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1. General Information

All catalytic experiments were carried out using standard Schlenk techniques. All solvents were
reagent grade or better. Deuterated solvents were used as received. Toluene was refluxed over
sodium/benzophenone and followed by distilled under argon atmosphere and stored over sodium.
Metal complexes and other chemicals used in catalysis reactions were used without additional
purification. Thin layer chromatography (TLC) was performed using silica gel precoated glass
plates, which were visualized with UV light at 254 nm or under iodine. Column chromatography
was performed with SiO, (SilicycleSiliaflash F60 (230-400 mesh). 'H NMR (400 or 500 MHz),
BC{!H} NMR (100 MHz) spectra were recorded on the NMR spectrometer. Deuterated
chloroform was used as the solvent and chemical shift values (9) are reported in parts per million
relatives to the residual signals of this solvent [3 7.26 for 'H (chloroform-d), & 77.2 for 13C{'H}
(chloroform-d). Abbreviations used in the NMR follow-up experiments: br, broad; s, singlet; d,
doublet; t, triplet; q, quartet; m, multiplet. GC analysis was carried out using a HP-5 column (30
m, 0.25 mm, 0.25). Mass spectra were obtained on a GCMS-QP 5000 instruments with ionization
voltages of 70 eV. High resolution mass spectra (HRMS) were obtained by fast atom bombardment
(FAB) using a double focusing magnetic sector mass spectrometer and electron impact (EI)
ionization technique (magnetic sector-electric sector double focusing mass analyzer). HPLC

analysis was performed on Agilent Technologies 1260 Infinity with UV detector.

2. Experimental Section

All the nickel complexes were prepared based on previously reported procedure. !
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2.1 Reaction Optimization

Table S1. Optimization of reaction condition.?

O MeO

g . e DAOH cat A D/\ ﬁ+ ’
Me/B\Me MeG KO'Bu, Toluene 2

1

110°C, 12 h

Yield of 30 & 30'

Entry Reaction conditions
(%)°
1 NiCl, used as [Ni] source 32 (7) N
2 NiBr, 38 (6) |
3 NiCly(PMes), 47 (8) N
4 Ni(Cp*), 52 (12) ;N_N'_N
5 Standard conditions 76 (2) o Cl 2'
6 Catalyst B 72 (6)
7 K,COj3 instead of KOtBu n.r. (A)
8 Na,COj instead of KOtBu n.r. X
9 Cs,CO3instead of KOtBu n.r. | —
10 KOH instead of KOfBu 61 (8) N—NNi—N
11 1,4 dioxane used as solvent n.r. & Br/l \Br ZZ
12 n-octane used as solvent 71 (6) O OH, LO
13 rt n.r.
14 at 80 °C 62 (5) (B)

@Reaction conditions: 1 (0.5 mmol), 20 (0.5 mmol), cat.[Ni] (3 mol%), KOsBu (0.55 mmol), and

toluene (1 mL), 110 °C, 12 h. #Isolated yields. n.r. = no reaction.

Optimization studies on the direct olefination are summarized in Table 1. We began our
investigation using dimethyl sulfone (DMS) (1) as a model substrate and (3,4-
dimethoxyphenyl)methanol (20) as a coupling reagent in the presence of NiCl, (3 mol %),
and KO7Bu (1.1 equiv) as a base in refluxing toluene for 12 h to yield the expected product
30 in 32% isolated yield (Table S1, entry 1). Under similar conditions other nickel salts
were also examined and gave moderate yield of the olefinic product (Table S1, entries 1-
4). Interestingly, by employing NNN-Ni(II) complexes A and B under optimal conditions,
the product 30 was obtained in 76% and 72% yield, respectively (Table S1, entries 5-6).
Notably, the liberated hydrogen gas was detected on gas chromatography and quantified.
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Significantly, no dehydrogenative olefination was observed in the absence of Ni-catalyst.
Other bases such as Cs,CO3, KOH, and K,CO; gave poor results under standard reaction
conditions (Table S1, entry 7-9). Next the effect of solvent under our Ni-catalyzed
conditions was performed, and found that the reaction proceeds efficiently in toluene
compared to other solvents and affording 30 in good yield (Table S1, entry 11-12). By
lowering the temperature, we have obtained the product 30 in lower yield (Table S1, entry

13-14).

2.2 General procedure for the nickel-catalyzed olefination of alcohols

To an oven-dried 10 mL screw-capped vial, catalyst A (3 mol%), sulfone 1 (0.5mmol), alcohol 2
(0.5 mmol), KO#Bu (0.55 mmol, 1.1 equivalent), toluene (1 mL) were added under a gentle stream
of argon. The reaction mixture was kept for heating at reflux for 12 h. Then, the reaction mixture
was diluted with water (4 mL) and extracted with dichloromethane (3 x 5 mL). The resultant
organic layer was dried over anhydrous Na,SO, and the solvent was evaporated slowly under
reduced pressure maintaining the water bath temperature 23 °C. The solvent was evaporated under
reduced pressure. The crude mixture was purified by silica gel column chromatography (230-400

mesh size) using petroleum-ether/ethyl acetate as an eluting system.

2.3 General procedure for the demethylation of 9

To an oven-dried 10 mL screw-capped vial, (E)-1,3-dimethoxy-5-(4-methoxystyryl)benzene (0.5
mmol) in CH,Cl, (2 mL) under argon was treated with BBr; (5 equiv) at 0 °C. The solution was
warmed to room temperature and stirred for 5 h followed by the slow addition of water (4 mL) and
further stirring for 30 min. Then, CH,Cl, was evaporated under reduced pressure and the water
phase was extracted with EtOAc (3x5 mL). The crude mixture was purified by silica gel column

chromatography (230-400 mesh size) using MeOH/CH,Cl, as an eluting system to afford 10.
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3. Mechanistic studies

3.1 Synthesis of [D;]-20

To an oven-dried 10 mL screw-capped vial, Ru-MACHO (3 mol%), 3,4-dimethoxybenzyl alcohol
2 (0.1 mmol), KO7Bu (0.55 mmol, 1.1 equivalent), deuterium oxide (1 mL) were added under a
gentle stream of argon. The reaction mixture was kept for stirring at 130 °C for 18 h. Then, the
reaction mixture was diluted with water (4 mL) and extracted with dichloromethane (3 x 5 mL).
The resultant organic layer was dried over anhydrous Na,SO, and the solvent was evaporated
under reduced pressure. The crude mixture was purified by silica gel column chromatography

(230-400 mesh size) using petroleum-ether/ethyl acetate as an eluting system.
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D
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Chemical Shift (ppm)

TH NMR of [D3]-20

3.2 Synthesis of deuterated sulfone [D2]-4

To a solution of the benzyl phenyl sulfone (0.5 mmol) in THF (6 mL) containing DBU (5 equiv.)

was added deuterium oxide (1 mL, 99.9 at % D). The mixture was stirred in a closed vial at room
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temperature for 18 h. To the mixture was added ethyl acetate (2 mL) and three times washed with
IN HCI (5 mL). The resultant organic layer was dried over anhydrous Na,SO, and the solvent was

evaporated under reduced pressure and the compound was use directly used for further reaction.

