, in Å), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV), Binding Energy as well as Binding Energy per H₂ molecule (BE, in eV) Charge on M (q_M) and Average Charge on H ($q_{avg(H)}$) Atoms (in, e) in Th(H₂)₁₂³⁺ and M(H₂)₁₂⁴⁺ (M = Th, Pa and U) Calculated with PBE-D3 and B3LYP-D3 Functionals using def-TZVPP Basis Set

System	R _{(N}	/I-H)	D	٨F			DE	DE/II	
System	R _{min}	R _{max}	N min(H-H)	ΔĿgap	ЧM	<i>q</i> avg(H)	DE	DE/Π_2	
	$Th(H_2)_{12}^{3+}$								
PBE-D3	2.598	2.767	0.770	0.560	0.734	0.094	-8.710	-0.726	
B3LYP-D3	2.750	2.790	0.759	2.904	1.173	0.076	-7.860	-0.655	
			Т	$h(H_2)_{12}^{4+}$	·		·		
PBE-D3	2.6448	2.656	0.785	4.619	0.828	0.132	-17.471	-1.456	
B3LYP-D3	2.6651	2.674	0.773	6.874	1.196	0.117	-16.002	-1.333	
			Р	a(H ₂) ₁₂ ⁴⁺					
PBE-D3	2.591	2.615	0.788	0.415	0.227	0.157	-18.706	-1.559	
B3LYP-D3	2.616	2.643	0.775	3.427	0.699	0.138	-17.028	-1.419	
$U(H_2)_{12}^{4+}$									
PBE-D3	2.559	2.593	0.790	0.376	0.130	0.161	-19.839	-1.653	
B3LYP-D3	2.586	2.613	0.776	3.726	0.621	0.141	-17.962	-1.497	

System	R _(Ac-H)		D	AE	~	a	
System	R _{min}	R _{max}	K _{min(H-H)}	ΔE _{gap}	<i>q</i> Ac	4 avg(H)	
Ac(H ₂) ³⁺	2.716	2.716	0.786	6.694	2.943	0.029	
$Ac(H_2)_2^{3+}$	2.725	2.730	0.783	6.777	2.871	0.032	
Ac(H ₂) ₃ ³⁺	2.727	2.743	0.781	6.868	2.783	0.036	
$Ac(H_2)_4^{3+}$	2.725	2.757	0.778	6.924	2.695	0.038	
Ac(H ₂) ₅ ³⁺	2.730	2.780	0.776	7.017	2.610	0.039	
$Ac(H_2)_6^{3+}$	2.756	2.779	0.775	7.178	2.497	0.042	
Ac(H ₂) ₇ ³⁺	2.756	2.789	0.773	7.286	2.386	0.044	
Ac(H ₂) ₈ ³⁺	2.772	2.802	0.772	7.263	2.269	0.046	
Ac(H ₂)9 ³⁺	2.784	2.803	0.771	7.615	2.130	0.048	
Ac(H ₂) ₁₀ ³⁺	2.785	2.819	0.769	7.281	1.985	0.051	
Ac(H ₂) ₁₁ ³⁺	2.782	2.841	0.768	7.316	1.820	0.054	
Ac(H ₂) ₁₂ ³⁺	2.807	2.818	0.767	8.012	1.635	0.057	
Ac(H ₂) ₁₃ ³⁺	2.741	2.831	0.767	4.665	1.638	0.052	
	4.415 ^a		0.758 ^d				
Ac(H ₂) ₁₄ ³⁺	2.741	2.830	0.767	4.744	1.630	0.049	
	4.370 ^a		0.758 ^d				
	4.378 ^b						
Ac(H ₂) ₁₅ ³⁺	2.742	2.845	0.767	4.721	1.627	0.046	
	4.413 ^a		0.757 ^d				
	4.425°						
	4.430°						

Table S5. Optimized Bond Lengths ($R_{(Ac-H)}$, $R_{min(H-H)}$, in Å), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV), Charge on Ac (q_{Ac}) and Average Charge on H ($q_{avg(H)}$) Atoms (in, e) in Ac(H_2)_n³⁺ (n = 1 - 15) Calculated using PBE-D3/def-TZVPP Method

^{a,b,c} Represent minimum M-H₂ distance of first, second and third detached H₂ molecule,

