Electronic Supporting Information

2 Quartz crystal microbalance for telomerase sensing based on gold nanoparticles

3 induced signal amplification

- 4 Haitang Yang^a, Ying Li, Dingzhong Wang^b, Yong Liu^c, Wei Wei^{a,*}, Yuanjian Zhang^a,
- 5 Songqin Liu^a, Peng Li^{b,*}
- 6
- 7 ^a Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device,
- 8 Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of
- 9 Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- ¹⁰ ^b Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
- 11 ^c College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004,
- 12 PR China
- 13 *Corresponding author. Tel.: 86-25-52090613; Fax: 86-25-52090618.
- 14 E-mail address: weiw@seu.edu.cn (W. Wei)
- 15

- 17 1. Chemicals and Materials.
- 18 2. Apparatus.
- 19 3. Cell Culture and Telomerase Extraction.
- 20 4. Preparation of GNPs-cDNA.
- 21 5. QCM Measured Procedure.
- 22 6. Atomic Force Microscope (AFM) Characterization.
- 23 7. Calculation of the limit of detection.
- 24 Fig. S1 The optimization of the concentrations of TS primer and GNPs-cDNA.
- 25 Fig. S2 Telomerase activity detection extracts from various cell lines and selectivity of
- 26 the biosensor.
- 27 Fig. S3 The inhibition effect of BIBR 1532 and curcumin on telomerase activity.
- 28 Table S1 Sequences of oligonucleotides used in this study.
- 29 Table S2 Comparison of analytical performance of various methods for determination
- 30 of telomerase activity.
- 31

Chemicals and Materials. Bis(p-sulfonatophenyl)phenylphosphine dihydrate
 dipotassium salt (BSPP) was purchased from Sigma-Aldrich Co. Ltd. (St. Louis, MO)
 Tris(2-carboxyethyl)phosphine (TCEP) were ordered from Sangon Biotech Co., Ltd.
 (Shanghai, China). 6-mercaptohexanol (MCH) was purchased from Aladdin Reagent
 Co., Ltd. (Shanghai, China). The oligonucleotides were synthesized and modified by
 Shanghai Sangon Biological Engineering Technology & Services Co. Ltd (Table S1).

In this study, the buffer solutions were employed as follows: telomerase extension reaction buffer (20 mM Tris-HCl, pH 8.3, 1.5 mM MgCl₂, 1 mM EGTA, 0.63 mM KCl, 0.005% (v/v) Tween 20). dNTPs was prepared by dissolving in extension reaction buffer. Telomerase solution consisted of telomerase originating from the specified number of cancer cells was prepared by dissolving in extension reaction buffer containing 1 mM dNTPs. The TS primer and GNPs-cDNA were prepared by dissolving in Tris-NaCl (10 mM Tris-HCl, pH 7.4, 0.1 M NaCl).

2. Apparatus. TEM images were collected on a transmission electron microscope 45 (JEM-2010, Hitachi, Japan). Before TEM examination, 10µL of each sample was first 46 dispersed onto a copper grid coated with the carbon film and was then dried in air. 47 Piezoelectric measurements were performed with AT-cut gold coated quartz crystals 48 with a resonance frequency of 5 MHz in flow through mode with a Q-Sense explorer 49 QCM-D instrument (Biolin Scientific AB, Sweden). The maximum mass sensitivity of 50 the instrument we use in liquid is 0.5 ng/cm² (5 pg/mm²). The oscillating frequency of 51 the piezoelectric crystal decreases with the adsorption of a foreign substance on the 52 surface. To calculate the mass uptakes (Δm) the simplified relation between the shift in 53 frequency (Δf) and the mass of the adsorbed layer described by the Sauerbrey equation 54 was used. $\Delta m = -(C \cdot \Delta f)/n$. Where C = 17.7 ng Hz⁻¹ cm⁻² for a 5 MHz quartz crystal. 55 56 n = 1, 3, 5, 7 is the overtone number.

3. Cell Culture and Telomerase Extraction. Telomerase was extracted using the 57 CHAPS method.^{1, 2} Before telomerase extraction, A549 cells, HeLa cells, and MCF-7 58 cells were seeded in DMEM supplemented with 10% FBS, penicillin (100 µg/mL), and 59 streptomycin (100 µg/mL) in 5% CO2, 37 °C incubator. Three kinds of cells were 60 collected in the exponential phase of growth, and the number of cells was calculated by 61 flow cytometry. Then 1 million cells were dispensed in a 1.5 mL eppendorf tube, 62 washed twice with ice-cold PBS solution by centrifugation at 1800 rpm for 5 min, after 63 discarding the supernatant carefully, the cells were redispersed in 200 µL of ice-cold 64 CHAPS lysis buffer. The cells were incubated for 30 min on ice and then centrifuged 65 for 20 min (12 000 rpm, 4 °C). Finally, the cleared lysate which contained cell extracts 66 corresponding to one million cells, was carefully transferred to a fresh tube, flash 67 frozen, and stored at -80 °C before use. 68

For extraction of telomerase from urine samples, fresh urine (4 mL) was collected, centrifuged and washed with PBS solution. After 1800 rpm centrifugation for 5 min at 4 °C, the precipitate was redispersed in 40 uL of ice-cold lysis buffer and then incubated on ice. After 12000 rpm centrifugation for 20 min at 4 °C, the supernatant was transferred and stored at -80 °C before analysis.

