Electronic Supplementary Information (ESI) for

# Ultrathin Ni (II)-based Coordination Polymer Nanosheets for

# **Co-catalyst Promoting Photocatalytic H<sub>2</sub>-production**

Zhi-Qiang Jiang,<sup>a\*</sup> Xing-Liang Chen,<sup>a</sup> Jin Lu,<sup>a</sup> Yu-Feng Li,<sup>a</sup> Tian Wen <sup>b\*</sup> and Lei Zhang<sup>b</sup>

[a] Zhi-Qiang Jiang, Xing-Liang Chen, Jin Lu, Yu-Feng Li

Deep-processing of Fine Flake Grapgite Sichuan Province Key Laboratory of Colleges and Universities, Panzhihua University, Panzhihua, Sichuan, 617000, P. R. China.

E-mail: myjiangzq@163.com

[b] T. Wen and Lei Zhang,

School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia. E-mail: tian.wen@unimelb.edu.au

## Part I: Experimental Section

### 1.1 Materials synthesis Ni-CPs Crystals

Typically, a mixture of 4,4'-Bipyridine (0.11g), Ni(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O (0.586g) and H<sub>2</sub>O (5ml) was mixed in a 23 ml Teflon, which was heated at 130 °C for 2 days and then cooled to room temperature. The blue crystals (**Ni-CPs**) were obtained.

#### few-layer Ni-CPs nanosheets (Ni-CPNS)

The fresh bulk Ni- CPNS were fabricated by a liquid-phase exfoliation using an ultrasonic probe in absolute ethanol. In detail, the fresh bulk Ni- CPs crystals (50 mg) was added in ethanol, and ultra-sonicated for 8 hours. Subsequently, the dispersion was centrifuged to collect the supernatant.

#### CdS nanoparticle (Cd NP)

CdS nanoparticle was synthesized by a precipitation-hydrothermal strategy. For example, 1.09 g Cd(Ac)<sub>2</sub>·2H<sub>2</sub>O was added into 23.5 ml deionized water followed by stirring for 2 hour. Then 6.5 ml 0.92 M Na<sub>2</sub>S aqueous solution was added dropwise into the above solution, followed by stirring for 3 hours. Finally, the mixed solution was transferred to a 60 ml Teflon-lined autoclave and heated at 180 °C for 12 hours. Then it cooled to room temperature, the obtained yellow samples (Cd NP) were washed by deionized water and ethanol for three times, respectively.

#### Ni-CPNS coupled CdS nanoparticle (Ni-CPNS@CdS)

Ni-CPNS@CdS was obtained by mechanically mixing the Ni-CPNS ethanol solution with the CdS NP in a mortar inside a glovebox under the Argon gas conditions. Typically, 20 mg of as-synthesized CdS NP mixed Ni-CPNS (e.g.,3mg), which were added into the mortar and followed by addition ethanol solution. Then the sample a was mechanically ground for 20 min inside the glovebox. Finally, the nominal weight Ni-CPNS loaded on to CdS were 13 wt.% for the final product. The procedure for fabrication of different content Ni-CPNS loaded on to CdS (1.5, 5.7, 13,18 and 22.0 wt.%) was the same as that for 13 wt.%.

#### **1.2 Main Physicochemical Characterization**

All powder X-ray diffraction (PXRD) analyses were studied by a Rigaku Dmax2500

diffractometer with Cu Kα radiation. UV-Visible diffuse reflectance spectra were acquired on a UV-Vis spectrophotometer. Steady-state photolumincescence spectra and time-resolved PL decay curves were measured at room temperature. XPS was tested on a VG ESCALAB 210 XPS spectrometer system with Mg Ksource. The XANES measurements were carried out at the Australian Synchrotron.

#### 1.3 Photocatalytic H<sub>2</sub> production test

The photocatalytic H<sub>2</sub> production were evaluated in a 100 ml Pyrexflask, followed the 300 W Xenon arc lamp, which equipped with a UV-cutoff filter (  $\lambda \ge 420$  nm) was used as the light source to drive the photocatalytic reaction.