^dH-H bond distance in detached H₂ molecule

System	R _{(La-}	H)	D	AE		<i>a</i> –
System	R _{min}	R _{max}	K _{min(H-H)}	ΔLgap	q La	q avg(H)
La(H ₂) ³⁺	2.625	2.625	0.791	5.463	2.919	0.041
$La(H_2)_2^{3+}$	2.612	2.634	0.787	5.687	2.823	0.044
$La(H_2)_3^{3+}$	2.616	2.665	0.784	5.813	2.717	0.047
$La(H_2)_4^{3+}$	2.620	2.661	0.781	5.967	2.593	0.051
$La(H_2)_5^{3+}$	2.614	2.693	0.778	6.121	2.478	0.052
$La(H_2)_6^{3+}$	2.641	2.681	0.777	6.323	2.328	0.056
$La(H_2)_7^{3+}$	2.640	2.685	0.775	6.465	2.186	0.058
$La(H_2)_8^{3+}$	2.653	2.706	0.774	6.429	2.048	0.060
$La(H_2)9^{3+}$	2.674	2.705	0.773	6.867	1.876	0.062
La(H ₂) ₁₀ ³⁺	2.676	2.728	0.771	6.398	1.726	0.064
$La(H_2)_{11}^{3+}$	2.666	2.768	0.770	6.363	1.574	0.065
$La(H_2)_{12}^{3+}$	2.728	2.741	0.769	6.958	1.392	0.067
$La(H_2)_{13}^{3+}$	2.630	2.770	0.768	3.691	1.391	0.062
	4.374 ^a		0.759 ^d			
$La(H_2)_{14}^{3+}$	2.636	2.758	0.768	3.741	1.389	0.0575
	4.335 ^a		0.758 ^d			
	4.342 ^b					
$La(H_2)_{15}^{3+}$	2.627	2.788	0.768	3.744	1.392	0.0535
	4.379 ^a		0.758 ^d			
	4.373 ^b					
	4.385°					

Table S6. Optimized Bond Lengths ($R_{(La-H)}$, $R_{min(H-H)}$, in Å), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV), Charge on La (q_{La}) and Average Charge on H ($q_{avg(H)}$) Atoms (in, e) in La(H_2) $_n^{3+}$ (n = 1 - 15) Calculated using PBE-D3/Def-TZVPP Method

^{a,b,c} Represent minimum M-H₂ distance of first, second and third detached H₂ molecule, ^dH-H bond distance in detached H₂ molecule

Crustore.	R _{(Ad}	:-H)	р	AT		a	
System	R _{min}	R _{max}	K _{min(H-H)}	∆£ _{gap}	<i>q</i> _{Ac}	4 avg(H)	
Ac(H ₂) ³⁺	2.734		0.774	8.575	2.954	0.023	
$Ac(H_2)_2^{3+}$	2.761	2.764	0.772	8.580	2.897	0.026	
Ac(H ₂) ₃ ³⁺	2.746	2.760	0.770	8.758	2.822	0.030	
Ac(H ₂) ₄ ³⁺	2.749	2.773	0.768	8.825	2.749	0.031	
Ac(H ₂) ₅ ³⁺	2.755	2.796	0.765	8.825	2.680	0.032	
Ac(H ₂) ₆ ³⁺	2.779	2.797	0.764	9.015	2.581	0.035	
Ac(H ₂) ₇ ³⁺	2.778	2.808	0.763	9.179	2.483	0.037	
Ac(H ₂) ₈ ³⁺	2.793	2.821	0.761	9.142	2.380	0.039	
Ac(H ₂) ₉ ³⁺	2.803	2.822	0.761	9.556	2.257	0.041	
Ac(H ₂) ₁₀ ³⁺	2.810	2.834	0.759	9.213	2.132	0.043	
Ac(H ₂) ₁₁ ³⁺	2.802	2.862	0.758	9.219	1.996	0.046	
Ac(H ₂) ₁₂ ³⁺	2.832	2.846	0.757	9.918	1.844	0.048	
Ac(H ₂) ₁₃ ³⁺	2.774 4.473ª	2.852	0.757 0.749 ^d	6.433	1.841	0.045	
Ac(H ₂) ₁₄ ³⁺	2.771 4.409 ^a 4.419 ^b	2.854	0.757 0.749 ^d	6.535	1.834	0.042	
Ac(H ₂) ₁₅ ³⁺	2.775 4.452 ^a 4.470 ^b 4.472 ^c	2.858	0.757 0.749 ^d	6.502	1.830	0.039	

Table S7. Optimized Bond Lengths ($R_{(Ac-H)}$, $R_{min(H-H)}$, in Å), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV), Charge on Ac (q_{Ac}) and Average Charge on H ($q_{avg(H)}$) Atoms (in, e) in Ac(H_2)_n³⁺ (n = 1 - 15) Calculated using B3LYP-D3/def-TZVPP Method

^{a,b,c} Represent minimum M-H₂ distance of first, second and third detached H₂ molecule,