4. Preparation of GNPs-cDNA. Citrate-stabilized GNPs with diameters of 13 nm were
synthesized according to the classic method.³ First, all glasswares used in experiment
were thoroughly washed with aqua regia (volume ratio 3:1, HCl/HNO₃), rinsed in DI
water, and oven-dried prior to use. Second, an aqueous solution of HAuCl₄·4H₂O (1
mM, 50 mL) was brought to reflux with continuous stirring. Third, sodium citrate

solution (0.057 g sodium citrate + 5 ml H₂O, freshly prepared) was quickly added, stirred, and kept boiling for another 15 min. The solution will turn from yellow to clear, to black, to purple to deep red during this period. After 15 min, turn heat off and allow the reaction to cool to room temperature. Finally, the AuNPs solution was stored in deep color bottles at 4 °C for further use. Concentration of the as-prepared AuNPs was determined using UV-vis spectroscopy.⁴

GNPs-cDNA was prepared following a literature procedure.⁵ In order to increase 85 the negative surface charge of the particle and consequently ensure that the GNPs 86 modified with DNA were well-dispersed at high ionic strength. BSPP-protected GNPs 87 were firstly prepared. Then the BSPP-protected GNPs were mixed with cDNA at a 88 molar ratio of 1:5 for GNPs-cDNA, followed by rocking gently at room temperature for 89 24 hours. Finally, the prepared GNPs-cDNA was further incubated with thiol-PEG-90 methyl for 2 hous to passivate the GNPs surface. The sample was then centrifuged to 91 remove uncoupled oligonucleotides. 92

93 5. QCM Measured Procedure. Prior to use, the gold-coated crystal chip (5 MHz, AT-94 cut) was immersed in a mixture of milliQ water, ammonia (25%) and hydrogen 95 peroxide (30%) with a volume ratio of 5:1:1 for 5 min at 75°C, then the chips were 96 rinsed with deionized water and dried by nitrogen gas before loading to measuring cells. 97 In a typical experiment, after the frequency stabilization with Tris-NaCl as mobile 98 phase, mixture of the TS primer (40 nM) and reducer TCEP (100 nM) was injected for 99 60 min, then the chip was rinsed for 30 min to remove weakly bound TS primer. MCH 100 (100 nM) flowed through the channels for 30 min to block the gold surface. Then the 101 chip was rinsed with Tris-NaCl to remove weakly bound MCH to frequency 102 stabilization. Next, different concentrations of A549 cells were injected for 60min. 103 After rinsing with Tris-NaCl for 50 min, the amplified response was obtained from the 104 final injection of the gold nanoparticles immobilized cDNA (GNPs-cDNA). The 105 running rate was 20 μ L/min set by an ismatec IPC tubing pump (Glattbrugg, 106 Switzerland). To reduce the effect of system error, the frequency shift of the normalized 107 ninth overtone which has the smallest noise was used to quantify.

For telomerase inhibitor evaluation, the experiments were conducted using the similar procedure except that telomerase was replaced with a mixture of different concentrations of BIBR 1532 or curcumin with a fixed concentration of 3000 A549 cells/mL. The inhibition efficiency was calculated based on the change of telomerase activity.

6. Atomic Force Microscope (AFM) Characterization. Freshly exfoliated mica was 113 immersed in acetone (95%) containing 1% APTES for 5 min, washed with acetone and 114 dried in the air. Then, it was immersed in 5% glutaraldehyde for 30 min, washed with 115 water and then added with 1 µM of NH₂-TS. 2.6% ice dissolved sodium borohydride 116 was used for blocking. After washing with water, 80 µL of extension reaction buffer 117 118 containing 1 mM dNTPs and 7800 A549 cells/mL was added and incubated for 1.5 h. After washing, GNPs-cDNA was added and incubated for 30 min. Afterwards, the final 119 prepared mica was rinsed with deionized water and dried for AFM characterization. 120 The surface morphology was observed using a tapping mode. 121

122 7. Calculation of the limit of detection. The detection limit was calculated according

to the IUPAC recommendations. The equation was $X_D = kS_b/m$. Where S_b is the the standard deviation of ten blank solution; m is the slope of the linear equation of ΔF to the concentration of A549 cells: $\Delta F = -29.86 - 0.024C$, k is 3 when confidence level reached 99.86%.

130 Fig. S1 The optimization of the concentrations of TS primer (A) and GNPs-cDNA (B).

131 Black and red bars represent before and after telomerase extension reactions,132 respectively. 3000 A549 cells/mL were used.

