Supporting Information

Carboboration of isocyanates with tris(pentafluorophenyl)borane and evidence for dissociative FLP chemistry of an acid-base pair

Meera Mehta,* and Jose M. Goicoechea*

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.

E-mail: meera.mehta@chem.ox.ac.uk; jose.goicoechea@chem.ox.ac.uk

Table of Contents

	Tał	ble of Contents	1
1.	Me	thods and Materials	3
1.	.1.	General Remarks	3
1.	.2.	X-ray Diffraction Studies	3
1.	.3.	Kinetic Studies	4
1.	.4.	Thermodynamic Studies	4
1.	.5.	Computational Studies	4
1.	.6.	General Procedure for Scrambled Products	5
2.	Syn	nthesis and Characterization Data	5
2.	.1.	Compound 1a	5
2.	.2.	Compound 1b	7
2.	.3.	Compound 1c	10
2.	.4.	Compound 2	13
2.	.5.	Compound 3a	15
2.	.6.	Compound 3b	17
2.	.7.	Compound 3c	20
2.	.8.	Compound 3d	22
2.	.9.	Compound 3e	24
2.	.10.	Compound 3f	27
2.	.11.	Compound 3g	29
2.	.12.	Compound 3h	32
2.	.13.	Compound 4	34
2.	.14. (Compound 5	35
3. Kinetic Studies			
4.	The	ermodynamic Studies	40

5.	Crystal	lographic Tables	42	
6.	DFT Studies			
6	5.1 Ge	ometry Optimized Structures	45	
	6.1.1.	PhNCO	45	
	6.1.2.	CyNCO	46	
	6.1.3.	Compound 1a	46	
	6.1.4.	Compound A	48	
	6.1.5.	Compound B	50	
	6.1.6.	Compound C	52	
	6.1.7.	Compound 2	54	
	6.1.8.	Compound D	56	
	6.1.9.	Compound 4	59	
	6.1.10.	Compound E	62	
	6.1.11.	Compound F	64	
	6.1.12.	Compound 5	66	
	6.1.13.	Compound G	69	
	6.1.14.	Compound H	70	
7.	References			

1. Methods and Materials

1.1. General Remarks

All reactions and product manipulations were carried out under an inert atmosphere of argon or dinitrogen using standard Schlenk-line or glovebox techniques (MBraun UNIIab glovebox maintained at < 0.1 ppm H₂O and < 0.1 ppm O₂). Hexane (hex; Sigma-Aldrich, HPLC grade) and toluene (Sigma-Aldrich; HPLC grade) were purified using an MBraun SPS-800 solvent system. All dry solvents were stored under argon in gas-tight ampoules. d₈-Toluene (Sigma-Aldrich, 99.5%) and C₆D₆ (Sigma-Aldrich, 99.5%) were degassed and stored over 3 Å molecular sieves. B(C₆F₅)₃, phenyl isocyanate, cyclohexyl isocyanate, allyl isocyanate, 4bromophenyl isocyanate, 4-chlorophenyl isocyanate, 4-nitrophenyl isocyanate, 4methoxyphenyl isocyanate, benzyl isocyanate, 2-(trifluoromethyl)phenyl isocyanate were purchased from either Sigma-Aldrich or Alfa Aesar and used without further purification Whereas, Al(C₆F₅)₃ and Ga(C₆F₅)₃ were prepared according to known procedures.^[1,2]

Additional characterization techniques: ¹H, ¹³C, ¹¹B, ¹⁹F NMR spectra were acquired at 298 K with a Bruker Ascend 400 NMR spectrometer and with a Bruker AV III 500 MHz NMR spectrometer. ¹H and ¹³C NMR spectra were referenced to the most downfield solvent resonance. ¹¹B and ¹⁹F spectra were externally referenced to BF₃·Et₂O in C₆D₆ and CFCl₃ ($\delta = 0$ ppm), respectively. Multiplicity is indicated using the following abbreviations: b = broad, s = singlet, d = doublet, t = triplet, and q = quartet. ¹³C NMR resonances for C₆F₅ could not always be observed. Elemental analyses were carried out by Elemental Microanalyses Ltd. (Devon, U.K.). Samples (approx. 5 mg) were submitted in sealed Pyrex ampoules. In cases where elemental analysis data deviate significantly from expected values, the best obtainable analysis is presented.

1.2. X-ray Diffraction Studies

Single crystal X-ray structure determination: Single-crystal X-ray diffraction data were collected using an Oxford Diffraction Supernova dual-source diffractometer equipped with a 135 mm Atlas CCD area detector. Crystals were selected under Paratone-N oil, mounted on micromount loops and quench-cooled using an Oxford Cryosystems open flow N₂ cooling device.^[3] Data were collected at 150 K using mirror monochromated Cu K α radiation (λ = 1.5418 Å; Oxford Diffraction Supernova). Data collected on the Oxford Diffraction

Supernova diffractometer were processed using the CrysAlisPro package, including unit cell parameter refinement and inter-frame scaling (which was carried out using SCALE3 ABSPACK within CrysAlisPro).^[4] Equivalent reflections were merged and diffraction patterns processed with the CrysAlisPro suite. Structures were subsequently solved using direct methods and refined on F^2 using the ShelXL 2013 package and ShelXle.^[5,6]

1.3. Kinetic Studies

A stock solution of **1a** was prepared by dissolving 0.2 g of **1a** (25 mg/ sample, 0.03 mmol) in 4 mL of d₈-toluene. The NMR instrument was pre-warmed to 353 K, pre-locked, pre-tuned, and pre-shimmed to a dummy sample. To an air tight J. Young NMR tube 0.5 mL of stock solution was added along with the appropriate equivalents of CyNCO using a micro-syringe. The sample was cooled to 4 °C before being quickly inserted into the NMR instrument. The sample was shimmed and monitored by ${}^{19}F{}^{1}H{}$ NMR spectroscopy.

1.4. Thermodynamic Studies

A stock solution of **1a** was prepared by dissolving 0.2 g of **1a** (25 mg/ sample, 0.03 mmol) in 4 mL of d₈-toluene. The NMR instrument was pre-warmed to the appropriate temperature. To an air tight J. Young NMR tube 0.5 mL of stock solution was added along with 4.3 μ L of CyNCO (0.03 mmol, 1 eq) using a microsyringe. The sample was inserted into the NMR instrument and monitored by ¹⁹F{¹H} NMR spectroscopy until equilibrium was reached.

1.5. Computational Studies

All calculations were performed with the Gaussian09 program package3 (version g09, rev.d01). The theoretical approach is based on the framework of density functional theory (DFT).^[7,8] All calculations were performed with the PBE1PBE functional and employing 6-31G(d,p) basis set. Transition states and ground states were fully optimized without constraints at the corresponding level of theory and uniquely characterized by occurrence of one or none imaginary frequency respectively and verified by the corresponding frequency calculation. The imaginary frequencies for the transition state calculations can be found together with the *x*,*y*,*z* coordinates. Gibbs free reaction energies and enthalpies were calculated for standard conditions (p = 1 atm, T = 298 K) and are unscaled. Geometry optimizations were performed using the Gaussian 09, Revision D.01.^[9,10]

1.6. General Procedure for Scrambled Products

A solution of **1b** (50 mg, 0.07 mmol) and isocyanate (0.7 mmol, 10 eq) in toluene (0.5 mL) was sealed in an air tight J. Young NMR tube and heated to 110 °C overnight. The solution was cooled to room temperature and solvent removed under reduced pressure. Crystals suitable for X-ray diffraction studies could be obtained by extracting the product in hexane.

2. Synthesis and Characterization Data

2.1. Compound 1a

In a Schlenk flask charged with a stir bar $B(C_6F_5)_3$ (1.0 g, 2.0 mmol) was dissolved in 30 mL of toluene. To this mixture PhNCO (1.0 g, 8.4 mmol, 4.2 eq) was added dropwise and stirred overnight. The solvent was removed under reduced pressure to give a pale yellow oil, which was further washed with hexane (3 × 20 mL) to yield a white precipitate. Crystals suitable for X-ray diffraction studies could be obtained from the hexane filtrate.

¹**H NMR** (500 MHz, C₆D₆): $\delta = 7.36$ (d, ³*J*_{H-H} = 7.5 Hz, 2H, *Ph*), 6.96 (m, 2H, *Ph*), 6.92 (m, 2H, *Ph*), 6.77 (m, 1H, *Ph*), 6.62 (m, 3H, *Ph*); ¹⁹**F**{¹**H**} **NMR** (377 MHz, C₆D₆): $\delta = -135.0$ (d, ³*J*_{F-F} = 22 Hz, 4F, *o*-C₆F₅), -139.1(d, ³*J*_{F-F} = 20 Hz, 2F, *o*-C₆F₅), -142.8 (t, ³*J*_{F-F} = 22 Hz, 1F, *p*-C₆F₅), -153.2 (t, ³*J*_{F-F} = 21 Hz, 2F, *p*-C₆F₅), -157.4 (m, 2F, *m*-C₆F₅), -162.5 (td, ³*J*_{F-F} = 23, 9.4 Hz, 4F, *m*-C₆F₅); ¹¹**B**{¹**H**} **NMR** (128 MHz, C₆D₆): $\delta = 4.0$ (s); ¹³C{¹**H**} **NMR** (126 MHz, C₆D₆): $\delta = 166.7$ (s, NCN), 148.5 (bd, ¹*J*_{C-F} = 245 Hz, *C*₆F₅), 147.7 (s, *Ph*), 142.3 (bd, ¹*J*_{C-F} = 258 Hz, *C*₆F₅), 141.2 (bd, ¹*J*_{C-F} = 247 Hz, *C*₆F₅), 139.7 (s, *Ph*), 137.5 (bd, ¹*J*_{C-F} = 250 Hz, *C*₆F₅), 133.6 (s, *Ph*), 130.9 (s, *Ph*), 129.4 (s, *Ph*), 128.9 (s, *Ph*), 127.1 (s, *Ph*), 126.4 (s, *Ph*), 105.6 (s, NCO) ppm.