^dH-H bond distance in detached H₂ molecule

Strateme	R _{(La-H})	р	AT	~	~
System	R _{min}	R _{max}	K _{min(H-H)}	ΔEgap	q La	<i>q</i> _{avg(H)}
La(H ₂) ³⁺	2.645		0.778	7.313	2.936	0.032
La(H ₂) ₂ ³⁺	2.634	2.651	0.775	7.549	2.858	0.035
La(H ₂) ₃ ³⁺	2.659	2.682	0.773	7.658	2.768	0.039
$La(H_2)_4^{3+}$	2.637	2.676	0.770	7.854	2.664	0.042
$La(H_2)_5^{3+}$	2.640	2.704	0.768	7.934	2.570	0.043
$La(H_2)_6^{3+}$	2.669	2.702	0.766	8.077	2.443	0.046
La(H ₂) $^{3+}$	2.663	2.707	0.765	8.295	2.315	0.049
$La(H_2)_8^{3+}$	2.681	2.719	0.763	8.279	2.192	0.051
La(H ₂) $_{9}^{3+}$	2.692	2.720	0.762	8.742	2.040	0.053
La(H ₂) ₁₀ ³⁺	2.699	2.751	0.761	8.241	1.913	0.054
$La(H_2)_{11}^{3+}$	2.699	2.787	0.759	8.166	1.792	0.055
$La(H_2)_{12}^{3+}$	2.748	2.771	0.758	8.759	1.638	0.057
$La(H_2)_{13}^{3+}$	2.669,	2.792	0.758	5.308	1.638	0.052
	4.440 ^a		0.749 ^d			
$La(H_2)_{14}^{3+}$	2.669	2.786	0.757	5.401	1.635	0.049
	4.378 a		0.749 ^d			
	4.386 ^b					
$La(H_2)_{15}^{3+}$	2.675,	2.802	0.757	5.378	1.636	0.045
	4.427 ^a		0.749 ^d			
	4.438 ^b					
	4.439°					

Table S8. Optimized Bond Lengths ($R_{(La-H)}$, $R_{min(H-H)}$, in Å), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV), Charge on La (q_{La}) and Average Charge on H ($q_{avg(H)}$) Atoms (in, e) in La(H_2) $_n^{3+}$ (n = 1 - 15) Calculated using B3LYP-D3/def-TZVPP Method

^{a,b,c} Represent minimum M-H₂ distance of first, second and third detached H₂ molecule,

^dH-H distance of detached H₂ molecule

Table S9. Calculated Value of Relative Energy (RE, in eV) of Mixed Species $([Ac(H)_2(H_2)_y^{3+}]$ and $[Ac(H)_4(H_2)_y^{3+}]$, where y = 1, 2, 9-10) with Respect to the Corresponding Similar Composition $Ac(H_2)_n^{3+}$ System and their Binding Energy (BE, in eV) at BHLYP/def-TZVPP Level of Theory. Binding Energy of $Ac(H_2)_n^{3+}$ (BE, in eV) Systems is Provided within Parenthesis

Systems	RE	BE
Ac(H) ₂ (H ₂) ³⁺	6.454	0.190 (-1.563)
$Ac(H)_2(H_2)_2^{3+}$	6.529	-0.443 (-2.270)
Ac(H) ₄ (H ₂) ³⁺	13.153	1.472 (-2.270)
Ac(H) ₄ (H ₂) ₂ ³⁺	13.271	0.927 (-2.924)
Ac(H) ₂ (H ₂) ₉ ³⁺	6.854	-3.919 (-6.064)
Ac(H) ₂ (H ₂) ₁₀ ³⁺	6.813	-4.324 (-6.436)

Table S10. Calculated Value of Optimized Bond Lengths (in Å), HOMO-LUMO Gap (ΔE_{gap} , in eV), Charge on Metal ion (q_{Ac} , in e) and Average NPA Charge on H atom (q_{H} , in e) and on H atom of H₂ Molecule (q_{H2} , in e) in Mixed Species at BHLYP-D3/def-TZVPP Level of Theory

Systems	R _(M-H)	R _{min(M-H2)}	R _{max(M-H2)}	R _(H-H)	ΔE_{gap}	q _{Ac}	q _H (q _{H2})
Ac(H) ₂ (H ₂) ³⁺	2.412-2.421	2.750	2.750	0.761	3.732	2.423	0.26 (0.03)
$Ac(H)_2(H_2)_2^{3+}$	2.382-2.384	2.753	2.764	0.759	3.828	2.304	0.28 (0.03)
Ac(H) ₄ (H ₂) ³⁺	2.322-2.323	2.772	2.773	0.757	3.951	1.522	0.35 (0.04)
Ac(H) ₄ (H ₂) ₂ ³⁺	2.285-2.302	2.774	2.800	0.756	4.092	1.382	0.36 (0.04)
Ac(H) ₂ (H ₂) ₉ ³⁺	2.182-2.183	2.789	2.845	0.752	4.445	1.548	0.29 (0.05)
Ac(H) ₂ (H ₂) ₁₀ ³⁺	2.166-2.167	2.819	2.825	0.751	4.538	1.402	0.29 (0.05)

Table S11. Binding Energy and Binding Energy per H₂ Molecule (BE, in eV) of $Ac(H_2)_n^{3+}$ (n = 1 - 12) Calculated using PBE-D3, B3LYP-D3, BHLYP-D3 Functionals with def-TZVPP Basis Set.