4.35

) oy

I
D ey
3.052.063.192.00 0.26
[y ]
11 10 9 8 7 6 5 4 3 2 1 0

Chemical Shift (ppm)

ITH NMR of Deuterated sulfone [D2]-4

3.3  Deuterium labelling experiments

a) To an oven-dried 10 mL screw-capped vial, complex A (3 mol%), dimethyl sulfone 1 (0.5
mmol), 3,4-dimethoxy benzyl alcohol [D3]-20 (0.5 mmol), KO7Bu (0.55 mmol, 1.1 equivalent),
toluene (1 mL) were added under a gentle stream of argon. The reaction mixture was kept for
heating at reflux for 12 h. Then, the reaction mixture was diluted with water (4 mL) and extracted
with dichloromethane (3 x 5 mL). The resultant organic layer was dried over anhydrous Na,SO,
and the solvent was evaporated under reduced pressure. The crude mixture was purified by silica
gel column chromatography (230-400 mesh size) using petroleum-ether/ethyl acetate as an eluting

system.
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b) To an oven-dried 10 mL screw-capped vial, complex A (3 mol%), benzyl phenyl sulfone [D;,]-
4 (0.5mmol), 3,4-dimethoxy benzyl alcohol 20 (0.5 mmol), KO7Bu (0.55 mmol, 1.1 equivalent),
toluene (1 mL) were added under a gentle stream of argon. The reaction mixture was kept for
heating at reflux for 12 h. Then, the reaction mixture was diluted with water (4 mL) and extracted
with dichloromethane (3 x 5 mL). The resultant organic layer was dried over anhydrous Na,SO,
and the solvent was evaporated under reduced pressure. The crude mixture was purified by silica
gel column chromatography (230-400 mesh size) using petroleum-ether/ethyl acetate as an eluting

system.
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34 Reaction in presention of Hg and TEMPO

To an oven-dried 10 mL screw-capped vial, complex A (3 mol%), dimethyl sulfone 1 (0.5 mmol),
3,4-dimethoxy benzyl alcohol 20 (0.5 mmol), KO7Bu (0.55 mmol, 1.1 equivalent), Hg (50
equivalent with respect to catalyst) or TEMPO (2 equivalent), toluene (1 mL) were added under a
gentle stream of argon. The reaction mixture was kept for heating at reflux for 12 h. Then, the
reaction mixture was diluted with water (4 mL) and extracted with dichloromethane (3 x 5 mL).

The resultant organic layer was dried over anhydrous Na,SO, and the solvent was evaporated
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under reduced pressure. The crude mixture was purified by silica gel column chromatography

(230-400 mesh size) using petroleum-ether/ethyl acetate as an eluting system.

standard
conditions

9 MeO OH Hg (50 eq.) MeO N
S +

Me"EMe Moo o o
1

MeO
TEMPO (2 eq.)
20 tandard 30, Hg (74%)
sanaar TEMPO (72%)
conditions

3.5 Qualitative analysis of hydrogen gas and aldehyde intermediate

To an oven-dried 10 mL screw-capped vial, complex A (3 mol%), 3,4-dimethoxybenzyl alcohol
20 (0.5 mmol), KO7Bu (0.55 mmol, 1.1 equivalent), toluene (1 mL) were added under a gentle
stream of argon. The reaction mixture was kept for heating at reflux for 12 h. Then, the gaseous

mixture was analysed on GC (TCD detector) which showed the formation of dihydrogen.

H

MeO standard MeO
D/\OH conditions o, Hyh
MeO MeO

Observed by GC

20 80%

Yoo

GC spectra of H,
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3.6 Control experiments
(a) Reaction with aldehyde:

To an oven-dried 10 mL screw-capped vial, complex A (3 mol%), benzyl phenyl sulfone 4a (0.5
mmol), benzaldehyde (0.5 mmol), KO/Bu (0.55 mmol, 1.1 equivalent), toluene (1 mL) were added
under a gentle stream of argon. The reaction mixture was kept for heating at reflux for 12 h. Then,
the reaction mixture was diluted with water (4 mL) and extracted with dichloromethane (3 x 5
mL). The resultant organic layer was dried over anhydrous Na,SO,4 and the solvent was evaporated
under reduced pressure. The crude mixture was purified by silica gel column chromatography

(230-400 mesh size) using petroleum-ether/ethyl acetate as an eluting system.

) 0
S (0] AN
I cat. A
O +
©/ F’h)J\H KOtBu, toluene O

4a 110 °C, 12 h Sa (70%)

(c) Dehydrogenation of alcohol by in situ generated Ni-H species

To an oven-dried 10 mL screw-capped vial, catalyst A (3 mol%), benzyl alcohol (0.5 mmol),
sodium borohydride (3 mol%), toluene (1 mL) were added under a gentle stream of argon. The

reaction mixture was kept for heating at reflux for 12 h. Then, the reaction mixture was submitted

for GC and GC-MS.
©/\OH cat. A/ NaBH, ©AO
NaBHj,, Toluene

110°C, 12 h 27%

(d) Preparation of Ni-complexes and dehydrogenation of benzyl alcohol

Based on the literature reported procedure, the PCy;),NiBr, complex was prepared (J. Chem. Soc.
A 1971, 152-154). The (PCy;),NiBrH complex was obtained as yellow solid (decomposes very
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fast in solvent). Characterization data are in agreement with the literature reported data (ISRN

Inorg. Chem. 2013, 1-13; Melting point = 152 °C (decomposed).

EtOH
reflux, 12 h

NiBr, + 2PCy; NiBra(PCy)s

NaBH, [Toluene:EtOH
rt, 12 h

(PCV3)2NIBTH
To an oven-dried 10 mL screw-capped vial, PCy3),NiBrH (5 mol%), 3,4-dimethoxybenzyl alcohol
20 (0.5 mmol), toluene (1 mL) were added under a gentle stream of argon. The reaction mixture

was kept for heating at reflux for 12 h. Then, the gaseous mixture was analysed on GC (TCD
detector) which showed the formation of dihydrogen and gave the corresponding aldehyde in 23%

©/\OH cat. (PCy3)2N|BrH‘ @O T
+ H,
Toluene

110°C, 12 h 27%

yield.