Part II: Supplementary Results

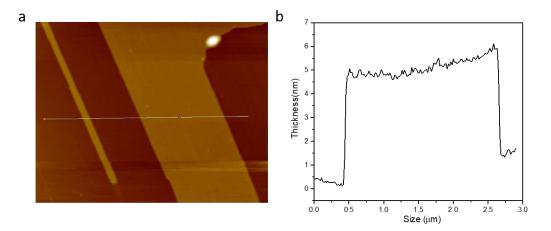
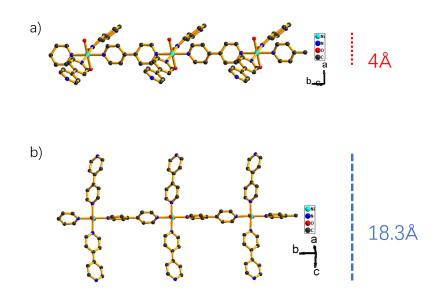




Fig. S1. AFM image of ultra-thin Ni-CPNS (a) and the corresponding height profiles (b).



**Fig. S2**. The thickness of Ni-CPs single chain with ~4Å (a) or ~18Å corresponding to metal coordination layer and 4, 4'-biprydine ligands, respectively.

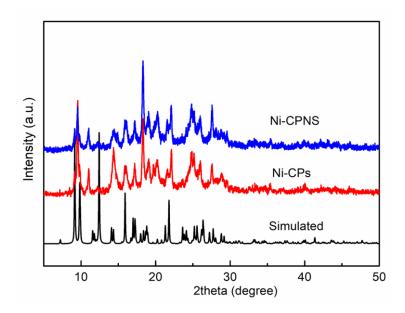



Fig. S3. The PXRD patterns of Ni-CPs and Ni-CPNS.

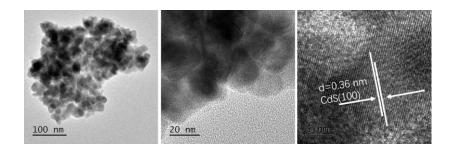



Fig. S4. The typical TEM images of CdS nanoparticls.

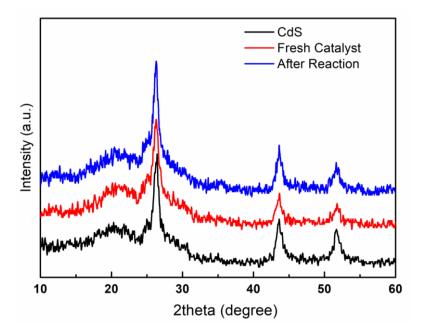



Fig. S5. The XRD patterns of CdS and Ni-CPNS@CdS before and after reaction.

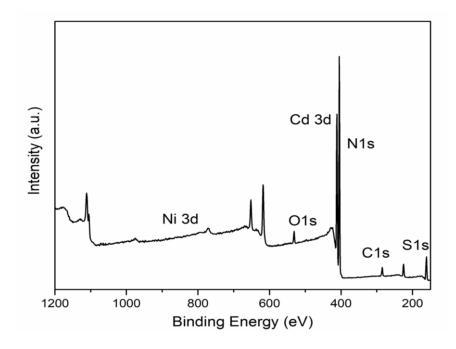



Fig. S6. XPS survey of Ni-CPNS@CdS.

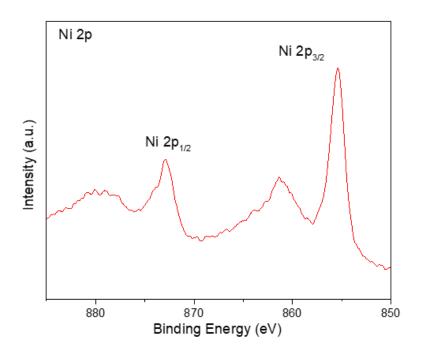



Fig. S7. XPS spectra of the Ni 2p in the Ni-CPNS@CdS.

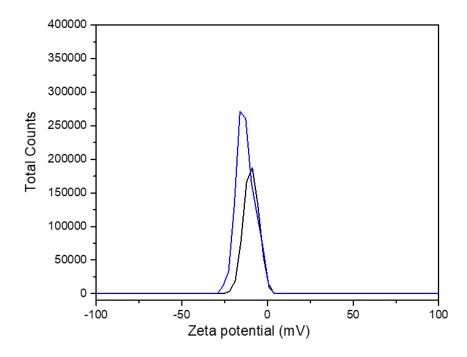



Fig. S8. The Zeta potential of the CdS (black line) and Ni-CPNS@CdS (blue line).