Sautoma	PBE-D3		B3LYP-	-D3	BHLYP-D3	
Systems	BE	BE/H ₂	BE	BE/H ₂	BE	BE/H ₂
$Ac(H_2)^{3+}$	-0.939	-0.939	-0.845	-0.845	-0.809	-0.809
$Ac(H_2)_2^{3+}$	-1.805	-0.902	-1.628	-0.814	-1.563	-0.781
$Ac(H_2)_3^{3+}$	-2.610	-0.870	-2.354	-0.785	-2.270	-0.757
$Ac(H_2)_4^{3+}$	-3.343	-0.836	-3.020	-0.755	-2.925	-0.731
$Ac(H_2)_5^{3+}$	-4.001	-0.800	-3.614	-0.723	-3.514	-0.703
$Ac(H_2)_6^{3+}$	-4.663	-0.777	-4.217	-0.703	-4.109	-0.685
Ac(H ₂) ₇ ³⁺	-5.248	-0.750	-4.743	-0.678	-4.637	-0.662
$Ac(H_2)_8^{3+}$	-5.811	-0.726	-5.256	-0.657	-5.154	-0.644
$Ac(H_2)g^{3+}$	-6.350	-0.706	-5.744	-0.638	-5.647	-0.627
$Ac(H_2)_{10}^{3+}$	-6.809	-0.681	-6.150	-0.615	-6.064	-0.606
$Ac(H_2)_{11}^{3+}$	-7.223	-0.657	-6.504	-0.591	-6.436	-0.585
$Ac(H_2)_{12}^{3+}$	-7.663	-0.639	-6.895	-0.575	-6.838	-0.570

Table S12. Binding Energy and Binding Energy per H₂ Molecule (BE, in eV) of $La(H_2)_n^{3+}$ (n = 1 - 12) Calculated using PBE-D3, B3LYP-D3, BHLYP-D3 Functionals with def-TZVPP Basis Set.

Lall2 m	PBE-I)3	B3LYP-	-D3	BHLYP-D3	
LaH2_n	BE	BE/H ₂	BE	BE/H ₂	BE	BE/H ₂
$La(H_2)^{3+}$	-1.053	-1.053	-0.951	-0.951	-0.898	-0.898
$La(H_2)_2^{3+}$	-2.010	-1.005	-1.817	-0.909	-1.727	-0.863
$La(H_2)_3^{3+}$	-2.881	-0.960	-2.621	-0.874	-2.498	-0.833
$La(H_2)_4^{3+}$	-3.694	-0.924	-3.352	-0.838	-3.214	-0.804
$La(H_2)_5^{3+}$	-4.420	-0.884	-4.010	-0.802	-3.863	-0.773
$La(H_2)_6^{3+}$	-5.133	-0.855	-4.671	-0.779	-4.513	-0.752
$La(H_2)_7^{3+}$	-5.775	-0.825	-5.255	-0.751	-5.093	-0.728
$La(H_2)_8^{3+}$	-6.389	-0.799	-5.827	-0.728	-5.667	-0.708
$La(H_2)_{9}^{3+}$	-6.979	-0.775	-6.368	-0.708	-6.211	-0.690
$La(H_2)_{10}^{3+}$	-7.431	-0.743	-6.779	-0.678	-6.631	-0.663
$La(H_2)_{11}^{3+}$	-7.816	-0.711	-7.118	-0.647	-6.985	-0.635
$La(H_2)_{12}^{3+}$	-8.260	-0.688	-7.517	-0.626	-7.399	-0.617

System	BSSE	System	BSSE
Ac(H ₂) ³⁺	0.001	U(H ₂) ₁₂ ⁴⁺	0.023
Ac(H ₂) ₂ ³⁺	0.002	$Th(H_2)_{12}^{3+}$	0.019
Ac(H ₂) ₃ ³⁺	0.003	Th(H ₂) ₁₂ ⁴⁺	0.025
Ac(H ₂) ₄ ³⁺	0.004	La(H ₂) ₁₂ ³⁺	0.012
Ac(H ₂) ₅ ³⁺	0.006		
Ac(H ₂) ₆ ³⁺	0.006		
Ac(H ₂) ₇ ³⁺	0.008		
Ac(H ₂) ₈ ³⁺	0.009		
Ac(H ₂) ₉ ³⁺	0.010		
Ac(H ₂) ₁₀ ³⁺	0.012		
Ac(H ₂) ₁₁ ³⁺	0.014		
Ac(H ₂) ₁₂ ³⁺	0.015		

Table S13. Basis Set Superimposition Error (BSSE, in eV) Calculated Using BHLYP-D3/def-TZVPP Method.