Fig. S2 Telomerase activity detection extracts from various cell lines and selectivity of
the biosensor. Heated inactive A549 cells were used as negative control. Error bars
show the standard deviation of three experiments.

Fig. S3 Frequency responses of the amplified QCM biosensor with the increasing
concentrations of BIBR (A) and curcumin (C). The inhibition effect of BIBR 1532 (B)
and curcumin (D) on telomerase activity. 3000 A549 cells were used. Error bars showed
the standard deviation of three experiments.

Name	Sequences (5' to 3')	
TS	SH(CH ₂) ₆ -TTTTTTTTTTTTAATCCGTCGAGCAGAGTT	
NH ₂ -TS	NH ₂ (CH ₂) ₆ -TTTTTTTTTTAATCCGTCGAGCAGAGTT	
cDNA	SH-(CH ₂) ₆ -CCCTAACCCTAACCCTAACCCTAACCCTAAAACT	

150 Table S2 A comparison in sensitivity between the proposed method and other reported assays for

Method	System	Detection range	Detection limit	Reference
UV-vis	Hemin-graphene conjugates	100 - 2300 cells/mL	60 cells/mL	6
UV-Vis	Etching of GNRs	200-15000 cells/mL	90 cells/mL	7
Fluorescence	DNA tetrahedron-hairpin probe	0-82000 cells/mL	90 cells/mL	8
Fluorescence	Molecular beacons	50-2000 cells/mL	50 cells/mL	9
EIS	$Fe(CN)_{6}^{3-}/Fe(CN)_{6}^{4-}$	10 ³ -10 ⁵ cells/mL	1000 cells/mL	10
DPV	Structure-switching DNA	10^2 - 6×10 ⁴ cells/mL	100 cells/mL	11
LSV	Pt NPs encapsulated MOFs	5×10 ² -10 ⁷ cells/mL	100 cells/mL	12
Glucometer	DNA-capped MSNs	100-5000 cells/mL	80 cells/mL	13
SERS	Nanogap-rich Au nanowire	0-10 ⁴ cells/mL	0.2 cells/mL	14
SERS	TEC-SERS	1-10000 cells/mL	1 cells/mL	15
QCM	GNPs	100-7800 cells/mL	37 cells/mL	This work

151 the detection of telomerase activity.

152

154 References

- 155 1 X. Liu, M. Wei, Y. Liu, B. Lv, W. Wei, Y. Zhang and S. Liu, Anal. Chem., 2016, 88,
- 156 8107-8114.
- 157 2 Y. Liu, M. Wei, X. Liu, W. Wei, H. Zhao, Y. Zhang and S. Liu, Chem. Commun.,
- 158 2016, **52**, 1796-1799.
- 159 3 H. D. Hill and C. A. Mirkin, *Nature protocols*, 2006, 1, 324-336.
- 4 W. Haiss, N. T. K. Thanh, J. Aveyard and D. G. Fernig, *Anal. Chem.*, 2007, **79**, 42154221.
- 162 5 Y. Liu, M. Wei, L. Zhang, W. Wei, Y. Zhang and S. Liu, *Chem. Commun.*, 2015, 51,
 163 14350-14353.
- 6 X. Xu, M. Wei, Y. Liu, X. Liu, W. Wei, Y. Zhang and S. Liu, *Biosen. Bioelectron.*,
 2017, 87, 600-606.
- 166 7 H. Yang, A. Liu, M. Wei, Y. Liu, B. Lv, W. Wei, Y. Zhang and S. Liu, Anal. Chem.,
- 167 2017, **89**, 12094-12100.
- 168 8 Q. M. Feng, M. J. Zhu, T. T. Zhang, J. J. Xu and H. Y. Chen, *Analyst*, 2016, 141,
 2474-2480.
- 170 9 K. Li, L. Wang, X. Xu and W. Jiang, Talanta, 2017, 167, 645-650.
- 171 10 W. Yang, X. Zhu, Q. Liu, Z. Lin, B. Qiu and G. Chen, *Chem. Commun.*, 2011, 47,
 172 3129-3131.
- 173 11 Z. Yi, H.-B. Wang, K. Chen, Q. Gao, H. Tang, R.-Q. Yu and X. Chu, Biosens.
- 174 *Bioelectron.*, 2014, **53**, 310-315.
- 175 12 P. Ling, J. Lei, L. Jia and H. Ju, Chem. Commun., 2016, 52, 1226-1229.

- 176 13 Y. Wang, M. Lu, J. Zhu and S. Tian, J. Mater. Chem. B, 2014, 2, 5847-5853.
- 177 14 G. Eom, H. Kim, A. Hwang, H.-Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E.-K.
- 178 Lim, J. Jeong, Y.-M. Huh, M.-K. Seo, T. Kang and B. Kim, Adv. Funct. Mater, 2017,
- **27**, 1701832.
- 180 15 S. Zong, Z. Wang, H. Chen and Y. Cui, Small, 2013, 9, 4215-4220.