Isolated Yield = 68%.

Elemental analysis for C₃₂H₁₀BF₁₅N₂O₂: calcd.: C 51.23, H 1.34, N 3.73; found: C 51.07, H 1.31, N 3.82.

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

Figure S3. ¹¹B $\{^{1}H\}$ NMR spectrum (C₆D₆) of 1a.

Figure S4. ¹³C $\{^{1}H\}$ NMR spectrum (C₆D₆) of 1a.

Figure S5. Single crystal X-ray structure of **1a**. Atoms of the Ph and C_6F_5 moieties are pictured as spheres of arbitrary radius. Anisotropic displacement ellipsoids pictured at 50% probability. Hydrogen atoms omitted for clarity.

2.2. Compound 1b

In a Schlenk flask charged with a stir bar $B(C_6F_5)_3$ (1.0 g, 2.0 mmol) was dissolved in 30 mL of toluene. To this mixture CyNCO (1.0 g, 8.0 mmol, 4 eq) was added dropwise and stirred overnight. Crystals suitable for X-ray diffraction studies grew from the solution overnight. The solvent was decanted and the product dried under reduced pressure to yield a white precipitate.

¹**H NMR (500 MHz, C₆D₆):** $\delta = 3.28$ (m, 2H, *Cy*), 2.47 (qd, ³*J*_{H-H} = 12.8, 3.8 Hz, 2H, *Cy*), 2.36 (bq, ³*J*_{H-H} = 12.7 Hz, 2H, *Cy*), 1.84 (bd, ³*J*_{H-H} = 12.0 Hz, 2H, *Cy*), 1.58 (m, 4H, *Cy*), 1.38 (m, 3H, *Cy*), 1.15 (d, ³*J*_{H-H} = 10.0 Hz, 1H, *Cy*), 0.95 (m, 4H, *Cy*), 0.81 (qt, ³*J*_{H-H} = 13.2, 3.5 Hz, 1H, *Cy*), 0.60 (dddd, ³*J*_{H-H} = 17.2, 13.5, 8.4, 3.6 Hz, 2H, *Cy*); ¹⁹**F**{¹**H**} **NMR (377 MHz, C₆D₆):** $\delta = -134.0$ (d, ³*J*_{F-F} = 23 Hz, 4F, *o*-C₆F₅), -40.3 (m, 2F, *o*-C₆F₅), -143.6 (t, ³*J*_{F-} F = 21 Hz, 1F, *p*-C₆F₅), -154.1 (t, ³*J*_{F-F} = 20 Hz, 2F, *p*-C₆F₅), -156.7 (m, 2F, *m*-C₆F₅), -162.9 (m, 4F, *m*-C₆F₅); ¹¹**B**{¹**H**} **NMR (128 MHz, C₆D₆):** $\delta = 2.7$ (s); ¹³C{¹**H**} **NMR (126 MHz, C₆D₆):** $\delta = 164.5$ (s, NCN), 148.6 (bd, ¹*J*_{C-F} = 239 Hz, *C*₆F₅), 146.2 (s, NCO), 137.4 (bd, ³*J*_{C-} F = 251 Hz, *C*₆F₅), 66.0 (s, *Cy*), 59.7 (s, *Cy*), 30.6 (s, *Cy*), 29.2 (s, *Cy*), 26.4 (s, *Cy*), 25.7 (s, *Cy*), 25.4 (s, *Cy*), 24.3 (s, *Cy*) ppm.

Isolated Yield = 70%.

Elemental analysis for C₃₂H₂₂BF₁₅N₂O₂: calcd.: C 50.42, H 2.91, N 3.67; found: C 50.93, H 2.87, N 3.77.

Figure S6. ¹H NMR spectrum (C_6D_6) of 1b.

Figure S7. ¹⁹F $\{^{1}H\}$ NMR spectrum (C₆D₆) of 1b.

Figure S8. ¹¹B{¹H} NMR spectrum (C_6D_6) of 1b.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Figure S9. ¹³C{¹H} NMR spectrum (C_6D_6) of 1b.

Figure S10. Single crystal X-ray structure of **1b**. Atoms of the Cy and C_6F_5 moieties are pictured as spheres of arbitrary radius. Anisotropic displacement ellipsoids pictured at 50% probability. Hydrogen atoms omitted for clarity.

2.3. Compound 1c

In a Schlenk flask charged with a stir bar $B(C_6F_5)_3$ (1.0 g, 2.0 mmol) was dissolved in 30 mL of toluene. To this mixture allyl isocyanate (1.0 g, 10 mmol, 5 eq) was added dropwise and stirred overnight. The solvent was removed under reduced pressure to give a pale-yellow oil, which was further washed with hexane (3 × 20 mL) to yield a white precipitate. Crystals suitable for X-ray diffraction studies could be obtained from the hexane filtrate.

¹**H NMR (500 MHz, C₆D₆):** $\delta = 5.59$ (ddt, ³*J*_{H-H} = 16.5, 10.4, 5.9 Hz, 1H, CH₂CHCH₂), 5.21 (ddt, ³*J*_{H-H} = 17.2, 10.7, 5.5 Hz, 1H, CH₂CHCH₂), 4.64 (m, 3H, NCH₂CHCH₂), 4.45 (m, 1H, NCH₂CHCH₂), 3.34 (m, 4H, NCH₂CHCH₂); ¹⁹**F**{¹**H**} **NMR (377 MHz, C₆D₆):** $\delta = -136.1$ (dd, ³*J*_{F-F} = 24, 9 Hz, 4F, *o*-C₆F₅), -139.3 (d, ³*J*_{F-F} = 18 Hz, 2F, *o*-C₆F₅), -143.1 (m, 1F, *p*-C₆F₅), -154.0 (t, ³*J*_{F-F} = 21 Hz, 2F, *p*-C₆F₅), -156.5 (dd, ³*J*_{F-F} = 22, 18 Hz, 2F, *m*-C₆F₅), -162.9 (m, 4F, *m*-C₆F₅); ¹¹**B**{¹**H**} **NMR (128 MHz, C₆D₆):** $\delta = 2.9$ (s); ¹³C{¹**H**} **NMR (126 MHz, C₆D₆):** $\delta = 165.3$ (s, NCN), 148.51 (bd, ¹*J*_{C-F} = 246 Hz, *C*₆F₅), 143.8 (bd, ¹*J*_{C-F} = 275 Hz, *C*₆F₅), 142.7 (bd, ¹*J*_{C-F} = 256 Hz, *C*₆F₅), 141.1 (bd, ¹*J*_{C-F} = 253 Hz, *C*₆F₅), 137.4 (bd, ¹*J*_{C-F} = 249 Hz, *C*₆F₅), 132.0 (s, NCH₂CHCH₂), 129.5 (s, NCH₂CHCH₂), 118.8 (s, NCH₂CHCH₂), 116.3 (s, NCH₂CHCH₂), 48.8 (s, NCH₂CHCH₂), 48.5 (s, NCH₂CHCH₂) ppm.

Isolated Yield = 63%.

Elemental analysis for C₂₆H₁₀BF₁₅N₂O₂: calcd.: C 46.05, H 1.49, N 4.13; found: C 45.96, H 1.48, N 4.21.

Figure S11. ¹H NMR spectrum (C_6D_6) of 1c.

S.I.10

Figure S12. ${}^{19}F{}^{1}H$ NMR spectrum (C₆D₆) of 1c.

Figure S13. ¹¹B $\{^{1}H\}$ NMR spectrum (C₆D₆) of 1c.

Figure S14. ${}^{13}C{}^{1}H$ NMR spectrum (C₆D₆) of 1c.

Figure S15. Single crystal X-ray structure of **1c**. Atoms of the allyl and C_6F_5 moieties are pictured as spheres of arbitrary radius. Anisotropic displacement ellipsoids pictured at 50% probability. Hydrogen atoms omitted for clarity.

2.4. Compound 2

¹**H NMR (500 MHz, C₆D₆):** $\delta = 7.30$ (d, ³*J*_{H-H} = 8.5 Hz, 2H, *Ph*), 6.91 (dd, ³*J*_{H-H} = 8.5, 7.4 Hz, 2H, *Ph*), 6.76 (t, ³*J*_{H-H} = 7.4 Hz, 1H, *Ph*), 3.33 (tt, ³*J*_{H-H} = 12.1, 3.5 Hz, 1H, *Cy*), 2.45 (qd, ³*J*_{H-H} = 12.7, 3.8 Hz, 1H, *Cy*), 1.63 (m, 1H, *Cy*), 1.34 (d, ³*J*_{H-H} = 12.8 Hz, 1H, *Cy*), 1.23 (m, 2H, *Cy*), 1.09 (d, ³*J*_{H-H} = 13.5 Hz, 1H, *Cy*), 0.88 (t, ³*J*_{H-H} = 7.0 Hz, 2H, *Cy*), 0.71 (qt, ³*J*_{H-H} = 13.1, 3.1 Hz, 1H, *Cy*), 0.56 (qt, ³*J*_{H-H} = 13.3, 3.6 Hz, 1H, *Cy*); ¹⁹**F**{¹**H**} **NMR (377 MHz, C₆D**₆): $\delta = -135.0$ (d, ³*J*_{F-F} = 23 Hz, 4F, *o*-C₆F₅), -140.3 (d, ³*J*_{F-F} = 20 Hz, 2F, *o*-C₆F₅), -142.7 (m, 1F, *p*-C₆F₅), -153.5 (t, ³*J*_{F-F} = 21 Hz, 2F, *p*-C₆F₅), -156.2 (m, 2F, *m*-C₆F₅), -162.8 (m, 4F, *m*-C₆F₅); ¹¹**B**{¹**H**} **NMR (128 MHz, C₆D**₆): $\delta = 3.4$ (s); ¹³C{¹**H**} **NMR (126 MHz, C₆D**₆): $\delta = 165.9$ (s, NCN), 148.3 (bd, ¹*J*_{C-F} = 244 Hz, *C*₆F₅), 147.8 (s, *Ph*), 142.9 (bd, ¹*J*_{C-F} = 212 Hz, *C*₆F₅), 128.7 (s, *Ph*), 127.2 (s, *Ph*), 126.4 (s, *Ph*), 66.4 (s, NCO), 31.6 (s, *Cy*), 30.5 (s, *Cy*), 25.9 (s, *Cy*), 24.1 (s, *Cy*), 22.7 (s, *Cy*), 14.0 (s, *Cy*) ppm.