Table S14. Binding Energy (BE, in eV) and Binding Energy per H₂ Molecule (BE/H₂, in eV) Calculated Using MP2 and NEO-MP2 Method using def2-TZVPP Basis set for H and CRENBL Basis set of Ac. (DZSPDN Nuclear Basis Set is used for the Quantum Hydrogen)

System	MP2		NEO	-MP2	BE_Error	BE_Error/H ₂
	BE	BE/H ₂	BE	BE/H ₂		
Ac(H ₂) ³⁺	-0.698	-0.698	-0.784	-0.784	0.086	0.086
Ac(H ₂) ₂ ³⁺	-1.369	-0.684	-1.531	-0.765	0.162	0.081
Ac(H ₂) ₃ ³⁺	-2.002	-0.667	-2.230	-0.743	0.228	0.076
Ac(H ₂) ₄ ³⁺	-2.609	-0.652	-2.894	-0.723	0.285	0.071
Ac(H ₂) ₅ ³⁺	-3.155	-0.631	-3.483	-0.697	0.328	0.066
Ac(H ₂) ₆ ³⁺	-3.723	-0.621	-4.100	-0.683	0.377	0.063
Ac(H ₂) ₇ ³⁺	-4.219	-0.603	-4.630	-0.661	0.410	0.059

Table S15. Calculated Values of Bond Critical Point Electron Density (ρ in e a_0^{-3}), Laplacian of Electron Density ($\nabla^2 \rho$ in e a_0^{-5}), Local Electron Energy Density (E_d in au), and Ratio of Local Electron Kinetic Energy Density and Electron Density ($G(r)/\rho$ in au) of Ac(H_2)_n³⁺ (n = 1 - 12), Th(H_2)₁₂³⁺, Th(H_2)₁₂⁴⁺, Pa(H_2)₁₂⁴⁺, U(H_2)₁₂⁴⁺ Clusters as obtained by using BHLYP-D3/def-TZVPP Method along with Small Core ECP Employed with EDF

