Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting information

A high-energy-state biomimetic enzyme of oxygen-deficient MnTiO₃ nanodiscs for sensitive electrochemical sensing of superoxide anion

Shenfei Zhao,^a Zhuanzhuan Shi,^a Chun Xian Guo*^a and Chang Ming Li*^{ab}

^aInstitute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215003, P.R. China.

^bInstitute for Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, P.R. China.

*E-mail: cxguo@usts.edu.cn; ecmli@swu.edu.cn

Part 1: Experimental methods

Reagents and apparatus. Tetrabutyl titanate and ethylene diamine were purchased from Adamas. Ethylene glycol (EG), manganese (II) chloride tetrahydrate (MnCl₂·4H₂O) were purchased from Aladdin. Potassium chloride (KCl) was purchased from Shanghai Aibi Chemistry. Other chemicals including dopamine (DA), uric acid (UA), potassium superoxide (KO₂), phosphate buffer (PBS, 0.01 M, pH=7.4) and Nafion (5 wt.%) were purchased from Sigma-Aldrich. Deionized (DI) water was used for all aqueous solutions.

Morphology and structure of the materials were checked using transmission electron microscope (TEM, FEI Titan G2 60-300). Crystal structure was characterized via X-ray diffraction (XRD, Bruker D8 Advance). X-ray photoelectron spectroscopy (XPS, Escalab 250xi, Thermo Scientific) was utilized to analyze valence states of elements.

Preparation of S-OD MnTiO₃ nanodiscs and sensing platform. The precursor of MnTiO₃ nanodiscs were prepared as followings. 0.425 mL tetrabutyl titanate was dropped into 16 mL EG with stirring to form solution A. 247.8 mg MnCl₂·4H₂O was dissolved in 4 mL ethylene diamine with stirring to form solution B. Then, solution A and B were added to a 50 mL a Teflon-lined stainless-steel autoclave, and added 5 mL DI water drop by drop under stirring. The autoclave was heated at 200 °C for 24 h, and the solid product was collected by centrifugation, followed by washing with ethanol and water. The solid product was dried and heated under air to obtain MnTiO₃ nanodiscs. Finally, S-

OD MnTiO₃ nanodiscs were prepared after heating at different temperatures under Ar/H₂ (95:5). The optimized heating treatment temperature to reach the best performance was 200 °C.

Glassy carbon electrodes (GCE, d = 3 mm) were polished by 0.3 and 0.05 μ m alumina slurry and rinsed thoroughly with absolute ethyl alcohol and DI water followed by ultrasonically cleaning in absolute ethyl alcohol and DI water for 30 s to a shining surface, respectively. 4 μ L of 2 mg mL⁻¹ S-OD MnTiO₃ based ink were casted on GCE surface, and fixed with 4 μ L of 0.25% Nafion solution. The modified electrodes were used in subsequent experiments. Electrochemical measurements were performed on a CHI 660E electrochemical workstation with a three-electrode system that composed of a GCE working electrode, a platinum wire auxiliary electrode and a saturated calomel (SCE) reference electrode.

Electrochemical measurement conditions of the S-OD MnTiO₃-based O₂^{•-} sensor. All electrochemical measurements were performed at 25 °C in 0.01M pH=7.4 PBS solution. To achieve the best detection limit, the potential for amperometric measurement was optimized. The current-time response of S-OD MnTiO₃ to O₂^{•-} were recorded every 50s by successive addition of same concentration of O₂^{•-} at 0.5, 0.6, 0.7 V, respectively. The maximum amperometric response was achieved at a potential of 0.6 V. For real-time detection of O₂^{•-}, amperometric measurements were conducted in 0.01M pH=7.4 PBS solution by successive adding O₂^{•-} every 50s at an applied potential of 0.6 V. Selectivity tests were performed at the same conditions , where the concentration of O₂^{•-} was 115 nM and the concentration of interference species (K⁺, Cl⁻, DA, AA, H₂O₂, UA and NO) was 1 μ M. Stability test was conducted by adding 1.15 μ M O₂^{•-} for 1000s under an applied potential of 0.6 V.

Part 2: Additional figures

Fig. S1. Pictures showing plain $MnTiO_3$ nanodiscs (left) and oxygen deficient $MnTiO_3$ nanodiscs (right) aqueous solutions.

Fig. S2. (a) FESEM image of plain $MnTiO_3$ nanodiscs. (b-d) FESEM images of surface oxygen deficient (S-OD) $MnTiO_3$ nanodiscs. (e-h) EDS mappings of S-OD $MnTiO_3$ nanodiscs. (I) Elemental analysis of S-OD $MnTiO_3$ nanodiscs.

Fig. S3. (a) XPS survey spectra of S-OD MnTiO₃ nanodiscs. (b) Ti 2p and (c) O 1s spectra of plain and S-OD MnTiO₃ nanodiscs (Curve A for S-OD MnTiO₃ nanodiscs; curve B for plain MnTiO₃ nanodiscs).

Fig. S4. (a) FTIR image and (b) UV-Vis spectrum of S-OD MnTiO₃ nanodiscs.

Fig. S5. (a) XRD patterns of MnTiO₃ nanodiscs treated with Ar/H_2 to induce oxygen defects at different temperatures. (b) XRD patterns of S-OD MnTiO₃ nanodiscs at a narrow range from 34° to 37°. Curves A for plain MnTiO₃ nanodiscs; curve B for 150 °C; curve C for 200 °C; curve D for 250 °C; and curve E for 300 °C.

Fig. S6. Chronoamperometry curves of S-OD MnTiO₃ nanodiscs towards $O_2^{\bullet-}$ at different potentials, (Inset is narrow range of 0-250 s, electrolyte of PBS solution: 0.01 M, pH = 7.4).

Fig. S7. Chronoamperometry curve of S-OD $MnTiO_3$ nanodiscs for selectivity testing at 0.6 V (electrolyte of PBS solution: 0.01 M, pH = 7.4).