Isolated Yield = 16%.

Elemental analysis for C₃₂H₁₆BF₁₅N₂O₂: calcd.: C 50.82, H 2.13, N 3.70; found: C 51.63, H 2.35, N 3.95.

Figure S16. ¹H NMR spectrum (C_6D_6) of **2**.

Figure S17. ${}^{19}F{}^{1}H$ NMR spectrum (C₆D₆) of 2.

Figure S18. ¹¹B $\{^{1}H\}$ NMR spectrum (C₆D₆) of 2.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Figure S19. ¹³C $\{^{1}H\}$ NMR spectrum (C₆D₆) of **2**.

Figure S20. Single crystal X-ray structure of **2**. Atoms of the Cy, Ph and C_6F_5 moieties are pictured as spheres of arbitrary radius. Anisotropic displacement ellipsoids pictured at 50% probability. Hydrogen atoms omitted for clarity.

2.5. Compound 3a

¹**H NMR** (500 **MHz**, **C**₆**D**₆): $\delta = 7.30$ (d, ${}^{3}J_{\text{H-H}} = 7.9$ Hz, 2H, *Ph*), 6.91 (t, ${}^{3}J_{\text{H-H}} = 7.9$ Hz, 2H, *Ph*), 6.76 (t, ${}^{3}J_{\text{H-H}} = 7.4$ Hz, 1H, *Ph*), 3.33 (tt, ${}^{3}J_{\text{H-H}} = 12.0$, 3.7 Hz, 1H, *Cy*), 2.45 (qd, ${}^{3}J_{\text{H-H}} = 12.6$, 3.8 Hz, 1H, *Cy*), 1.65 (m, 1H, *Cy*), 1.34 (d, ${}^{3}J_{\text{H-H}} = 13.3$ Hz, 1H, *Cy*), 1.25 (m, 2H, *Cy*), 1.09 (d, ${}^{3}J_{\text{H-H}} = 13.3$ Hz, 1H, *Cy*), 0.88 (t, ${}^{3}J_{\text{H-H}} = 7.0$ Hz, 2H, *Cy*), 0.72 (m, 1H, *Cy*), 0.56 (qt, ${}^{3}J_{\text{H-H}} = 13.0$, 3.3 Hz, 1H, *Cy*); 1⁹**F**{¹**H**} **NMR** (377 MHz, C₆D₆): $\delta = -135.0$ (d, ${}^{3}J_{\text{F-F}} = 9$ Hz,

4F, o-C₆F₅), -140.3 (d, ${}^{3}J_{F-F} = 19$ Hz, 2F, o-C₆F₅), -142.7 (t, ${}^{3}J_{F-F} = 22$ Hz, 1F, p-C₆F₅), -153.5 (t, ${}^{3}J_{F-F} = 21$ Hz, 2F, p-C₆F₅), -156.2 (m, 2F, m-C₆F₅), -162.8 (td, ${}^{3}J_{F-F} = 21$, 9 Hz, 4F, m-C₆F₅); ¹¹B{¹H} NMR (128 MHz, C₆D₆): $\delta = 3.5$ (s); ¹³C{¹H} NMR (126 MHz, C₆D₆): $\delta = 165.9$ (s, NCN), 148.3 (bd, ${}^{1}J_{C-F} = 254$ Hz, C₆F₅), 147.8 (s, *Ph*), 142.79 (bd, ${}^{1}J_{C-F} = 258$ Hz, C₆F₅), 139.9 (s, *Ph*), 137.4 (bd, ${}^{1}J_{CF} = 243$ Hz, C₆F₅), 128.7 (s, *Ph*), 127.2 (s, *Ph*), 126.4 (s, *Ph*), 66.4 (s, NCO), 31.6 (s, *Cy*), 30.5 (s, *Cy*), 25.9 (s, *Cy*), 24.1 (s, *Cy*), 22.7 (s, *Cy*), 13.9 (s, *Cy*) ppm.

Isolated Yield = 76%.

Elemental analysis for C₃₂H₁₆BF₁₅N₂O₂: calcd.: C 50.82, H 2.13, N 3.70; found: C 51.30, H 2.15, N 3.84.

Figure S21. ¹H NMR spectrum (C_6D_6) of 3a.

Figure S22. ${}^{19}F{}^{1}H$ NMR spectrum (C₆D₆) of **3a**.

Figure S23. ¹¹B $\{^{1}H\}$ NMR spectrum (C₆D₆) of 3a.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Figure S24. ¹¹C $\{^{1}H\}$ NMR spectrum (C₆D₆) of **3a**.

Figure S25. Single crystal X-ray structure of **3a**. Atoms of the Cy, Ph and C_6F_5 moieties are pictured as spheres of arbitrary radius. Anisotropic displacement ellipsoids pictured at 50% probability. Hydrogen atoms omitted for clarity.

2.6. Compound 3b

¹**H NMR** (500 **MHz**, **C**₆**D**₆): $\delta = 5.63$ (m, 1H, NCH₂CHCH₂), 4.69 (b, 1H, NCH₂CHCH₂), 4.66 (dd, ³*J*_{H-H} = 8.6, 1.5 Hz, 1H, NCH₂CHCH₂), 3.85 (bd, ³*J*_{H-H} = 5.9 Hz, 2H, NCH₂CHCH₂), 3.26 (tt, ³*J*_{H-H} = 12.0, 3.7 Hz, 1H, *Cy*), 2.45 (qd, ³*J*_{H-H} = 12.7, 3.8 Hz, 2H, *Cy*), 1.50 (m, 1H, *Cy*), 1.35 (dt, ³*J*_{H-H} = 14.1, 3.3 Hz, 2H, *Cy*), 1.12 (dt, ³*J*_{H-H} = 13.4, 3.4 Hz, 1H, *Cy*), 0.96 (m, 1H, *Cy*), 0.78 (qt, ³*J*_{H-H} = 13.2, 3.6 Hz, 1H, *Cy*), 0.56 (qt, ³*J*_{H-H} = 13.3, 3.6 Hz, 2H, *Cy*); ¹⁹**F**{¹**H**} **NMR** (377 MHz, C₆**D**₆): $\delta = -136.0$ (dd, ³*J*_{E-F} = 23.9, 9.4 Hz, 4F, *o*-C₆F₅), -140.2 (d, ³*J*_{E-F} = 20 Hz, 2F, *o*-C₆F₅), -142.9 (t, ³*J*_{E-F} = 22 Hz, 1F, *p*-C₆F₅), -154.0 (t, ³*J*_{E-F} = 21 Hz, 2F, *p*-C₆F₅), -156.4 (m, 2F, *m*-C₆F₅), -136.0 (m, 4F, *m*-C₆F₅); ¹¹**B**{¹**H**} **NMR** (128 MHz, C₆**D**₆): $\delta = 2.4$ (s); ¹³C{¹**H**} **NMR** (126 MHz, C₆**D**₆): $\delta = 165.0$ (s, NCN), 148.5 (bd, ¹*J*_{C-F} = 239 Hz, *C*₆F₅), 143.7 (bd, ¹*J*_{C-F} = 270 Hz, *C*₆F₅), 142.7 (bd, ¹*J*_{C-F} = 260 Hz, *C*₆F₅), 141.1 (bd, ¹*J*_{C-F} = 247 Hz, *C*₆F₅), 137.5 (bd, ¹*J*_{C-F} = 256 Hz, *C*₆F₅), 132.2 (s, NCH₂CHCH₂), 116.6 (s, NCH₂CHCH₂), 66.3 (s, NCO), 48.2 (s, NCH₂CHCH₂), 30.4 (s, *Cy*), 25.9 (s, *Cy*), 24.1 (s, *Cy*) ppm.

Isolated Yield = 79%.

Elemental analysis for C₂₉H₁₆BF₁₅N₂O₂: calcd.: C 48.36, H 2.24, N 3.89; found: C 48.12, H 2.26, N 4.17.

Figure S26. ¹H NMR spectrum (C_6D_6) of 3b.

Figure S27. ${}^{19}F{}^{1}H$ NMR spectrum (C₆D₆) of **3b**.

Figure S28. ${}^{11}B{}^{1H}$ NMR spectrum (C₆D₆) of 3b.

Figure S29. ${}^{13}C{}^{1}H$ NMR spectrum (C₆D₆) of **3b**.

Figure S30. Single crystal X-ray structure of **3b**. Atoms of the Cy, allyl and C_6F_5 moieties are pictured as spheres of arbitrary radius. Anisotropic displacement ellipsoids pictured at 50% probability. Hydrogen atoms omitted for clarity.