System	Bond	ρ	$\nabla^2 \rho$	G(r) ^c	V(r) ^d	E _d (r)	G(r)/p	Type ^e
A a(II)3+	Ac-H	0.0238	0.0471	0.0126	-0.0133	-0.0008	0.529	D
$Ac(H_2)^{s+1}$	H-H	0.2499	-1.0860	0.0001	-0.2716	-0.2716	0.000	A
A = (II) 3+	Ac-H	0.0220	0.0454	0.0118	-0.0122	-0.0004	0.536	D
$AC(H_2)_2$	H-H	0.2514	-1.0960	0.0000	-0.2741	-0.2741	G(r)/p 0.529 0.000 0.536 0.000 0.547 0.000 0.547 0.000 0.556 0.000 0.560 0.000 0.569 0.000 0.579 0.000 0.579 0.000 0.587 0.000 0.594 0.000 0.594 0.000 0.594 0.000 0.599 0.000 0.604 0.001 0.611 0.001 0.611 0.001 0.613 0.001 0.643 0.001 0.523 0.002 0.562 0.002 0.563 0.002	Α
A - (II) 3+	Ac-H	0.0223	0.0474	0.0122	-0.0126	-0.0004	0.547	D
$AC(H_2)_3$	H-H	0.2531	-1.1070	0.0001	-0.2769	-0.2768	G(r)/ρ 0.529 0.000 0.536 0.000 0.536 0.000 0.547 0.000 0.547 0.000 0.556 0.000 0.560 0.000 0.569 0.000 0.579 0.000 0.579 0.000 0.587 0.000 0.594 0.000 0.599 0.000 0.604 0.001 0.643 0.001 0.523 0.002 0.562 0.002	Α
A = (II) 3+	Ac-H	0.0216	0.0472	0.0120	-0.0122	-0.0002	0.556	D
$AC(H_2)_4$	H-H	0.2547	-1.1180	0.0001	-0.2795	-0.2795	0.000	Α
$\Lambda_{2}(\mathbf{II})^{3+}$	Ac-H	0.0211	0.0470	0.0118	-0.0119	-0.0001	0.560	D
$AC(\Pi_2)_5$	H-H	0.2565	-1.1300	0.0001	-0.2826	-0.2826	0.000	Α
$\Lambda_{0}(\mathbf{H})^{3+}$	Ac-H	0.0204	0.0468	0.0116	-0.0116	0.0001	0.569	D
AC(Π ₂) ₆ -	H-H	0.2573	-1.1340	0.0001	-0.2837	-0.2837	0.000	Α
$\Lambda_{0}(\mathbf{H})^{3+}$	Ac-H	0.0197	0.0464	0.0114	-0.0112	0.0002	0.579	D
AC(112)7	H-H	0.2584	-1.1420	0.0001	-0.2856	-0.2856	0.000	Α
$\Lambda_{0}(\mathbf{H})^{3+}$	Ac-H	0.0196	0.0469	0.0115	-0.0113	0.0002	0.587	D
AC(112)8-	H-H	0.2595	-1.1490	0.0001	-0.2874	-0.2875	0.000	Α
$\Lambda_{0}(\mathbf{H})^{3+}$	Ac-H	0.0192	0.0469	0.0114	-0.0111	0.0003	0.594	D
AC(Π ₂) ₉ -	H-H	0.2604	-1.1550	0.0001	-0.2890	-0.2890	0.000	Α
$\frac{1}{4} \frac{1}{4} \frac{1}$	Ac-H	0.0190	0.0471	0.0114	-0.0110	0.0004	0.599	D
AC(112)10*	H-H	0.2617	-1.1640	0.0001	-0.2911	-0.2910	0.000	Α
$\Lambda_{c}(\mathbf{H}_{1})$, 3+	Ac-H	0.0181	0.0454	0.0109	-0.0105	0.0004	0.604	D
AC(112)11	H-H	0.2631	-1.1730	0.0002	-0.2935	-0.2934	0.001	Α
$\Lambda_{\rm c}({\rm H}_{\rm s})_{\rm s}^{3+}$	Ac-H	0.0177	0.0452	0.0108	-0.0103	-0.0005	0.611	D
	H-H	0.2639	-1.1780	0.0002	-0.2949	-0.2947	0.001	Α
Th(H.)3+	Th-H	0.0192	0.0489	0.0124	-0.0125	-0.0002	0.643	D
1 11(112)12	H-H	0.2627	-1.1680	0.0003	-0.2928	-0.2925	0.001	Α
Th(H.)4+	Th-H	0.0281	0.0481	0.0147	-0.0173	-0.0027	0.523	D
1 11(112)12	H-H	0.2510	-1.0910	0.0004	-0.2736	-0.2732	0.529 0.000 0.536 0.000 0.547 0.000 0.547 0.000 0.556 0.000 0.560 0.000 0.569 0.000 0.579 0.000 0.579 0.000 0.587 0.000 0.594 0.000 0.599 0.000 0.599 0.001 0.611 0.001 0.643 0.001 0.523 0.002 0.563 0.002	Α
Pa(Ha)10 ⁴⁺	Pa-H	0.0291	0.0546	0.0164	-0.0191	-0.0027	0.562	D
I a(112)12	H-H	0.2503	-1.0870	0.0004	-0.2727	-0.2723	0.002	A
Ac(H ₂) ₆ ³⁺ Ac(H ₂) ₆ ³⁺ Ac(H ₂) ₇ ³⁺ Ac(H ₂) ₈ ³⁺ Ac(H ₂) ₉ ³⁺ Ac(H ₂) ₁₀ ³⁺ Ac(H ₂) ₁₀ ³⁺ Ac(H ₂) ₁₂ ³⁺ Th(H ₂) ₁₂ ³⁺ Th(H ₂) ₁₂ ⁴⁺ Pa(H ₂) ₁₂ ⁴⁺ U(H ₂) ₁₂ ⁴⁺	Ра-Н	0.0309	0.0572	0.0174	-0.0205	-0.0031	0.563	D
	H-H	0.2494	-1.0820	0.0005	-0.2716	-0.2711	0.329 0.000 0.536 0.000 0.547 0.000 0.547 0.000 0.556 0.000 0.560 0.000 0.569 0.000 0.579 0.000 0.587 0.000 0.594 0.000 0.599 0.000 0.599 0.001 0.604 0.001 0.643 0.001 0.523 0.002 0.563 0.002	Α

Table S16. Calculated Values of Bond Critical Point Electron Density (ρ in e a_0^{-3}), Laplacian of Electron Density ($\nabla^2 \rho$ in e a_0^{-5}), Local Electron Energy Density (E_d in au), and Ratio of Local Electron Kinetic Energy Density and Electron Density ($G(r)/\rho$ in au) of La(H₂)_n³⁺ (n = 1 - 12) Clusters as obtained by using BHLYP-D3/def-TZVPP Method along with Small Core ECP Employed with EDF