(e) Direct olefination reaction catalysed by PCy;),NiBr, or PCy;),NiBrH complexes

To an oven-dried 10 mL screw-capped vial, PCy3),NiBr; (5 mol%) or PCy;),NiBrH (5 mol%),
sulfone 1 (0.5mmol), alcohol 2 (0.5 mmol), toluene (1 mL) were added under a gentle stream of
argon. The reaction mixture was kept for heating at reflux for 12 h. Then, the reaction mixture was
diluted with water (4 mL) and extracted with dichloromethane (3 x 5 mL). The resultant organic
layer was dried over anhydrous Na,SO, and the solvent was evaporated slowly under reduced
pressure maintaining the water bath temperature 23 °C. The solvent was evaporated under reduced
pressure. The crude mixture was purified by silica gel column chromatography (230-400 mesh

size) using petroleum-ether/ethyl acetate as an eluting system.
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cat. NiBro(PCy)s

MeO
(IS? . e DAOH u - Mer@/\
M /||\M —— Std. conditions [(——
® 0™ Meo
1

MeO

20 cat. (PCys)oNiBrH 30, cat. NiBry(PCy); (46%)
cat. HNiBr(PCy)3 (37%)

(f) Reaction with vinyl sulphone (11):

To an oven-dried 10 mL screw-capped vial, (complex A (3 mol%) + KOsBu (0.55 mmol, 1.1
equivalent) or 5 mol% of PCyj;),NiBrH or complex A (3 mol%) + 3 mol% of NaBH,), (E)-(1-
(phenylsulfonyl)ethene-1,2-diyl (11, 0.5mmol), toluene (1 mL) were added under a gentle stream
of argon. The reaction mixture was kept for heating at reflux for 12 h. Then, the reaction mixture
was diluted with water (4 mL) and extracted with dichloromethane (3 x 5 mL). The resultant
organic layer was dried over anhydrous Na,SO, and the solvent was evaporated under reduced

pressure. The crude mixture was submitted for GC and GC-MS.

cat. [Ni]
> 5a
Ph toluene cat. (PCy3)oNiBrH = 69%
Ph 110°C,12h  cat. A/ NaBH, = 76%
\/\SOZPh 4
11
cat. A 54

KO®Bu, toluene i hresence of 2a = 87%
110°C, 12 h in absence of 2a = 14%

3.7  Detection of intermediates by HRMS: To an oven-dried 10 mL screw-capped vial,
catalyst A (0.5 mmol), benzyl alcohol (0.5 mmol), KOsBu (0.55 mmol, 1.1 equivalent), toluene (1
mL) were added under a gentle stream of argon. The reaction mixture was kept for heating at reflux

for 4 h. Then, the reaction mixture was submitted for HRMS.
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VND-3_190325161832#199 RT: 0.88 AV: 1 NL: 5.82E6
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550.1919
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VND-3_190325161832 #108 RT: 0.48 AV: 1 NL: 4.36E5
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HRMS analysis of reaction mixture

3.8 Kinetics analyses

The progress of the reaction studied with the kinetic analyses and revealed that the olefination
reaction is first order with respect to sulfone and catalyst, and fractional order in alcohol and the

base concentration.
Rate-order determination

The initial rate method was used to determine the rate order of the olefination reaction with respect
to various components of the reaction. The data of the concentration (mmol) vs time (min.) plot
was fitted to linear using origin pro 8. The slope of the linear fitted curve represents the reaction
rate. The order of the reaction was determined by plotting log(rate) vs log(conc.) of that particular

component.
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3.8.1 Rate order determination with respect to benzyl alcohol (2a)

To determine the order of the olefination reaction on 2a, the initial rates at different initial
concentrations of 2a were recorded. The final data was obtained by averaging the results of two

independent runs for each experiment.

To an oven dried 15 mL screw cap pressure tube, benzyl phenyl sulfone (0.216 mmol, 1 eq.), Ni
catalyst (0.0108 mmol, 5 mol%), KO’Bu (0.216 mmol, 1 eq.), mesitylene (0.216 mmol, 1 eq.) as
an internal standard, specific amount of 2a and toluene (1.95 mL) were added under a gentle stream
of argon to make up the total volume of the reaction mixture to 2 mL. The reaction mixture was
kept for stirring at 140°C (bath-temperature). At regular intervals (10 min, 20 min, 30 min, 40 min)
the reaction mixture was cooled to ambient temperature and an aliquot of mixture was taken in a
GC vial. The GC sample was diluted with ethyl acetate and subjected to gas chromatographic
analysis. The concentration of the product was determined with respect to mesitylene internal
standard. The data was used to draw the concentration of the product (mmol) vs time (min.) plot
(Figure S1). The data represented was taken from the average of two independent set of
experiments. The rate of reaction at different initial concentration of 2a was given in (Table S1)
and used to plot the log(rate) vs log(conc.) plot (Figure S2) to determine the order of reaction with

respect to benzyl alcohol.

Table S1. Rate of the olefination reaction at different initial concentration of (2a).

Experiment Amount of 2a Initial concentration Initial rate
(gm) of 2a (mmol) [mmol/min]x 104
1 0.012 0.108 1.74
2 0.023 0.216 3.09
3 0.035 0.324 5.012
4 0.047 0.436 7.24
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Figure S1. Concentration vs time plot at various concentrations of (2a).
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Figure S2. log(rate) vs log(conc.) graph of (2a).

3.8.2 Rate order determination with respect to benzyl phenyl sulfone (4a)

To an oven dried 15 mL screw cap pressure tube, benzyl alcohol (0.216 mmol, 1 eq.), Ni catalyst

(0.0108 mmol, 5 mol%), KOBu (0.216 mmol, 1 eq.), mesitylene (0.216 mmol, 1 eq.) as an internal
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standard, specific amount of 4a and toluene (1.95 mL) were added under a gentle stream of argon
to make up the total volume of the reaction mixture to 2 mL. The reaction mixture was kept for
stirring at 140°C (bath-temperature). At regular intervals (10 min, 20 min, 30 min, 40 min) the
reaction mixture was cooled to ambient temperature and an aliquot of mixture was taken in a GC
vial. The GC sample was diluted with ethyl acetate and subjected to gas chromatographic analysis.
The concentration of the product was determined with respect to mesitylene internal standard. The
data was used to draw the concentration of the product (mmol) vs time (min.) plot (Figure S3).
The data represented was taken from the average of two independent set of experiments. The rate
of reaction at different initial concentration of 4a was given in (Table 2) and used to plot the
log(rate) vs log(conc.) plot (Figure S4) to determine the order of reaction with respect to benzyl

phenyl sulfone.