2.7. Compound 3c

¹H NMR (500 MHz, C₆D₆): $\delta = 6.98$ (d, ³*J*_{H-H} = 7.2 Hz, 2H, *Ph*), 6.94 (t, ³*J*_{H-H} = 7.6 Hz, 2H, *Ph*), 6.88 (m, 1H, *Ph*), 4.58 (s, 2H, *CH*₂Ph), 3.31 (tt, ³*J*_{H-H} = 12.0, 3.7 Hz, 1H, *Cy*), 2.51 (qd, ³*J*_{H-H} = 12.7, 3.8 Hz, 2H, *Cy*), 1.56 (m, 1H, *Cy*), 1.38 (dt, ³*J*_{H-H} = 14.1, 3.3 Hz, 2H, *Cy*), 1.13 (dd, ³*J*_{H-H} = 9.7, 6.3 Hz, 1H, *Cy*), 0.96 (m, 2H, *Cy*), 0.80 (qt, ³*J*_{H-H} = 13.3, 3.6 Hz, 1H, *Cy*), 0.58 (qt, ³*J*_{H-H} = 13.3, 3.6 Hz, 2H, *Cy*); ¹⁹F{¹H} NMR (377 MHz, C₆D₆): $\delta = -136.0$ (m, 4F, *o*-C₆F₅), -140.2 (d, ³*J*_{F-F} = 19 Hz, 2F, *o*-C₆F₅), -142.9 (t, ³*J*_{F-F} = 22 Hz, 1F, *p*-C₆F₅), -154.4 (t, ³*J*_{F-F} = 21 Hz, 2F, *p*-C₆F₅), -156.4 (m, 2F, *m*-C₆F₅), -163.1 (m, 4F, *m*-C₆F₅); ¹¹B{¹H} NMR (128 MHz, C₆D₆): $\delta = 2.8$ (s); ¹³C{¹H} NMR (126 MHz, C₆D₆): $\delta = 165.1$ (s, NCN), 148.9 (s, *Ph*), 148.4 (bd, ¹*J*_{C-F} = 239 Hz, *C*₆F₅), 143.6 (bd, ¹*J*_{C-F} = 257 Hz, *C*₆F₅), 142.7 (bd, ¹*J*_{C-F} = 265 Hz, *C*₆F₅), 141.0 (bd, ¹*J*_{CF} = 248 Hz, *C*₆F₅), 137.4 (bd, ¹*J*_{C-F} = 248 Hz, *C*₆F₅), 137.3 (s, *Ph*), 127.1 (s, *Ph*), 126.7 (s, *Ph*), 66.5 (s, NCO), 48.8 (s, *C*H₂Ph), 30.5 (s, *Cy*), 25.9 (s, *Cy*), 24.1 (s, *Cy*) ppm.

Isolated Yield = 70%.

Elemental analysis for C₃₃H₁₈BF₁₅N₂O₂: calcd.: C 51.46, H 2.36, N 3.64; found: C 51.66, H 2.38, N 3.79.

Figure S31. ¹H NMR spectrum (C_6D_6) of **3c**.

Figure S32. ¹⁹F{¹H} NMR spectrum (C₆D₆) of **3c**.

Figure S33. ¹¹B $\{^{1}H\}$ NMR spectrum (C₆D₆) of 3c.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Figure S34. ¹³C $\{^{1}H\}$ NMR spectrum (C₆D₆) of 3c.

Figure S35. Single crystal X-ray structure of **3c**. Atoms of the Cy, benzyl and C_6F_5 moieties are pictured as spheres of arbitrary radius. Anisotropic displacement ellipsoids pictured at 50% probability. Hydrogen atoms omitted for clarity.

2.8. Compound 3d

¹**H** NMR (500 MHz, C_6D_6): $\delta = 7.07$ (d, ${}^{3}J_{H-H} = 8.8$ Hz, 2H, C_6H_4Cl), 6.90 (d, ${}^{3}J_{H-H} = 8.8$ Hz, 2H, C_6H_4Cl), 3.32 (tt, ${}^{3}J_{H-H} = 12.1$, 3.7 Hz, 1H, *Cy*), 2.43 (qd, ${}^{3}J_{H-H} = 12.7$, 3.8 Hz, 2H, *Cy*), 1.62 (d, ${}^{3}J_{H-H} = 11.4$ Hz, 2H, *Cy*), 1.35 (dd, ${}^{3}J_{H-H} = 10.6$, 3.2 Hz, 2H, *Cy*), 1.09 (d, ${}^{3}J_{H-H} = 13.4$ Hz, 1H, *Cy*), 0.93 (m, 1H, *Cy*), 1.09 (d, ${}^{3}J_{H-H} = 13.4$ Hz, 1H, *Cy*), 0.56 (dddd, ${}^{3}J_{H-H} =$ S.I.21

16.8, 13.2, 8.4, 3.5 Hz, 1H, *Cy*); ¹⁹**F**{¹**H**} **NMR (377 MHz, C₆D**₆): $\delta = -135.2$ (d, ³*J*_{F-F} = 17 Hz, 4F, *o*-C₆F₅), -140.3 (d, ³*J*_{F-F} = 19 Hz, 2F, *o*-C₆F₅), -142.3 (t, ³*J*_{F-F} = 22 Hz, 1F, *p*-C₆F₅), -152.8 (t, ³*J*_{F-F} = 21 Hz, 2F, *p*-C₆F₅), -156.0 (m, 2F, *m*-C₆F₅), -162.4 (dt, ³*J*_{F-F} = 21, 17 Hz, 4F, *m*-C₆F₅); ¹¹**B**{¹**H**} **NMR (128 MHz, C₆D**₆): $\delta = 3.2$ (s); ¹³C{¹**H**} **NMR (126 MHz, C₆D**₆): $\delta = 166.0$ (s, NCN), 148.27 (bd, ¹*J*_{C-F} = 240 Hz, *C*₆F₅), 147.8 (s, *C*₆H₄Cl), 142.7 (bd, ¹*J*_{C-F} = 253 Hz, *C*₆F₅), 141.2 (bd, ¹*J*_{C-F} = 248 Hz, *C*₆F₅), 138.3 (s, *C*₆H₄Cl), 137.4 (bd, ¹*J*_{C-F} = 269 Hz, *C*₆F₅), 133.0 (s, *C*₆H₄Cl), 129.0 (s, *C*₆H₄Cl), 66.5 (s, NCO), 30.5 (s, *Cy*), 25.9 (s, *Cy*), 24.0 (s, *Cy*) ppm.

Isolated Yield = 60%.

Elemental analysis for C₃₂H₁₅BF₁₅N₂O₂Cl: calcd.: C 48.61, H 1.91, N 3.54; found: C 48.34, H 1.85, N 3.67.

Figure S37. ${}^{19}F{}^{1}H$ NMR spectrum (C₆D₆) of 3d.

Figure S38. ¹¹B $\{^{1}H\}$ NMR spectrum (C₆D₆) of 3d.

Figure S39. ${}^{13}C{}^{1}H$ NMR spectrum (C₆D₆) of 3d.

Figure S40. Single crystal X-ray structure of **3d**. Atoms of the Cy and aromatic moieties are pictured as spheres of arbitrary radius. Anisotropic displacement ellipsoids pictured at 50% probability. Hydrogen atoms omitted for clarity.

2.9. Compound 3e

¹**H NMR** (500 **MHz**, **C**₆**D**₆): $\delta = 7.07$ (d, ³*J*_{H-H} = 8.8 Hz, 2H, C₆*H*₄Br), 7.01 (d, ³*J*_{H-H} = 8.8 Hz, 2H, C₆*H*₄Br), 3.31 (tt, ³*J*_{H-H} = 12.3, 6.1 Hz, 1H, *Cy*), 2.43 (qd, ³*J*_{H-H} = 12.8, 3.7 Hz, 1H, *Cy*), 1.63 (t, ³*J*_{H-H} = 16.0 Hz, 1H, *Cy*), 1.51 (d, ³*J*_{H-H} = 13.4 Hz, 1H, *Cy*), 1.35 (d, ³*J*_{H-H} = 13.5 Hz, 1H, *Cy*), 1.26 (m, 1H, *Cy*), 1.09 (d, ³*J*_{H-H} = 13.5 Hz, 1H, *Cy*), 0.93 (m, 2H, *Cy*), 0.73 (m, 1H, *Cy*), 0.55 (q, ³*J*_{H-H} = 13.4 Hz, 1H, *Cy*); ¹⁹**F**{¹**H**} **NMR** (377 MHz, C₆**D**₆): $\delta = -135.2$ (d, ³*J*_{F-F} = 9 Hz, 4F, *o*-C₆F₅), -140.3 (d, ³*J*_{F-F} = 21 Hz, 2F, *o*-C₆F₅), -142.3 (t, ³*J*_{F-F} = 22 Hz, 1F, *p*-C₆F₅), -152.8 (t, ³*J*_{F-F} = 21 Hz, 2F, *p*-C₆F₅), -156.0 (m, 2F, *m*-C₆F₅), -162.4 (td, ³*J*_{F-F} = 21, 9 Hz, 4F, *m*-C₆F₅); ¹¹**B**{¹**H**} **NMR** (128 MHz, C₆**D**₆): $\delta = 2.8$ (s); ¹³C{¹**H**} **NMR** (126 MHz, C₆**D**₆): $\delta = 166.0$ (s, NCN), 148.2 (bd, ¹*J*_{C-F} = 255 Hz, *C*₆F₅), 147.7 (s, *C*₆H₅Br), 138.8 (s, *C*₆H₅Br), 137.3 (bd, ¹*J*_{C-F} = 252 Hz, *C*₆F₅), 132.0 (s, *C*₆H₅Br), 131.9 (s, *C*₆H₅Br), 121.6 (s, *C*₆H₅Br), 121.0 (s, *C*₆H₅Br), 66.5 (s, NCO), 31.6 (s, *Cy*), 30.5 (s, *Cy*), 26.4 (s, *Cy*), 25.9 (s, *Cy*), 24.7 (s, *Cy*), 24.0 (s, *Cy*) ppm.