System	Bond	ρ	$\nabla^2 \rho$	G(r)°	V(r) ^d	E _d (r)	G(r)/p	Type ^e
	La-H	0.0249	0.0598	0.0145	-0.0141	0.0004	0.582	D
	H-H	0.2483	-2.1450	0.0000	-0.2682	-0.2682	0.000	A
I a(Ha)a ³⁺	La-H	0.0245	0.0609	0.0147	-0.0141	0.0005	0.598	D
	H-H	0.2499	-2.0820	0.0000	-0.2707	-0.2706	G(r)/ρ 0.582 0.000 0.598 0.000 0.605 0.000 0.623 0.000 0.636 0.000 0.636 0.000 0.636 0.000 0.642 0.000 0.657 0.000 0.663 0.000 0.663 0.000 0.668 0.001 0.687 0.001 0.694 0.001	A
$La(H_2)_{3^{3+}}$	La-H	0.0230	0.0588	0.0139	-0.0131	0.0007	0.605	D
	Н-Н	0.2517	-1.0940	0.0000	-0.2737	-0.2736	0.000	Α
I a(Ha) ³⁺	La-H	0.0232	0.0612	0.0145	-0.0136	0.0008	0.623	D
	Н-Н	0.2537	-1.1070	0.0001	-0.2769	-0.2768	0.000	Α
I a(Ha)-3+	La-H	0.0223	0.0608	0.0142	-0.0132	0.0009	0.636	D
	H-H	0.2556	-1.1200	0.0001	-0.2803	-0.2801	0.000	Α
I a(Ha) ³⁺	La-H	0.0217	0.0600	0.0139	-0.0129	0.0010	0.642	D
	H-H	0.2565	-1.1260	0.0001	-0.2817	-0.2816	O(1)/p 0.582 0.000 0.598 0.000 0.605 0.000 0.623 0.000 0.636 0.000 0.642 0.000 0.657 0.000 0.663 0.000 0.663 0.000 0.663 0.000 0.668 0.001 0.687 0.001 0.694 0.001	Α
I a(H_)_3+	La-H	0.0207	0.0596	0.0136	-0.0124	0.0012	0.657	D
	Н-Н	0.2580	-1.1350	0.0001	-0.2842	-0.2840	0.000	Α
$La(H_2)_8^{3+}$	La-H	0.0205	0.0595	0.0136	-0.0123	0.0012	0.663	D
	H-H	0.2592	-1.1450	0.0001	-0.2865	-0.2864	0.000	A
La(H_)_3+	La-H	0.0199	0.0585	0.0133	-0.0120	0.0013	0.668	D
	H-H	0.2599	-1.1490	0.0001	-0.2876	-0.2875	0.000	A
La(H_)10 ³⁺	La-H	0.0190	0.0573	0.0129	-0.0115	0.0014	0.679	D
	H-H	0.2614	-1.1600	0.0001	-0.2902	-0.2901	0.001	A
La(H_)11 ³⁺	La-H	0.0185	0.0566	0.0127	-0.0113	0.0014	0.687	D
	H-H	0.2627	-1.1680	0.0002	-0.2925	-0.2923	0.001	A
La(H_2)10 ³⁺	La-H	0.0177	0.0551	0.0123	-0.0108	0.0015	0.694	D
	H-H	0.2638	-1.1750	0.0002	-0.2944	-0.2942	0.001	A

Table S17. Calculated Value of Optimized Bond Lengths (in Å), Binding Energy (BE, in eV), Binding Energy Per Hydrogen Molecule (BE/H₂, in eV), Energy Gain on H₂ addition (EG, in eV), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV) and Voronoi Deformation Density Charge (VDD) on Metal ion (q_M, in e) in Ac(H₂)_n³⁺ (n = 1-12) and M(H₂)₁₂^{3+/4+} (M = La, Th, U) System using Scalar Relativistic ZORA Approach at PBE-D3BJ/TZ2P Level of Theory with 4f-Frozen Core

System	R _{min(M-H)}	R _{max(M-H)}	R _(H-H)	BE	BE/H ₂	EG	ΔE _{gap}	q _M
Ac(H ₂) ³⁺	2.713	2.713	0.785	-0.961	-0.961	-0.961	6.673	2.352
$Ac(H_2)_2^{3+}$	2.769	2.776	0.782	-1.845	-0.922	-0.883	6.527	1.815
$Ac(H_2)_3^{3+}$	2.736	2.743	0.780	-2.633	-0.878	-0.788	6.840	1.305
$Ac(H_2)_4^{3+}$	2.750	2.751	0.778	-3.395	-0.849	-0.762	6.900	0.839
$Ac(H_2)_5^{3+}$	2.738	2.786	0.775	-4.055	-0.811	-0.661	6.912	1.004
$Ac(H_2)_6^{3+}$	2.760	2.782	0.774	-4.735	-0.789	-0.680	7.132	0.606
$Ac(H_2)_7^{3+}$	2.762	2.791	0.773	-5.342	-0.763	-0.607	7.257	0.525
$Ac(H_2)_8^{3+}$	2.778	2.811	0.772	-5.926	-0.741	-0.584	7.192	0.454
$Ac(H_2)_9^{3+}$	2.789	2.810	0.771	-6.488	-0.721	-0.562	7.516	0.379
$Ac(H_2)_{10}^{3+}$	2.794	2.825	0.769	-6.973	-0.697	-0.485	7.191	0.356
Ac(H ₂) ₁₁ ³⁺	2.790	2.841	0.768	-7.420	-0.675	-0.447	7.238	0.350
$Ac(H_2)_{12}^{3+}$	2.823	2.828	0.768	-7.883	-0.657	-0.463	7.915	0.320
La(H ₂) ₁₂ ³⁺	2.714	2.721	0.769	-9.041	-0.753		5.075	0.324
$Th(H_2)_{12}^{3+}$	2.482	2.813	0.769	-9.146	-0.762		0.556	0.119
$Th(H_2)_{12}^{4+}$	2.645	2.654	0.785	-17.498	-1.458		4.847	0.382
$U(H_2)_{12}^{4+}$	2.550	2.584	0.789	-20.375	-1.698		0.335	0.528