Table S2. Rate of the olefination reaction at different initial concentration of (4a).

Experiment Amount of 4a Initial concentration Initial rate
(gm) of 4a (mmol) [mmol/min]x 10-
1 0.025 0.108 1.74
2 0.050 0.216 2.55
3 0.075 0.324 3.63
4 0.10 0.436 3.98
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Figure S3. Concentration vs time plot at various concentrations of (4a).
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Figure S4. log(rate) vs log(conc.) graph of (4a).
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3.8.3 Rate order determination with respect to catalyst

To an oven dried 15 mL screw cap pressure tube, benzyl alcohol (0.216 mmol, 1 eq.), benzyl
phenyl sulfone (0.216 mmol, 1 eq.), KOBu (0.216 mmol, 1 eq.), mesitylene (0.216 mmol, 1 eq.)
as an internal standard, specific amount of catalyst and toluene (1.95 mL) were added under a
gentle stream of argon to make up the total volume of the reaction mixture to 2 mL. The reaction
mixture was kept for stirring at 140°C (bath-temperature). At regular intervals (10 min, 20 min,
30 min, 40 min) the reaction mixture was cooled to ambient temperature and an aliquot of mixture
was taken in a GC vial. The GC sample was diluted with ethyl acetate and subjected to gas
chromatographic analysis. The concentration of the product was determined with respect to
mesitylene internal standard. The data was used to draw the concentration of the product (mmol)
vs time (min.) plot (Figure S5). The data represented was taken from the average of two
independent set of experiments. The rate of reaction at different initial concentration of catalyst
was given in (Table 3) and used to plot the log(rate) vs log(conc.) plot (Figure S6) to determine

the order of reaction with respect to catalyst.

Table S3. Rate of the olefination reaction at different initial concentration of catalyst.

Experiment Amount of Initial concentration Initial rate
catalyst (gm) of catalyst (mmol) [mmol/min]x 10
1 0.0026 0.0065 1.52
2 0.0044 0.0108 2.55
3 0.0062 0.0151 3.75
4 0.0088 0.0216 4.67
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Figure S5. Concentration vs time plot at various concentrations of catalyst.
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Figure S6. log(rate) vs log(conc.) graph at different concentration of catalyst.
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3.8.4 Rate order determination with respect to KO'Bu

To an oven dried 15 mL screw cap pressure tube, benzyl alcohol (0.216 mmol, 1 eq.), benzyl
phenyl sulfone (0.216 mmol, 1 eq.), Ni catalyst (0.0108 mmol, 5 mol%), mesitylene (0.216 mmol,
1 eq.) as an internal standard, specific amount of KO’Bu and toluene (1.95 mL) were added under
a gentle stream of argon to make up the total volume of the reaction mixture to 2 mL. The reaction
mixture was kept for stirring at 140°C (bath-temperature). At regular intervals (10 min, 20 min,
30 min, 40 min) the reaction mixture was cooled to ambient temperature and an aliquot of mixture
was taken in a GC vial. The GC sample was diluted with ethyl acetate and subjected to gas
chromatographic analysis. The concentration of the product was determined with respect to
mesitylene internal standard. The data was used to draw the concentration of the product (mmol)
vs time (min.) plot (Figure S7). The data represented was taken from the average of two
independent set of experiments. The rate of reaction at different initial concentration of KO'Bu
was given in (Table 4) and used to plot the log(rate) vs log(conc.) plot (Figure S8) to determine

the order of reaction with respect to KO’Bu.

Table S4. Rate of the olefination reaction at different initial concentration of KO'Bu.

Experiment Amount of Initial concentration Initial rate
KO'Bu (gm) of KO'Bu (mmol) [mmol/min]x 10-
1 0.0073 0.065 1.52
2 0.0121 0.108 2.55
3 0.0242 0.216 3.75
4 0.0363 0.324 4.67
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Figure S7. Concentration vs time plot at various concentrations of KO'Bu.
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4. Characterization Data

Styrene(3a)’

Oh

34 mg, 65% isolated yield. Rg= 0.9 (hexane = 100). 'H NMR (200 MHz, CHLOROFORM-d) & =
7.55-7.24 (m, 5 H), 6.79 (dd, J = 10.9, 17.6 Hz, 1 H), 5.82 (dd, J= 0.8, 17.6 Hz, 1 H), 5.31 (dd,

J=0.8,10.9 Hz, 1 H). 3C NMR (50 MHz, CHLOROFORM-d) é = 137.5, 136.9, 128.5, 127.7,
126.2, 113.7.

methyl(4-vinylphenyl)sulfane (3b)3

/@/\
MeS

45 mg, 60% isolated yield. Ry = 0.3 (hexane/ethyl acetate = 10/1). 'H NMR (500 MHz,
CHLOROFORM-d) & = 7.34 (d, J = 8.4 Hz, 2 H), 7.23 (dd, J = 4.6, 8.4 Hz, 3 H), 6.68 (dd, J =
11.1,17.5 Hz, 1 H), 5.72 (d, J= 17.5 Hz, 1 H), 5.22 (d, J= 10.7 Hz, 1 H), 2.50 (s, 4 H). 3C NMR
(126 MHz, CHLOROFORM-d) 6 = 138.0, 136.2, 134.6, 113.2, 15.8.

1-methoxy-4-vinylbenzene (3¢)?

O
MeO

30 mg, 65% isolated yield. Ry = 0.3 (hexane/ethyl acetate = 10/1). 'H NMR (200 MHz,
CHLOROFORM-d) 6 = 7.52 - 7.30 (m, 2 H), 7.01 - 6.84 (m, 2 H), 6.73 (dd, /= 10.9, 17.6 Hz, 1
H), 5.67 (dd, J= 0.9, 17.6 Hz, 1 H), 5.19 (dd, J= 0.9, 10.9 Hz, 1 H), 3.85 (s, 3 H). 3C NMR (50
MHz, CHLOROFORM-d) & = 159.3, 136.2, 130.4, 127.3, 113.8, 111.5, 55.2.