Isolated Yield = 58%.

Elemental analysis for C₃₂H₁₅BF₁₅N₂O₂Br: calcd.: C 46.02, H 1.81, N 3.35; found: C 46.32, H 1.87, N 3.46.

Figure S41. ¹H NMR spectrum (C_6D_6) of **3e**.

Figure S42. ${}^{19}F{}^{1}H$ NMR spectrum (C₆D₆) of 3e.

Figure S43. ¹¹B $\{^{1}H\}$ NMR spectrum (C₆D₆) of 3e.

Figure S44. ${}^{13}C{}^{1}H$ NMR spectrum (C₆D₆) of 3e.

Figure S45. Single crystal X-ray structure of **3e**. Atoms of the Cy and aromatic moieties are pictured as spheres of arbitrary radius. Anisotropic displacement ellipsoids pictured at 50% probability. Hydrogen atoms omitted for clarity.

2.10. Compound 3f

¹**H NMR** (500 **MHz**, **C**₆**D**₆): δ = 7.67 (d, ${}^{3}J_{H-H} = 8.9$ Hz, 2H, C₆*H*₄NO₂), 7.07 (d, ${}^{3}J_{H-H} = 8.9$ Hz, 2H, C₆*H*₄NO₂), 3.32 (tt, ${}^{3}J_{H-H} = 12.0$, 3.7 Hz, 1H, *Cy*), 2.40 (qd, ${}^{3}J_{H-H} = 12.6$, 3.8 Hz, 2H, *Cy*), 2.11 (s, 1H, *Cy*), 1.61 (d, ${}^{3}J_{H-H} = 11.3$ Hz, 1H, *Cy*), 1.36 (m, 2H, *Cy*), 1.09 (d, ${}^{3}J_{H-H} = 12.5$ Hz, 1H, *Cy*), 0.93 (bm, 2H, *Cy*), 0.70 (m, 1H, *Cy*), 0.57 (m, 1H, *Cy*); ¹⁹**F**{¹**H**} **NMR (377 MHz**, **C**₆**D**₆): δ = -135.3 (d, ${}^{3}J_{F-F} = 24$ Hz, 4F, *o*-C₆F₅), -140.3 (d, ${}^{3}J_{F-F} = 20$ Hz, 2F, *o*-C₆F₅), -141.7 (m, 1F, *p*- C₆F₅), -152.1 (m, 1F, *p*- C₆F₅), -155.7 (m, 2F, *m*- C₆F₅), -162.0 (m, 4F, *m*- C₆F₅); ¹¹**B**{¹**H**} **NMR (128 MHz, C₆D**₆): δ = 2.5 (s); ¹³C{¹**H**} **NMR (126 MHz**, **C**₆**D**₆): δ = 166.4 (s, NCN), 148.3 (bd, ${}^{1}J_{C-F} = 241$ Hz, *C*₆F₅), 147.7 (s, *C*₆H₄NO₂), 146.2 (s, *C*₆H₄NO₂), 142.8 (bd, ${}^{1}J_{C-F} = 257$ Hz, *C*₆F₅), 141.3 (bd, ${}^{1}J_{C-F} = 256$, Hz, *C*₆F₅), 137.4 (bd, ${}^{1}J_{C-F} = 247.9$ Hz, *C*₆F₅), 129.0 (s, *C*₆H₄NO₂), 128.2 (s, *C*₆H₄NO₂), 126.9 (s, *C*₆H₄NO₂), 125.3 (s, *C*₆H₄NO₂), 124.0 (s, *C*₆H₄NO₂), 66.8 (s, NCO), 30.5 (s, *Cy*), 25.8 (s, *Cy*), 24.0 (s, *Cy*), 21.1 (s, *Cy*) ppm.

¹**H** NMR (500 MHz, C₆D₆): $\delta = 7.53$ (d, ³*J*_{H-H} = 9.0 Hz, 2H, C₆*H*₄NO₂), 6.06 (d, ³*J*_{H-H} = 9.0 Hz, 2H, C₆*H*₄NO₂); ¹³C{¹H} NMR (126 MHz, C₆D₆): $\delta = 144.9$ (s, *C*₆H₄NO₂), 138.8 (s, *C*₆H₄NO₂), 124.7 (s, *C*₆H₄NO₂), 124.5 (s, *C*₆H₄NO₂) ppm.

Isolated Yield = 68%.

Elemental analysis for $C_{32}H_{15}BF_{15}N_3O_4+1/2C_7H_4N_2O_3+1/2$ tol: calcd.: C 50.40, H 2.28, N 6.03; found: C 50.29, H 2.41, N 6.92.

Figure S47. ${}^{19}F{}^{1}H$ NMR spectrum (C₆D₆) of 3f.

Figure S48. ${}^{11}B{}^{1}H{}$ NMR spectrum (C₆D₆) of 3f.

f1 (ppm)

Figure S49. ¹³C $\{^{1}H\}$ NMR spectrum (C₆D₆) of 3f.

Figure S50. Single crystal X-ray structure of **3f**. Atoms of the Cy and aromatic moieties are pictured as spheres of arbitrary radius. Anisotropic displacement ellipsoids pictured at 50% probability. Hydrogen atoms omitted for clarity.

2.11. Compound 3g

¹**H** NMR (500 MHz, C₆D₆): $\delta = 7.25$ (d, ³*J*_{H-H} = 9.0 Hz, 2H, C₆*H*₄OMe), 6.55 (d, ³*J*_{H-H} = 9.0 Hz, 2H, C₆*H*₄OMe), 3.36 (tt, ³*J*_{H-H} = 12.0, 3.6 Hz, 1H, *Cy*), 3.04 (s, 3H, C₆H₄O*Me*), 2.48 (qd, ³*J*_{H-H} = 12.6, 3.8 Hz, 2H, *Cy*), 1.65 (m, 2H, *Cy*), 1.37 (m, 2H, *Cy*), 1.10 (m, 1H, *Cy*), 0.73 (qt, ³*J*_{H-H} = 13.1, 3.5 Hz, 1H, *Cy*), 0.59 (qt, ³*J*_{H-H} = 13.2, 3.5 Hz, 2H, *Cy*); ¹⁹F{¹H} NMR (377 MHz, C₆D₆): $\delta = -135.0$ (d, ³*J*_{F-F} = 26 Hz, 4F, *o*-C₆F₅), -140.3 (d, ³*J*_{F-F} = 21 Hz, 2F, *o*-C₆F₅), -142.9 (m, 1F, *p*-C₆F₅), -153.7 (t, ³*J*_{F-F} = 21 Hz, 2F, *p*-C₆F₅), -156.3 (m, 2F, *m*-C₆F₅), -162.9 (td, ³*J*_{F-F} = 26, 23, 4F, *m*-C₆F₅); ¹¹B{¹H} NMR (128 MHz, C₆D₆): $\delta = 3.3$ (s); ¹³C{¹H} NMR (126 MHz, C₆D₆): $\delta = 165.8$ (s, NCN), 158.6 (s, *C*₆H₄OMe), 148.4 (bd, ¹*J*_{C-F} = 246 Hz, *C*₆F₅), 141.0 (bd, ¹*J*_{C-F} = 253 Hz, *C*₆F₅), 137.5 (bd, ¹*J*_{C-F} = 255 Hz, *C*₆F₅), 132.5 (s, *C*₆H₄OMe), 125.4 (s, *C*₆H₄OMe), 114.5 (s, *C*₆H₄OMe), 114.0 (s, *C*₆H₄OMe), 66.4 (s, NCO), 54.3 (s, *C*₆H₄OMe), 30.5 (s, *Cy*), 25.9 (s, *Cy*), 24.1 (s, *Cy*) ppm.

Isolated Yield = 66%.

Elemental analysis for C₃₃H₁₈BF₁₅N₂O₃: calcd.: C 50.41, H 2.31, N 3.56; found: C 51.22, H 2.33, N 3.98.

Figure S52. ${}^{19}F{}^{1}H$ NMR spectrum (C₆D₆) of 3g.

Figure S53. ¹¹B $\{^{1}H\}$ NMR spectrum (C₆D₆) of 3g.

Figure S54. ¹³C{¹H} NMR spectrum (C_6D_6) of 3g.

Figure S55. Single crystal X-ray structure of **3g**. Atoms of the Cy and aromatic moieties are pictured as spheres of arbitrary radius. Anisotropic displacement ellipsoids pictured at 50% probability. Hydrogen atoms omitted for clarity.