Table S18. Calculated Value of Optimized Bond Lengths (in Å), Binding Energy (BE, in eV), Binding Energy Per Hydrogen Molecule (BE/H₂, in eV), Energy Gain on H₂ addition (EG, in eV), HOMO-LUMO Energy Gap (ΔE_{gap} , in eV) and Voronoi Deformation Density Charge (VDD) on Metal ion (q_M, in e) in Ac(H₂)_n³⁺ (n = 1-12) and M(H₂)₁₂^{3+/4+} (M = La, Th, U) System using Scalar Relativistic ZORA Approach with All Electron Basis Set at PBE-D3BJ/TZ2P Level of Theory

System	R _{min(M-H)}	R _{max(M-H)}	R _(H-H)	BE	BE/H ₂	EG	ΔE _{gap}	q _M
Ac(H ₂) ³⁺	2.714	2.714	0.785	-0.971	-0.971	-0.971	6.719	2.355
$Ac(H_2)_2^{3+}$	2.768	2.777	0.783	-1.864	-0.932	-0.893	6.598	1.838
$Ac(H_2)_3^{3+}$	2.732	2.739	0.780	-2.663	-0.888	-0.799	6.912	1.300
$Ac(H_2)_4^{3+}$	2.745	2.747	0.778	-3.434	-0.859	-0.772	6.964	0.840
$Ac(H_2)_5^{3+}$	2.734	2.786	0.776	-4.100	-0.820	-0.665	7.004	1.009
$Ac(H_2)_6^{3+}$	2.757	2.776	0.774	-4.792	-0.799	-0.692	7.134	0.596
$Ac(H_2)_7^{3+}$	2.760	2.787	0.773	-5.405	-0.772	-0.614	7.312	0.524
$Ac(H_2)_8^{3+}$	2.772	2.809	0.771	-5.993	-0.749	-0.588	7.245	0.456
$Ac(H_2)_9^{3+}$	2.780	2.808	0.770	-6.559	-0.729	-0.566	7.502	0.382
$Ac(H_2)_{10}^{3+}$	2.784	2.820	0.769	-7.056	-0.706	-0.497	7.245	0.356
$Ac(H_2)_{11}^{3+}$	2.783	2.831	0.768	-7.508	-0.683	-0.452	7.296	0.353
$Ac(H_2)_{12}^{3+}$	2.815	2.820	0.767	-7.976	-0.665	-0.468	7.984	0.323
$La(H_2)_{12}^{3+}$	2.710	2.717	0.770	-9.076	-0.756		5.077	0.331
$Th(H_2)_{12}^{3+}$	2.531	2.791	0.770	-9.187	-0.766		0.569	0.098
$Th(H_2)_{12}^{4+}$	2.640	2.649	0.785	-17.612	-1.468		4.708	0.380
$U(H_2)_{12}^{4+}$	2.551	2.578	0.789	-20.386	-1.699		0.342	0.531

Figure S1. . Optimized structures of $M(H_2)_n^{3+}$ (n = 1-15) using BHLYP-D3/def-TZVPP method

Figure S2. . Optimized structures of $Ac(H)_2(H_2)_y^{3+}$ and $Ac(H)_4(H_2)_y^{3+}$ systems (where y = 1, 2, 9-10) using BHLYP-D3/def-TZVPP method

Figure S3. Energy Gain (EG, kJ mol⁻¹) of $La(H_2)_n^{3+}$ (n = 1 - 15) systems on addition of hydrogen molecule in $La(H_2)_{n-1}^{3+}$ systems.

Figure S4. MOs Picture of Ac(H₂)₁₀³⁺ using BHLYP-D3/def-TZVPP method

24a(HOMO) (pure) 23a (pure) 22a(Mix) 21(Mix)

20a(Mix) 19a(Mix) 18a(Mix) 17a(Mix)

Figure S5. MOs Picture of Ac(H₂)₁₁³⁺ using BHLYP-D3/def-TZVPP method

23a (pure)

25a(HOMO) (pure) 24a (pure)

22a(Mix)

21a(Mix)

20a(Mix)

15a(Mix)

16a(Mix)

14a(Mix)

Figure S6. MOs Picture of Ac(H₂)₁₂³⁺ using BHLYP-D3/def-TZVPP method

Figure S7. MOs Picture of La(H₂)₉³⁺ using BHLYP-D3/def-TZVPP method

Figure S8. Electron density plots of $Ac(H_2)_n^{3+}$ (n = 1-4) using BHLYP-D3/def-TZVPP method employed with energy density function.

Figure S9. Frequency Plot of a) $Ac(H_2)_n^{3+}and b$ $La(H_2)_n^{3+}$ (n = 1-12) clusters using BHLYP-D3/def-TZVPP method