1-tert-butoxy-4-vinylbenzene (3d)*

/@/\
BuOt
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65 mg, 70% isolated yield. R¢ = 0.3 (hexane/ethyl acetate = 10/1). 'H NMR (200 MHz,
CHLOROFORM-d) 6 =7.57 - 7.30 (m, 2 H), 7.18 - 6.96 (m, 2 H), 6.79 (dd, J=10.9, 17.6 Hz, 1
H), 5.76 (dd, J= 0.9, 17.6 Hz, 1 H), 5.27 (dd, /= 0.9, 10.9 Hz, 1 H), 1.46 (s, 9 H). 13C NMR (50
MHz, CHLOROFORM-d) 6 = 155.1, 136.1, 132.3, 126.4, 123.6, 111.9, 77.8, 28.5.

4-vinylbiphenyl (3e)’

oh

58 mg, 65% isolated yield. R¢= 0.3 (hexane = 100). "H NMR (200 MHz, CHLOROFORM-d) & =
7.84 - 7.30 (m, 9 H), 6.78 (dd, J=10.9, 17.6 Hz, 1 H), 5.81 (dd,/=0.8, 17.6 Hz, 1 H), 5.29 (d, J
=10.9 Hz, 1 H). 3C NMR (50 MHz, CHLOROFORM-d) & = 140.7, 140.6, 136.6, 136.4, 128.8,
127.3,127.2, 126.9, 126.6, 113.9.

1-tert-butyl-4-vinylbenzene (3f)°

/@/\
tBu

58 mg, 72% isolated yield. R¢= 0.3 (hexane = 100). "H NMR (200 MHz, CHLOROFORM-d) & =
7.55-7.59 (m, 4 H), 6.86-7.01 (m, 1 H), 5.93 (dd, J=1.0, 17.6 Hz, 1 H), 5.41 (dd, /= 1.0, 10.9
Hz, 1 H), 1.53 (s, 9 H). 3C NMR (50 MHz, CHLOROFORM-d) 8 = 150.6, 136.7, 134.8, 126.0,
125.3,112.7,34.4, 31.2.

1-fluoro-4-vinylbenzene (3g)?

A

41 mg, 68% isolated yield. Ry= 0.3 (hexane = 100). '"H NMR (200 MHz, CHLOROFORM-d) & =
7.56 - 7.34 (m, 2 H), 7.19 - 6.93 (m, 2 H), 6.72 (dd, J=10.9, 17.6 Hz, 1 H), 5.70 (d, J = 17.6 Hz,
1 H), 5.26 (d, J = 10.9 Hz, 1 H). 3C NMR (50 MHz, CHLOROFORM-d) § = 162.4 (d, J c.r =
245.0 Hz), 135.6, 133.6 (d, J cr = 5.0 Hz), 127.7(d, J c.r = 5.0 Hz), 115.3(d, J c.r = 20.0 Hz),
113.3.
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1-bromo-4-vinylbenzene (3h)°

/@/\
Br

50 mg, 55% isolated yield. R¢= 0.3 (hexane = 100). 'H NMR (200 MHz, CHLOROFORM-d) & =
7.61-7.33 (m,2 H), 7.32-7.13 (m, 2 H), 6.64 (dd, /= 10.9, 17.6 Hz, 1 H), 5.73 (dd, /= 0.7, 17.6
Hz, 1 H), 5.34 - 5.16 (m, 1 H). *C NMR (50 MHz, CHLOROFORM-d) 6 = 136.4, 135.7, 131.6,
127.7, 121.5, 114.5.

1-chloro-3-vinylbenzene (3i)’

Clm
31 mg, 45% isolated yield. R¢= 0.3 (hexane = 100). 'H NMR (200 MHz, CHLOROFORM-d) & =
7.38 (s, 1 H), 7.33 - 7.13 (m, 3 H), 6.65 (dd, J=10.9, 17.6 Hz, 1 H), 5.75 (d, /= 17.6 Hz, 1 H),

5.29 (d,J=10.9 Hz, 1 H). 3C NMR (50 MHz, CHLOROFORM-d) § = 139.4, 135.6, 134.5, 129.7,
127.7, 126.1, 124.4, 115.3, 77.6, 76.4.

3-vinylaniline (3j)*

24 mg, 40% isolated yield. Ry = 0.3 (hexane/ethyl acetate = 10/1). 'H NMR (200 MHz,
CHLOROFORM-d) 6 =7.17 (t,J=7.7 Hz, 1 H), 6.88 (d, /= 7.7 Hz, 1 H), 6.83 - 6.43 (m, 3 H),

576 (d, J = 17.6 Hz, 1 H), 5.27 (d, J = 10.9 Hz, 1 H), 3.61 (s, 2 H). 3C NMR (50 MHz,
CHLOROFORM-d) § = 146.4, 138.5, 136.9, 129.3, 116.7, 114.7, 113.5, 112.6, 77.6, 76.4.

1-methoxy-2-vinylbenzene(3Kk)°

OMe
@
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48 mg, 72% isolated yield. Ry = 0.3 (hexane/ethyl acetate = 10/1). '"H NMR (200 MHz,
CHLOROFORM-d) 6 =7.47 (dd,J=1.6,7.6 Hz, 1 H), 7.30 - 7.16 (m, 1 H), 7.14 - 6.71 (m, 3 H),
5.73(dd,J=1.6,17.7Hz, 1 H),5.26 (dd, J=1.6, 11.2 Hz, 1 H), 3.82 (s, 3 H). *C NMR (50 MHz,
CHLOROFORM-d) & = 156.6, 131.6, 128.8, 126.6, 126.4, 120.5, 114.4, 110.7, 55.3.

1-methyl-2-vinylbenzene (31)’
Me
o
41 mg, 70% isolated yield. R¢= 0.3 (hexane = 100). "H NMR (200 MHz, CHLOROFORM-d) & =
7.49 (br. s., 1 H), 7.24 - 7.10 (m, 3 H), 7.05 - 6.85 (m, 1 H), 5.65 (dd, J = 1.4, 17.4 Hz, 1 H), 5.30

(dd, J= 1.4, 11.0 Hz, 1 H), 2.37 (s, 3 H). 3C NMR (50 MHz, CHLOROFORM-d) & = 134.8,
130.2, 127.6, 126.1, 125.3, 115.1, 19.7.

1-vinylnaphthalene (3m)?

=

50 mg, 65% isolated yield. R¢= 0.3 (hexane = 100). 'H NMR (200 MHz, CHLOROFORM-d) & =
8.36 - 8.08 (m, 1 H), 8.08 - 7.79 (m, 2 H), 7.79 - 7.36 (m, 5 H), 5.86 (dd, /= 1.5, 17.3 Hz, 1 H),
5.54 (dd, J=1.5,10.9 Hz, 1 H). 3C NMR (50 MHz, CHLOROFORM-d) 6 = 135.6, 134.3, 133.5,
131.1, 128.5, 128.1, 126.0, 125.7, 125.6, 123.7, 123.6, 117.1.