2.12. Compound 3h

¹**H NMR** (500 **MHz**, **C**₆**D**₆): $\delta = 7.64$ (d, ³*J*_{H-H} = 8.1 Hz, 1H, C₆*H*₄CF₃), 7.20 (d, ³*J*_{H-H} = 7.9 Hz, 1H, C₆*H*₄CF₃), 6.93 (t, ³*J*_{H-H} = 7.8 Hz, 1H, C₆*H*₄CF₃), 6.62 (t, ³*J*_{H-H} = 7.7 Hz, 1H, C₆*H*₄CF₃), 3.32 (tt, ³*J*_{H-H} = 12.1, 3.7 Hz, 1H, *Cy*), 2.51 (qd, ³*J*_{H-H} = 12.9, 3.9 Hz, 1H, *Cy*), 2.33 (qd, ³*J*_{H-H} = 12.3, 3.9 Hz, 1H, *Cy*), 1.65 (d, ³*J*_{H-H} = 13.1 Hz, 1H, *Cy*), 1.51 (d, ³*J*_{H-H} = 12.3 Hz, 1H, *Cy*), 1.31 (m, 2H, *Cy*), 0.96 (m, 2H, *Cy*), 0.64 (m, 1H, *Cy*), 0.46 (m, 1H, *Cy*); 1⁹**F**{¹**H**} **NMR** (377 **MHz**, **C**₆**D**₆): $\delta = -59.8$ (m, 3F, *CF*₃), -137.8 (d, ³*J*_{F-F} = 23 Hz, 2F, *o*-C₆F₅), -142.6 (m, 3F, *o*-C₆F₅), -153.0 (t, ³*J*_{F-F} = 21 Hz, 1F, *o*-C₆F₅), -153.3 (t, ³*J*_{F-F} = 21 Hz, 1F, *p*-C₆F₅), -155.9 (m, 1F, *p*-C₆F₅), -156.4 (m, 1F, *p*-C₆F₅), -162.1 (m, 4F, *m*-C₆F₅), -163.3 (b, 2F, *m*-C₆F₅); ¹¹**B**{¹**H**} **NMR** (128 **MHz**, **C**₆**D**₆): $\delta = 3.4$ (s); ¹³**C**{¹**H**} **NMR** (126 **MHz**, **C**₆**D**₆): $\delta = 166.8$ (s, NCN), 148.9 (s, *C*₆H₄CF₃), 137.1 (s, *C*₆H₄CF₃), 132.3 (s, *C*₆H₄CF₃), 129.3 (s, *C*₆H₄CF₃), 127.2 (s, *C*₆H₄CF₃), 66.4 (s, NCO), 30.4 (s, *Cy*), 29.9 (s, *Cy*), 25.9 (s, *Cy*), 25.7 (s, *Cy*), 24.0 (s, *Cy*) ppm. C₆H₄CF₃ could not be observed by ¹³C NMR spectroscopy.

Isolated Yield = 29%

Elemental analysis for C₃₃H₁₅BF₁₈N₂O₂: calcd.: C 48.02, H 1.83, N 3.40; found: C 48.98, H 1.97, N 3.93.

Figure S56. ¹H NMR spectrum (C_6D_6) of **3h**.

Figure S57. ${}^{19}F{}^{1}H$ NMR spectrum (C₆D₆) of **3h**.

Figure S58. ¹¹B $\{^{1}H\}$ NMR spectrum (C₆D₆) of **3h**.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Figure S59. ¹³C{¹H} NMR spectrum (C_6D_6) of 3h.

Figure S60. Single crystal X-ray structure of **3h**. Atoms of the Cy and aromatic moieties are pictured as spheres of arbitrary radius. Anisotropic displacement ellipsoids pictured at 50% probability. Hydrogen atoms omitted for clarity.

2.13. Compound 4

In a Schlenk flask charged with a stir bar $Al(C_6F_5)_3$ (0.10 g, 0.5 mmol) was dissolved in 5 mL of toluene. To this mixture PhNCO (0.25 g, 2.1 mmol, 4.2 eq) was added dropwise and S.I.33

stirred overnight. The solvent was removed under reduced pressure to give a pale-yellow oil, which was further washed with hexane $(3 \times 7 \text{ mL})$ to yield a white precipitate. Crystals suitable for X-ray diffraction studies could be obtained from the hexane filtrate.

¹⁹F{¹H} NMR (377 MHz, C₆D₆): $\delta = -132.6$ (bm, 2F, *o*-C₆F₅), -133.1 (bm, 4F, *o*-C₆F₅), -135.2 (b, 1F, *p*-C₆F₅), -163.7 (t, *J* = 21 Hz, 2F, *p*-C₆F₅), -167.7 (bm, 4F, *m*-C₆F₅), -167.8 (bm, 2F, *m*-C₆F₅) ppm.

Figure S61. ¹⁹F $\{^{1}H\}$ NMR spectrum (C₆D₆) of 4.

Figure S62. Single crystal X-ray structure of **4**. Atoms of the Ph and C_6F_5 moieties are pictured as spheres of arbitrary radius. Anisotropic displacement ellipsoids pictured at 50% probability. Hydrogen atoms omitted for clarity.

2.14. Compound 5

In a Schlenk flask charged with a stir bar $Ga(C_6F_5)_3$ (0.10 g, 0.4 mmol) was dissolved in 5 mL of toluene. To this mixture PhNCO (0.25 g, 5.2 mmol, 4.2 eq) was added dropwise and stirred overnight. The solvent was removed under reduced pressure to give a pale-yellow oil, which was further washed with hexane (3 × 7 mL) to yield a white precipitate. Crystals suitable for X-ray diffraction studies could be obtained from the hexane filtrate.

Note: NMR spectroscopy could only be performed on a sample contaminated with solvent. Solvent-free samples displayed poor solubility in d_8 -toluene, C_6D_6 , CD_2Cl_2 , and d_8 -THF.

¹H NMR (500 MHz, C₆D₆): $\delta = 6.91$ (d, ${}^{3}J_{H-H} = 7.4$ Hz, 4H, *Ph*), 6.57 (m, 6H, *Ph*); ¹⁹F{¹H} NMR (377 MHz, C₆D₆): $\delta = -124.6$ (d, ${}^{3}J_{F-F} = 25$ Hz, 4F, *o*-C₆F₅), -137.2 (m, 2F, *o*-C₆F₅), -146.6 (t, ${}^{3}J_{F-F} = 21$ Hz, 1F, *p*-C₆F₅), -149.4 (t, ${}^{3}J_{F-F} = 20$ Hz, 2F, *p*-C₆F₅), -159.3 (m, 2F, *m*-C₆F₅), -159.9 (m, 4F, *p*-C₆F₅), ¹³C{¹H} NMR (126 MHz, C₆D₆): $\delta = 167.7$ (s, NCO), 148.8 (bd, ${}^{1}J_{C-F} = 231$ Hz, C₆F₅), 142.4 (bd, ${}^{1}J_{C-F} = 288$ Hz, C₆F₅), 138.7 (s, *Ph*), 137.1 (bd, ${}^{1}J_{C-F} = 270$ Hz, C₆F₅), 129.3 (s, *Ph*), 128.9 (s, *Ph*), 125.3 (s, *Ph*), 124.5 (s, *Ph*) ppm.

Isolated Yield = 33%.

Elemental analysis for $C_{32}H_{22}BF_{15}N_2O_2$: calcd.: C 43.5, H 0.7, N 2.0; found: C 40.92, H 0.71, N 2.61.

Figure S63. ¹H NMR spectrum (C_6D_6) of **5**.

Figure S64. $^{19}\mathrm{F}\{^{1}\mathrm{H}\}$ NMR spectrum (C₆D₆) of 5.

Figure S65. ${}^{13}C{}^{1}H$ NMR spectrum (C₆D₆) of 5.

Figure S66. Single crystal X-ray structure of **5**. Atoms of the Ph and C_6F_5 moieties are pictured as spheres of arbitrary radius. Anisotropic displacement ellipsoids pictured at 50% probability. Hydrogen atoms omitted for clarity.

3. Kinetic Studies

Figure S68. Formation of 2 vs. time (s). Experimental conditions as described in section 1.3.

Figure S69. Initial Formation of 2 vs. time (s). Experimental conditions as described in section 1.3.

Figure S70. Slope of initial formation of **2** vs. CyNCO equivalents. Experimental conditions as described in section 1.3.

Figure S71. ln[**1a**(mmol)] vs t (s) for consumption of **1a** with 10 eq of CyNCO. Experimental conditions as described in section 1.3.

4. Thermodynamic Studies

Figure S72. Conversion of **1a** to **2** at Equilibrium vs Temperature (K). Experimental conditions as described in section 1.4.

Figure S73. Van't Hoff Plot for Conversion of **1a** to **2**. Experimental conditions as described in section 1.4.

5. Crystallographic Tables

	1a	1b	1c	2
Formula	$C_{32}H_{10}BF_{15}N_2O_2$	$C_{32}H_{22}BF_{15}N_2O_2$	$C_{26}H_{10}BF_{15}N_2O_2$	$C_{32}H_{16}BF_{15}N_2O_2$
CCDC	1907920	1907921	1907922	1907923
Fw [g mol ⁻¹]	750.23	762.32	678.17	756.28
Crystal system	triclinic	monoclinic	monoclinic	monoclinic
Space group	<i>P</i> –1	C2/c	$P2_{1}/c$	$P2_{1}/c$
a (Å)	9.1684(3)	16.6110(5)	8.63710(10)	13.9196(2)
$b(\dot{A})$	12.0068(3)	10.3630(2)	20.2199(2)	9.8620(2)
$c(\dot{A})$	14.3299(4)	36.6152(9)	15.13590(10)	22.3185(5)
α(°)	100.589(2)	90	90	90
β (°)	91.900(2)	103.060(2)	93.8880(10)	96.685(2)
γ(°)	105.332(2)	90	90	90
$V(Å^3)$	1489.86(8)	6139.9(3)	2637.27(4)	3042.94(10)
Z	2	8	4	4
Radiation, λ (Å)	Cu Ka, 1.54184	Cu Ka, 1.54184	Cu Ka, 1.54184	Cu Ka, 1.54184
Temp (K)	150(2)	150(2)	150(2)	150(2)
ρ_{calc} (g cm ⁻³)	1.672	1.649	1.708	1.651
$\mu (\text{mm}^{-1})$	1.523	1.480	1.639	1.492
Reflections collected	30308	31445	32653	25771
Independent reflections	6085	6370	5481	6309
Parameters	469	469	431	469
R(int)	0.0241	0.0381	0.0231	0.0335
$R1/wR2$, ^[a] $I \ge 2\sigma I$ (%)	3.33/8.92	6.78/20.33	3.50/9.13	4.09/10.81
R1/wR2, ^[a] all data (%)	3.83/9.52	7.32/21.17	3.72/9.35	5.45/12.00
GOF	1.068	1.119	1.027	1.032

Table S1. Selected X-ray data collection and refinement parameters for 1a 1b, 1c and 2.