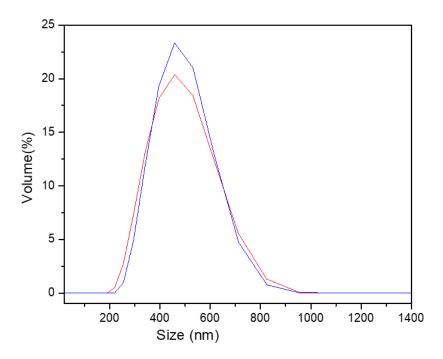



Fig. S9. The particle size distribution of the CdS (red line) and Ni-CPNS@CdS (blue line).

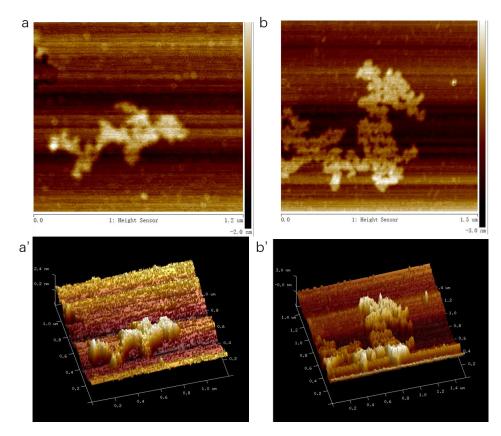



Fig. S10. AFM images of Ni-CPNS@CdS.

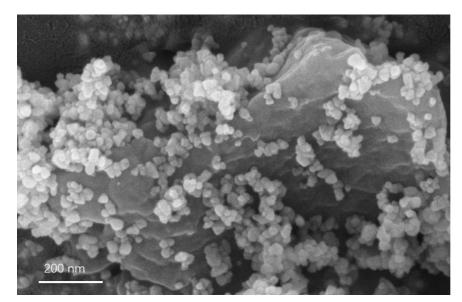
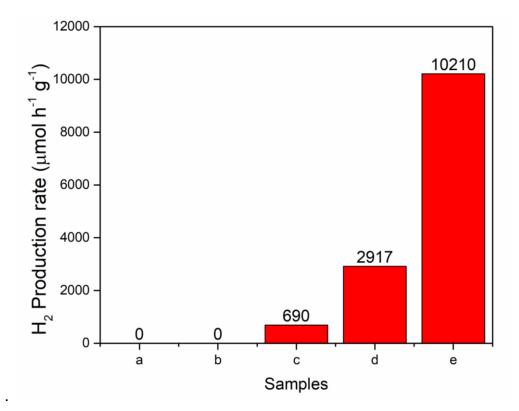




Fig. S11. SEM image of bulk Ni-CPs with CdS NPs after grinding.



**Fig. S12**. A comparison of the photocatalytic H<sub>2</sub>-production activities of Ni-CPs (a: Ni-CPs), Ni-CPNS (b: Ni-CPNS), CdS (c) and co-catalysts (d: Ni-CPs@CdS; e: Ni-CPNS@CdS).

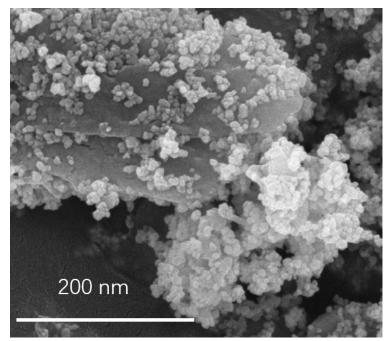




Fig. S13. Time course of H<sub>2</sub> production over Ni-CPNS@CdS under visible-light.