2-vinylnaphthalene (3n)>

54 mg, 70% isolated yield. R¢= 0.3 (hexane = 100). "H NMR (200 MHz, CHLOROFORM-d) & =
7.97-17.74 (m, 4 H), 7.74 - 7.62 (m, 1 H), 7.56 - 7.40 (m, 2 H), 6.92 (dd, /=109, 17.6 Hz, 1 H),
590 (dd, J = 0.8, 17.6 Hz, 1 H), 5.37 (dd, J = 0.6, 10.9 Hz, 1 H). 3C NMR (50 MHz,
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CHLOROFORM-d) ¢ = 136.9, 135.0, 133.1, 128.1, 128.0, 127.6, 126.3, 126.2, 125.9, 123.2,
114.1.

1,2-dimethoxy-4-vinylbenzene (30)’

MeO

62 mg, 76% isolated yield. Ry = 0.3 (hexane/ethyl acetate = 10/1). 'H NMR (500 MHz,
CHLOROFORM-d) 6 = 7.01 - 6.92 (m, 2 H), 6.83 (d, J= 8.0 Hz, 1 H), 6.66 (dd, J = 10.7, 17.5
Hz, 1 H), 5.62 (d, J=17.5 Hz, 1 H), 5.16 (d, J=10.7 Hz, 1 H), 3.92 (s, 3 H), 3.89 (s, 3 H). 3C

NMR (126 MHz, CHLOROFORM-d) 6 = 149.0, 149.0, 136.5, 130.7, 119.4, 111.8, 111.0, 108.5,
55.9, 55.8.

1-(benzyloxy)-2-methoxy-4-vinylbenzene (3p)

87 mg, 73% isolated yield. Ry = 0.3 (hexane/ethyl acetate = 10/1). 'H NMR (500 MHz,
CHLOROFORM-d) 6 =7.45(d,J=7.6 Hz,2 H), 7.37 (t, J=7.4 Hz,2 H), 7.32 (d,J= 7.2 Hz, 1
H), 7.00 (d,/J=1.9 Hz, 1 H), 6.89 (dd, /= 1.9, 8.0 Hz, 1 H), 6.84 (d, /= 8.0 Hz, 1 H), 6.65 (dd, J
=10.7, 17.5 Hz, 1 H), 5.62 (d, /= 17.5 Hz, 1 H), 5.21 - 5.10 (m, 3 H), 3.93 (s, 3 H). *C NMR
(126 MHz, CHLOROFORM-d) 6 = 149.7, 148.1, 137.1, 136.5, 131.2, 128.5, 127.8, 127.2, 119.3,
113.9, 112.0, 109.2, 77.3, 76.7, 71.0, 56.0. HRMS (EI): m/z Calcd for C¢H;0, [M+H]":
241.1223; Found: 241.1221.

(E)-1,2-diphenylethene (5a)°

oh
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41 mg, 70% isolated yield. R¢= 0.9 (hexane = 100). "H NMR (400 MHz, CHLOROFORM-d) & =
7.56-7.54 (m, 4H), 7.41-7.38 (m, 4H), 7.32-7.28 (m, 2H), 7.15 (s, 2H). '3C NMR (101 MHz,
CHLOROFORM-d) & =137.3, 128.65 127.5, 126.5.

(E)-1-methyl-4-styrylbenzene (5b)°

CH3
oh

68 mg, 70% isolated yield. R¢= 0.9 (hexane = 100). "H NMR (400 MHz, CHLOROFORM-d) & =
7.58 - 7.45 (m, 2 H), 7.45 - 7.25 (m, 4 H), 7.25 - 7.17 (m, 2 H), 7.17 - 6.99 (m, 3 H), 2.32 (s, 3 H).
13C NMR (101 MHz, CHLOROFORM-d) & = 137.5, 134.5, 129.4, 128.7, 128.6, 127.7, 127.4,
126.4,126.4,21.2.

(E)-1-methoxy-4-styrylbenzene (5¢)°

OCHj
ye

69 mg, 66% isolated yield. R¢ = 0.3 (hexane/ethyl acetate = 10/1). 'H NMR (200 MHz,
CHLOROFORM-d) 6 7.52-7.23 (m, 7H), 7.12-7.00 (dd, J = 7.4, 4.8 Hz, 2H), 6.90 (m, 2H), 3.83
(s, 3H). 13C NMR (50 MHz, CHLOROFORM-d) & = 159.3, 137.6, 130.1, 128.6, 128.2, 127.7,
127.2, 126.6, 126.2, 114.1, 55.3.

(E)-1-fluoro-4-styrylbenzene (5d)°

F
o
69 mg, 70% isolated yield. Ry = 0.9 (hexane = 100). 'H NMR (200 MHz, CHLOROFORM-d)
7.52-7.44 (m, 4H), 7.39-7.35 (m, 1H), 7.33-7.29 (m, 2H), 7.09-7.00 (m, 4H). '3C NMR (50 MHz,

CHLOROFORM-d) § = 162.3 (d, Jo.r = 245.5 Hz), 137.2, 133.5, 128.7, 128.0, 127.8, 127.6, 127.5,
126.4, 115.6 (d, J c.¢ = 20.0 Hz).
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(E)-1-bromo-4-styrylbenzene (5¢)'°
Br
L

65 mg, 51% isolated yield. R¢= 0.9 (hexane = 100). "H NMR (200 MHz, CHLOROFORM-d) & =
7.65 - 7.49 (m, 4 H), 7.49 - 7.30 (m, 6 H), 7.11 (d, J = 3.7 Hz, 2 H). *C NMR (50 MHz,
CHLOROFORM-d) 6 =136.9, 136.3, 131.8, 129.4, 128.7, 128.0, 127.9, 127.4, 126.5, 121.3.
(E)-1-methyl-2-styrylbenzene (5f)°

2

X

Me

66 mg, 68% isolated yield. R¢= 0.9 (hexane = 100). 'H NMR (200 MHz, CHLOROFORM-d) 6
7.64-7.52 (m, 3H), 7.43-7.28 (m, 4H), 7.24-7.19 (m, 3H), 7.01 (d, J =16.1 Hz, 1H), 2.45 (s, 3H);
I3C NMR (50 MHz, CHLOROFORM-d) & = 137.7, 136.3, 135.8, 130.4, 130.0, 128.7, 127.5,
126.5, 126.2,125.4, 19.9.