^[a] R1 = $[\Sigma ||F_o| - |F_c||]/\Sigma |F_o|$; wR2 = { $[\Sigma w[(F_o)^2 - (F_c)^2]^2]/[\Sigma w(F_o^2)^2$ }^{1/2}; w = $[\sigma^2(F_o)^2 + (AP)^2 + BP]^{-1}$, where P = $[(F_o)^2 + 2(F_c)^2]/3$ and the A and B values are 0.0459 and 0.56 for **1a**, 0.0810 and 39.59 for **1b**, 0.0475 and 0.98 for **1c**, and 0.0618 and 0.85 for **2**.

	3a .0.75hex	3b	3c	3d
Formula	C _{36.5} H _{26.5} BF ₁₅ N ₂ O ₂	$C_{29}H_{16}BF_{15}N_2O_2$	C ₃₃ H ₁₈ BF ₁₅ N ₂ O ₂	C ₃₂ H ₁₅ BClF ₁₅ N ₂ O ₂
CCDC	1907924	1907925	1907926	1907927
$Fw[g mol^{-1}]$	820.91	720.25	770.30	790.72
Crystal system	triclinic	triclinic	monoclinic	monoclinic
Space group	<i>P</i> –1	<i>P</i> –1	$P2_1/n$	$P2_1$
a (Å)	12.7339(4)	9.1546(3)	14.4113(2)	15.00220(10)
b (Å)	14.6283(5)	10.4650(3)	12.5047(2)	12.8083(2)
<i>c</i> (Å)	21.2277(7)	32.5941(9)	35.4165(4)	17.2649(2)
α (°)	77.984(3)	89.932(2)	90	90
β (°)	76.287(3)	87.734(2)	91.0590(10)	104.1050(10)
γ (°)	69.659(3)	64.836(3)	90	90
$V(Å^3)$	3567.4(2)	2823.63(16)	6381.28(15)	3217.48(7)
Z	4	4	8	4
Radiation, λ (Å)	Cu Ka, 1.54184	Cu Kα, 1.54184	Cu Kα, 1.54184	Cu Kα, 1.54184
Temp (K)	150(2)	150(2)	150(2)	150(2)
ρ_{calc} (g cm ⁻³)	1.528	1.694	1.604	1.632
$\mu (mm^{-1})$	1.319	1.570	1.435	2.187
Reflections collected	39525	25899	36270	41515
Independent reflections	14767	9955	13144	12803
Parameters	1073	883	955	955
R(int)	0.0350	0.0237	0.0288	0.0429
$R1/wR2$, ^[a] $I \ge 2\sigma I$ (%)	4.50/11.20	6.97/19.98	4.77/11.34	3.35/8.41
R1/wR2, ^[a] all data (%)	6.13/12.38	7.28/20.10	5.54/11.73	3.65/8.73
GOF	1.016	1.174	1.137	1.033

Table S2. Selected X-ray data collection and refinement parameters for 3a 0.75hex, 3b, 3c and 3d.

^[a] R1 = $[\Sigma ||F_o| - |F_c||] / \Sigma |F_o|$; wR2 = { $[\Sigma w[(F_o)^2 - (F_c)^2]^2] / [\Sigma w(F_o^2)^2]^{1/2}$; w = $[\sigma^2(F_o)^2 + (AP)^2 + BP]^{-1}$, where P = $[(F_o)^2 + 2(F_c)^2] / 3$ and the A and B values are 0.0539 and 1.09 for **3a** · 0.75 hex, 0.0546 and 13.21 for **3b**, 0.0279 and 5.45 for **3c**, and 0.0445 and 0.39 for **3d**.

	3e	3f	3g	3h
Formula	C ₃₂ H ₁₅ BBrF ₁₅ N ₂ O ₂	C ₃₂ H ₁₅ BF ₁₅ N ₃ O ₄	C ₃₃ H ₁₈ BF ₁₅ N ₂ O ₃	$C_{33}H_{15}BF_{18}N_2O_2$
CCDC	1907928	1907929	1907930	1907931
Fw [g mol ⁻¹]	835.18	801.28	786.30	824.28
Crystal system	monoclinic	monoclinic	monoclinic	orthorhombic
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}2_{1}2_{1}$
<i>a</i> (Å)	15.5607(5)	12.78170(10)	15.4749(2)	9.5724(2)
b (Å)	12.1150(3)	16.79680(10)	12.27710(10)	15.9011(3)
<i>c</i> (Å)	33.7225(10)	18.1486(2)	33.3387(3)	41.7343(6)
α(°)	90	90	90	90
β (°)	93.091(3)	100.3400(10)	93.7040(10)	90
γ (°)	90	90	90	90
$V(Å^3)$	6348.0(3)	3833.08(6)	6320.68(11)	6352.4(2)
Z	8	4	8	8
Radiation, λ (Å)	Cu Kα, 1.54184	Cu Ka, 1.54184	Cu Ka, 1.54184	Cu Kα, 1.54184
Temp (K)	150(2)	150(2)	150(2)	150(2)
ρ_{calc} (g cm ⁻³)	1.748	1.388	1.653	1.724
μ (mm ⁻¹)	2.918	1.266	1.487	1.629
Reflections collected	29127	31854	66784	44949
Independent reflections	12289	7947	13136	12989
Parameters	955	497	975	1028
R(int)	0.0249	0.0238	0.0256	0.0383
$R1/wR2$, ^[a] $I \ge 2\sigma I$ (%)	3.92/9.14	3.88/10.49	3.20/8.55	4.19/10.08
R1/wR2, ^[a] all data (%)	4.82/9.59	4.33/10.94	3.86/9.00	5.47/11.10
GOF	1.071	1.028	1.023	0.999

Table S3. Selected X-ray data collection and refinement parameters for 3e, 3f, 3g and 3h.

^[a] R1 = $[\Sigma ||F_o| - |F_c||]/\Sigma |F_o|$; wR2 = { $[\Sigma w[(F_o)^2 - (F_c)^2]^2]/[\Sigma w(F_o^2)^2$ }^{1/2}; w = $[\sigma^2(F_o)^2 + (AP)^2 + BP]^{-1}$, where P = $[(F_o)^2 + 2(F_c)^2]/3$ and the A and B values are 0.0358 and 5.88 for **3e**, 0.0581 and 1.38 for **3f**, 0.0440 and 2.24 for **3g**, and 0.0533 and 1.23 for **3d**.

	4·tol	5·hex
Formula	$C_{57}H_{18}Al_2F_{30}N_2O_2$	$C_{56}H_{24}F_{30}Ga_2N_2O_2$
CCDC	1907932	1907933
Fw [g mol ⁻¹]	1386.69	1466.21
Crystal system	triclinic	triclinic
Space group	<i>P</i> –1	<i>P</i> –1
<i>a</i> (Å)	11.8016(3)	9.8455(5)
<i>b</i> (Å)	14.1317(3)	11.6923(5)
<i>c</i> (Å)	17.4036(5)	13.4043(7)
α (°)	78.018(2)	67.685(4)
β (°)	75.621(2)	79.756(4)
γ (°)	80.479(2)	71.222(4)
$V(Å^3)$	2730.41(12)	1348.79(12)
Ζ	2	1
Radiation, λ (Å)	Cu Ka, 1.54184	Cu Ka, 1.54184
Temp (K)	150(2)	150(2)
$\rho_{calc} (g \ cm^{-3})$	1.687	1.805
μ (mm ⁻¹)	1.866	2.619
Reflections collected	44233	12718
Independent reflections	11307	5570
Parameters	881	415
R(int)	0.0349	0.0355
$R1/wR2$,[a] $I \ge 2\sigma I$ (%)	10.82/41.24	3.19/8.09
R1/wR2, ^[a] all data (%)	11.56/42.19	3.75/8.56
GOF	1.999	1.037

 Table S4. Selected X-ray data collection and refinement parameters for 4 tol and 5 hex.

^[a] R1 = $[\Sigma ||F_o| - |F_c||] / \Sigma |F_o|$; wR2 = { $[\Sigma w[(F_o)^2 - (F_c)^2]^2] / [\Sigma w(F_o^2)^2]^{1/2}$; w = $[\sigma^2(F_o)^2 + (AP)^2 + BP]^{-1}$, where P = $[(F_o)^2 + 2(F_c)^2] / 3$ and the A and B values are 0.2000 and 0 for 4·tol, and 0.0438 and 0.29 for 5·hex.

6. **DFT Studies**

Figure S74. Computed isocyanate exchange using CyNCO via disassociative mechanism.

Description	E [a.u.]	ΔE [kJ/mol]	G [a.u]	$\Delta G (kJ/mol)$
1a + CyNCO	-3407.61	0	-3407.18	0
A + CyNCO	-3407.54	183.3278	-3407.11	173.1333
\mathbf{B} + CyNCO + PhNCO	-3407.57	104.3116	-3407.17	27.26844
C + PhNCO	-3407.57	119.0768	-3407.14	111.0481
2 + PhNCO	-3407.62	-8.81611	-3407.18	-2.79878

Table S5. Computed isocyanate exchange via dissociative mechanism.

Figure S75. Exponential increase in energy for computed isocyanate exchange using MeNCO via associative mechanism.

Figure S76. Computed energies for head-to-tail dimerization vs PhNCO capture.