**Fig. S14.** SEM image of Ni-CPNS@CdS after photocatalyze H<sub>2</sub> evolution under visible-light.

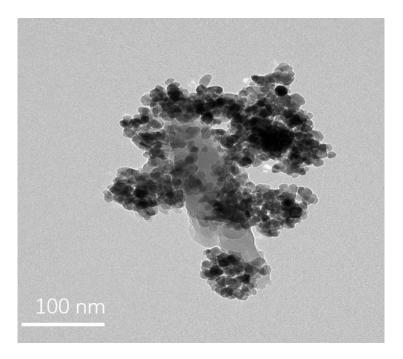
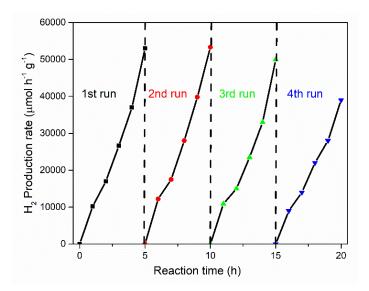




Fig. S15. TEM image of Ni-CPNS@CdS after photocatalytic  $H_2$  evolution under visible-light.



**Fig. S16.** Time course of H<sub>2</sub> production over Ni-CPNS@CdS over 20 hours test under visible light-driven catalytic processes

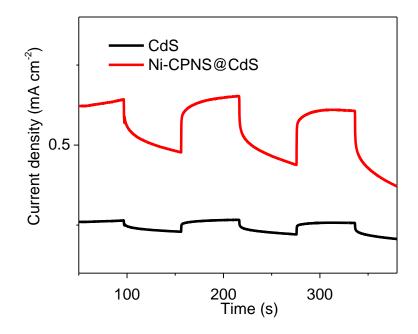



Fig. S17. Photocurrent tests of CdS nanoparticle and Ni-CPNS@CdS.

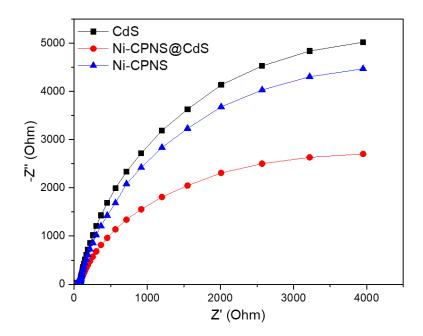



Fig. S18. EIS plots of CdS nanoparticle, Ni-CPNS and Ni-CPNS@CdS.

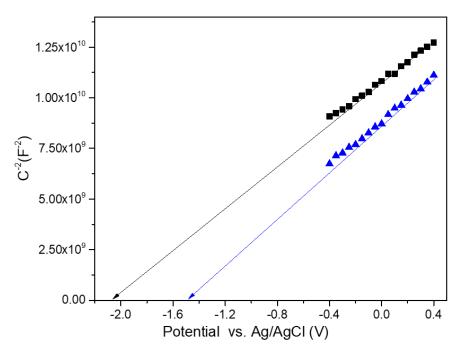



Fig. S19. Mott-Schottky plots of CdS (blue line) nanoparticle and Ni-CPNS@CdS (black line).

TableS1. The hydrogen production comparison of this work with otherphotocatalytic Co-catalyst.

| Photocatalyst                      | Co-catalyst                | H <sub>2</sub><br>production<br>Rate<br>(µmol h <sup>-1</sup> g <sup>-1</sup> ) | Ref.                                       |
|------------------------------------|----------------------------|---------------------------------------------------------------------------------|--------------------------------------------|
| CdS/NiS                            | NiS                        | 1130                                                                            | Phys. Chem. Chem. Phys. 2013, 15,<br>12088 |
| CdS/N-Graphene                     | N-Graphene                 | 1050                                                                            | J. Phys. Chem. C 2011, 115,<br>11466       |
| CdS/NiO                            | NiO                        | 4460                                                                            | Catal.<br>Commun. 2013, 36, 104.           |
| CdS/NiOx                           | NiOx                       | 5910                                                                            | Appl. Catal. B-Environ.<br>2014, 152, 68.  |
| UiO-66/CdS/RGO                     | UiO-66                     | 210                                                                             | Chem. Commun. 2014, 50,<br>8533–8535       |
| CdS/MoS <sub>2</sub> -Graphe<br>ne | MoS <sub>2</sub> /Graphene | 9000                                                                            | ACS Nano 2014, 8,<br>7078                  |
| Ni-CPNS@CdS                        | Ni-CPNS                    | 10210                                                                           | This work                                  |