(E)-1-methoxy-2-styrylbenzene (5g)'!

W
/
O

OMe

63 mg, 60% isolated yield. Ry = 0.3 (hexane/ethyl acetate = 10/1). 'H NMR (400 MHz,
CHLOROFORM-d) 6=7.61 (dd, J=1.5,7.6 Hz, 1 H), 7.58 - 7.44 (m, 3 H), 7.36 (t,J= 7.6 Hz, 2
H), 7.29 - 7.22 (m, 2 H), 7.12 (d, J=16.8 Hz, 1 H), 6.98 (t, /= 7.6 Hz, 1 H), 6.92 (d, J = 8.4 Hz,
1 H), 3.90 (s, 3 H). 3C NMR (101 MHz, CHLOROFORM-d) & = 156.9, 137.9, 129.1, 128.6,
128.6, 127.3, 126.5, 126.4, 126.4, 123.5, 120.7, 110.9, 55.5.

(E)-1-methyl-3-styrylbenzene (5h)°

%
@

Me
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78 mg, 80% isolated yield. R¢= 0.3 (hexane = 100). '"H NMR (400 MHz, CHLOROFORM-d) & =
7.58 (d,J=7.3 Hz,2 H), 7.50 - 7.38 (m, 4 H), 7.38 - 7.28 (m, 2 H), 7.25 - 7.08 (m, 3 H), 2.45 (s,
3 H). 3C NMR (101 MHz, CHLOROFORM-d) & = 138.2, 137.4, 137.2, 128.8, 128.6, 128.5,
128.4,128.4,127.5, 127.2, 126.5, 123.7, 77.3, 76.7, 21.4.

(E)-1-chloro-4-styrylbenzene (5i)°
SRt

64 mg, 60% isolated yield. Ry = 0.9 (hexane = 100). 'H NMR (200 MHz, CHLOROFORM-d)
7.53-7.49 (m, 3H), 7.40-7.20 (m, 6H), 7.12 (d, J =16.2 Hz, 1H), 7.01 (d, J = 16.4 Hz, 1H). 13C
NMR (50 MHz, CHLOROFORM-d) & = 139.2, 136.8, 134.6, 130.1, 129.8, 128.7, 128.0, 127.5,
127.2,126.6, 126.3, 124.7.

(E)-1-methoxy-3-styrylbenzene (5j)'!

X l OMe

73 mg, 70% isolated yield. Ry = 0.3 (hexane/ethyl acetate = 10/1). 'H NMR (200 MHz,
CHLOROFORM-d) & = 7.50 - 7.38 (m, 2 H), 7.35 - 7.13 (m, 5 H), 7.09 - 6.93 (m, 4 H), 6.81 -
6.70 (m, 1 H), 3.77 (s, 3 H). *C NMR (50 MHz, CHLOROFORM-d) 6 = 159.9, 138.8, 137.2,
129.6, 129.0, 128.6, 128.6, 127.6, 126.5, 119.2, 113.3, 111.7, 55.2.

(E)-1-styrylnaphthalene (5k)>

O U
52 mg, 45% isolated yield. R = 0.9 (hexane = 100). 'H NMR (200 MHz, CHLOROFORM-d)
8.15(d,J =8.0 Hz, 1H), 7.83-7.67 (m, 4H), 7.55-7.41 (m, 4H), 7.33 (t,J = 7.6 Hz, 2H), 7.28-7.22

(m, 1H), 7.18-7.01 (m, 2H). 3C NMR (126 MHz, CHLOROFORM-d) & = 137.6, 135.0, 133.7,
131.8, 131.4, 129.0, 128.7, 128.6, 128.0, 127.8, 126.7, 126.1, 125.8, 125.7, 123.8, 123.6.
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(E)-2-styrylnaphthalene (51)°

OOO

69 mg, 45% isolated yield. R¢= 0.9 (hexane = 100). '"H NMR (400 MHz, CHLOROFORM-d) & =
7.92-7.78 (m,4 H), 7.77-7.70 (m, 1 H), 7.57 (d, J="7.6 Hz, 2 H), 7.46 (ddd, J=1.5, 6.3, 8.2 Hz,
2 H), 7.39 (t,J= 7.6 Hz, 2 H), 7.33 - 7.24 (m, 3 H). 3C NMR (101 MHz, CHLOROFORM-d)
=137.3,134.8, 133.7, 133.0, 129.0, 128.8, 128.7, 128.3, 128.0, 127.7, 126.6, 126.5, 126.3, 125.9,
123.5.

(E)-1,2-dimethoxy-4-styrylbenzene (5m)
O OMe
O \ OMe

102 mg, 85% isolated yield. Ry = 0.3 (hexane/ethyl acetate = 10/1). 'H NMR (400 MHz,
CHLOROFORM-d) 6 =7.52 (d,J=7.6 Hz, 2 H), 7.37 (t, J= 8.0 Hz, 2 H), 7.31 - 7.21 (m, 1 H),
7.13 -7.05 (m, 3 H), 7.04 - 6.95 (m, 1 H), 6.88 (d, /= 8.4 Hz, 1 H), 3.97 (s, 3 H), 3.92 (s, 3 H).
3C NMR (101 MHz, CHLOROFORM-d) & = 149.1, 148.9, 137.5, 130.4, 128.6, 128.4, 127.2,
126.8, 126.2, 119.8, 111.2, 108.7, 55.9, 55.8. HRMS (EI): m/z Calcd for C;sH;;0, [M+H]":
241.1223; Found: 241.1222.

(E)-1,3-dimethyl-5-styrylbenzene (5n)!2

Me
Oy

93 mg, 90% isolated yield. R¢= 0.9 (hexane = 100). "H NMR (400 MHz, CHLOROFORM-d) & =
7.54 (d,J="7.5 Hz, 2 H), 7.39 (t, J= 7.5 Hz, 2 H), 7.32 - 7.27 (m, 1 H), 7.19 (s, 2 H), 7.11 (d, J =
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3.8 Hz, 2 H), 6.95 (s, 1 H), 2.38 (s, 7 H). *C NMR (101 MHz, CHLOROFORM-d) & = 138.1,
137.5, 137.2, 129.4, 128.9, 128.6, 128.3, 127.4, 126.4, 124.4, 21.3.

(E)-1,2,3-trimethoxy-5-styrylbenzene (50)
OMe
O OMe

O x OMe

94 mg, 70% isolated yield. Ry = 0.3 (hexane/ethyl acetate = 10/1). 'H NMR (200 MHz,
CHLOROFORM-d) 6 ppm 7.45 - 7.56 (m, 2 H), 7.24 - 7.42 (m, 3 H), 7.02 (s, 2 H), 6.74 (s, 2 H),
3.92 (s, 6 H), 3.87 (s, 3 H). 3C NMR (50 MHz, CHLOROFORM-d) & ppm 153.4, 138.0, 137.2,
133.1,128.7, 128.2, 127.6, 126.5, 103.6, 61.0, 56.2. HRMS (EI): m/z Calcd for C;;H;903; [M+H]":
271.1329; Found: 271.1328.

(E)-1,3-bis(methoxymethoxy)-5-styrylbenzene (5p)
(ﬂ\ﬂe
@)
O \ g 0~ OMe
112 mg, 75% isolated yield. Ry = 0.3 (hexane/ethyl acetate = 10/1). 'H NMR (200 MHz,
CHLOROFORM-d) & ppm 7.45 - 7.56 (m, 2 H), 7.24 - 7.40 (m, 3 H), 7.05 (d, J=2.78 Hz, 2 H),
6.87 (d, J=2.15 Hz, 2 H), 6.61 - 6.72 (m, 1 H), 5.19 (s, 4 H), 3.50 (s, 6 H). 13C NMR (50 MHz,

CHLOROFORM-d) & ppm 158.6, 139.6, 137.1, 129.4, 128.7, 128.4, 127.8, 126.6, 107.9, 104.4,
94.5, 56.1. HRMS (EI): m/z Calcd for CisH,,04 [M+H]": 301.1434; Found: 301.1432.

(E)-1,2-dip-tolylethene (5q)'?

:Me
O
Me
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69 mg, 66% isolated yield. R¢= 0.9 (hexane = 100). "H NMR (200 MHz, CHLOROFORM-d) & =
7.50 (d, J = 8.1 Hz, 4 H), 7.23 (s, 4 H), 7.13 (s, 2 H), 2.45 (s, 6 H). 3C NMR (50 MHz,
CHLOROFORM-d) 6 =137.2,134.7, 129.3, 127.6, 126.3, 21.2.

(E)-1,2-bis(4-methoxyphenyl)ethane (5r)'°

OMe
O |
MeO

91 mg, 76% isolated yield. R¢ = 0.3 (hexane/ethyl acetate = 10/1). 'H NMR (200 MHz,
CHLOROFORM-d) 6 =7.44 (d,J=8.8 Hz,4 H), 6.93 (d, /J=4.0 Hz, 4 H), 6.88 (s, 2 H), 3.84 (s,
6 H). 13C NMR (50 MHz, CHLOROFORM-d) 6 = 159.0, 130.5, 127.4, 126.2, 114.1, 55.3.

(E)-2-styrylpyridine (5s)'3

=

X
X N

65 mg, 72% isolated yield. R¢ = 0.4 (hexane/ethyl acetate = 10/1) 'H NMR (400 MHz,
CHLOROFORM-d): & ppm 8.59 - 8.61 (m, 1 H), 7.61 - 7.68 (m, 2 H), 7.57 - 7.60 (m, 2 H), 7.36
-7.39 (m, 3 H), 7.27 - 7.32 (m, 1 H), 7.13 - 7.19 (m, 2 H). 3C NMR (101 MHz, CHLOROFORM-
d): d ppm 155.7, 149.8, 136.7, 136.7, 132.8, 128.8, 128.4, 128.0, 127.2, 122.2, 122.2.

(E)-2-styrylfuran (5t)'4

| N\

X0

59 mg, 70% isolated yield. R¢= 0.9 (hexane = 100). 'H NMR (400MHz, CHLOROFORM-d) 4 =
7.51(d,J=7.3 Hz, 2 H), 7.50 - 7.34 (m, 3 H), 7.30 (d, J = 7.3 Hz, 1 H), 7.09 (d, J = 15.9 Hz, 1
H), 6.95 (d,J= 16.5 Hz, 1 H), 6.59 - 6.43 (m, 1 H), 6.40 (d, /= 3.1 Hz, 1 H). 13C NMR (101MHz,
CHLOROFORM-d) 6 = 153.3, 142.1, 137.0, 128.7, 127.6, 127.1, 126.3, 116.5, 111.6, 108.5.
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(E)-1,2,3-trimethoxy-5-(4-methoxystyryl)benzene (8)°

OMe
OMe
MeO
OMe
97 mg, 65% isolated yield. R¢ = 0.3 (hexane/ethyl acetate = 10/1). 'H NMR (200 MHz,
CHLOROFORM-d) 6 =7.46 (d,J=8.8 Hz, 2 H), 7.00 - 6.91 (m, 3 H), 6.73 (s, 2 H), 3.92 (s, 6 H),

3.88 (s, 3 H), 3.84 (s, 3 H). *C NMR (50 MHz, CHLOROFORM-d) & = 159.3, 153.4, 137.7, 133.4,
130.0, 127.7, 127.6, 126.6, 114.1, 103.4, 77.6, 76.4, 60.9, 56.1, 55.3.

(E)-1,3-dimethoxy-5-(4-methoxystyryl)benzene (9)°

OMe
MeO
OMe

74 mg, 55% isolated yield. Ry = 0.3 (hexane/ethyl acetate = 10/1). 'H NMR (200 MHz,
CHLOROFORM-d) 6 =7.55-7.41 (m, 2 H), 7.02 (s, 1 H), 6.98 - 6.91 (m, 2 H), 6.91 - 6.87 (m, 1
H), 6.67 (d, J = 2.1 Hz, 2 H), 6.39 (t, J = 2.2 Hz, 1 H), 3.84 (s, 10 H). >*C NMR (50 MHz,
CHLOROFORM-d) 6 =161.0, 159.4, 139.7, 129.9, 128.7, 127.8, 126.6, 114.1, 104.3, 99.6, 55.3.

(E)-5-(4-hydroxystyryl)benzene-1,3-diol (10)°

79 mg, 70% isolated yield. R¢= 0.25 (CH,Cl,/MeOH= 9/1). 'H NMR (200 MHz, DMSO-d¢) 6 =
8.59 (s, 1 H), 8.25 (s, 2 H), 6.32 (d, /= 8.6 Hz, 2 H), 5.89 - 5.61 (m, 4 H), 5.33 (s, 2 H), 5.17 -
4.95 (m, 1 H). ®C NMR (50 MHz, DMSO-d¢) 6 = 158.6, 157.3, 139.5, 128.3, 128.0, 125.8, 115.7,
104.5, 102.0. HRMS (EI): m/z Calcd for C4H;30;[M+H]*: 229.0859; Found: 229.860.
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