Description	E [a.u.]	ΔE [kJ/mol]	G [a.u]	$\Delta G (kJ/mol)$
D + PhNCO	-5610.07	0	-5609.58	0
$2\mathbf{B} + PhNCO$	-5610.05	62.08404	-5609.59	-31.2461
1a + B	-5610.09	-42.2275	-5609.6	-58.5145
4 + PhNCO	-6045.17	0	-6044.7	0
2E + PhNCO	-6045.12	143.4915	-6044.68	65.04414
F+ E	-6045.15	53.41148	-6044.68	45.96463
5 + PhNCO	-9405.81	0	-9405.34	0
$2\mathbf{G} + PhNCO$	-9405.74	176.4574	-9405.3	90.3067
H + G	-9405.78	78.17722	-9405.31	62.7337

 Table S6. Computed energies for head-to-tail dimerization vs PhNCO capture

6.1 Geometry Optimized Structures

6.1.1. PhNCO

0	-2.0722	-0.46787	0.
С	-0.6422	-0.46789	0.
Ν	0.6514	-0.4679	0.00001
С	2.1214	-0.46791	0.00002
С	2.81892	-0.94869	-1.10848
С	2.8189	0.0128	1.10815
С	4.21364	-0.94934	-1.1085
Н	2.26874	-1.32832	-1.98164
С	4.21404	0.01314	1.1079
Н	2.2693	0.39193	1.98184
С	4.91146	-0.46794	-0.00011
Н	4.7635	-1.32885	-1.98194
Н	4.76372	0.39261	1.98159
Н	6.01114	-0.4685	-0.00038

6.1.2. CyNCO

Charge =	0 Multiplicity = 1
0	-2.0722 -0.46787 0.
С	-0.6422 -0.46789 0.
Ν	0.6514 -0.4679 0.00001
С	2.1214 -0.46791 0.00002
С	2.62941 -1.89081 -0.11423
С	2.62942 0.38976 -1.1414
Н	2.45877 -0.02855 0.97537
С	4.14144 -1.93166 -0.20157
Н	2.19035 -2.37077 -1.02814
Н	2.28865 -2.48352 0.77414
С	4.14152 0.34954 -1.22821
Н	2.19049 0.02384 -2.10669
Н	2.2896 1.44803 -0.99635
С	4.65049 -1.073 -1.3412
Н	4.48075 -2.98991 -0.3481
Н	4.58052 -1.5676 0.76438
Н	4.48228 0.94184 -2.11681
Н	4.57991 0.8305 -0.31444
Н	5.77146 -1.07208 -1.33891
Н	4.31568 -1.51248 -2.31747

6.1.3. Compound 1a

Charge = 0 Multiplicity = 1			
F	-2.9232	6.49211	9.10782
F	-1.87491	10.3524	7.27272
F	2.05138	7.30538	13.32688
F	0.7327	8.99796	7.45296
F	4.25924	5.78904	13.5981
F	1.77703	6.08986	8.78543

F	-3.01237	5.14959	6.81364
F	5.26393	4.45317	11.44788
F	4.06716	4.65928	9.03005
F	-0.235	10.72488	11.70136
F	-1.96669	12.98113	7.08543
F	0.61111	7.6371	5.15378
0	0.41058	8.4176	10.26051
F	-1.34277	14.54872	9.22374
0	-2.59879	6.92106	12.44527
F	-1.25336	5.68893	4.82357
F	-0.42718	13.3904	11.51684
Ν	-0.50957	6.74842	11.5086
Ν	-1.99896	8.44756	10.83098
С	0.52325	7.34867	10.93943
С	-1.83987	7.39506	11.63867
С	-1.11969	7.86338	8.37309
С	-2.03509	6.84045	8.15163
С	-1.47022	11.04828	8.35427
С	1.86839	6.71775	11.05073
С	-3.24778	9.16744	10.9692
С	-1.02178	10.39763	9.49161
С	2.41703	6.06641	9.9567
С	2.5351	6.64788	12.26143
С	3.57314	5.31543	10.07629
С	-0.22411	8.06003	7.32447
С	3.67726	5.8929	12.40396
С	-0.39434	5.42719	12.1101
С	-2.09762	6.12041	6.97664
С	4.18513	5.22052	11.30916
С	-0.25537	7.36841	6.14159
С	-1.56454	12.42471	8.24049
С	-4.10015	9.28936	9.88464
Н	-3.8806	8.89656	9.07076

C	-0.68056	11.24519 10.53614
С	-1.20961	6.39175 5.96585
С	-0.22448	5.29917 13.47856
Н	-0.12973	6.05012 14.01892
С	-1.23815	13.21482 9.31536
С	-0.78576	12.62026 10.47334
С	-0.53352	4.3366 11.28436
Н	-0.64221	4.44556 10.36719
С	-3.56084	9.75744 12.17904
Н	-2.98568	9.66972 12.90457
В	-1.00311	8.7909 9.70959
С	-5.60151	10.59831 11.23004
Н	-6.39376	11.07701 11.31992
С	-5.28728	10.00313 10.01973
Н	-5.8688	10.08029 9.29809
С	-4.73911	10.48221 12.30579
Н	-4.94861	10.89 13.11494
С	-0.19905	4.02403 14.02396
Н	-0.07754	3.91364 14.93935
С	-0.50811	3.06549 11.85197
Н	-0.59574	2.31401 11.31113
C	-0.35354	2.91859 13.21214
Н	-0.35322	2.06747 13.58699

6.1.4. Compound A

Charge = 0 N	fultiplicity = 1
F	1.57204 1.73299 2.28988
F	3.16526 2.27492 -0.75515
F	-2.45793 -2.95679 -1.18524
F	-0.55167 2.35037 -1.88768
F	-4.79826 -2.89296 -2.54094
F	-2.83408 1.6544 -0.3215

F	0.87974 4.19575 2.99674
F	-6.14555 -0.55301 -2.79726
F	-5.16425 1.72114 -1.6912
F	1.52018 -2.10523 -1.51355
F	5.51437 1.55032 -1.77888
F	-1.22954 4.84604 -1.16074
0	-0.26473 -0.2737 -0.80283
F	5.89531 -0.98427 -2.6705
0	-0.00553 -3.05019 2.00299
F	-0.51657 5.78338 1.2959
F	3.8828 -2.79775 -2.53337
Ν	-1.11145 -1.22399 1.10478
Ν	1.24369 -1.12652 1.49499
С	-1.25312 -0.69425 -0.07466
С	0.22748 -1.92481 1.60863
С	0.5208 1.92534 0.16959
С	0.87861 2.44854 1.40973
С	3.29097 1.01967 -1.18673
С	-2.58143 -0.64721 -0.74503
С	2.5431 -1.63357 1.6767
С	2.21791 0.12528 -1.10384
С	-3.28692 0.54203 -0.89288
С	-3.10963 -1.80636 -1.30807
С	-4.49249 0.58458 -1.57802
С	-0.19113 2.78058 -0.67102
С	-4.31036 -1.78421 -2.00403
С	-2.29165 -1.47552 1.88714
С	0.53078 3.738 1.79906
С	-4.9987 -0.58321 -2.13978
С	-0.54877 4.07378 -0.32052
С	4.52511 0.66569 -1.71219
С	3.56861 -0.70985 1.92755
Н	3.31154 0.3375 2.03063

С	2.46603 -1.17143 -1.57518
С	-0.18389 4.55312 0.93099
С	-2.80153 -2.76278 2.03389
Н	-2.30335 -3.59227 1.54976
С	4.72305 -0.63143 -2.16821
С	3.68935 -1.55818 -2.09979
С	-2.89066 -0.38312 2.51198
Н	-2.46037 0.60661 2.39189
С	2.88302 -2.99089 1.54948
Н	2.10427 -3.72073 1.3643
В	0.8746 0.50028 -0.42417
С	5.21872 -2.47309 1.92078
Н	6.25032 -2.79886 2.0156
С	4.88813 -1.12649 2.05083
Н	5.66323 -0.39137 2.25039
С	4.20731 -3.39675 1.67156
Н	4.44863 -4.45133 1.56867
С	-3.93744 -2.94604 2.81556
Н	-4.34367 -3.94542 2.93674
C	-4.02733 -0.58166 3.28767
Н	-4.49805 0.26518 3.77718
C	-4.55058 -1.86276 3.44011
Н	-5.43575 -2.01771 4.04948

6.1.5. Compound B

Charge = 0	Multiplicity	= 1	
F	0.95004	2.25489	2.17371
F	3.55836	1.33294	-1.01499
F	-2.99465	-2.74255	0.68235
F	0.7644	1.30823 -	2.46237
F	-5.17474	-3.344 -	0.79023
F	-2.19606	1.01619	-2.04898

F	0.55531 4.82399 1.65107
F	-5.85633 -1.77896 -2.89597
F	-4.36784 0.39491 -3.52962
F	1.27493 -2.7742 -0.43859
F	5.48847 0.06136 -2.32771
F	0.37039 3.90641 -2.96211
0	-0.23139 -0.55025 -0.56471
F	5.35458 -2.62724 -2.71988
F	0.26122 5.6911 -0.91042
F	3.22757 -4.02932 -1.75882
Ν	-1.32861 -0.30073 1.41105
С	-1.30179 -0.54619 0.10267
С	0.88007 1.64723 -0.12739
С	0.81329 2.60014 0.88602
С	3.4108 0.01508 -1.20027
С	-2.54549 -0.84364 -0.6429
С	2.29429 -0.6525 -0.70672
С	-2.90141 -0.06482 -1.74423
С	-3.32753 -1.95591 -0.33349
С	-4.02256 -0.36773 -2.50341
С	0.7197 2.14645 -1.42079
С	-4.44603 -2.27839 -1.08791
С	-2.56505 0.01644 2.07145
С	0.61062 3.95655 0.64301
С	-4.79037 -1.48073 -2.17451
С	0.51632 3.48814 -1.70731
С	4.44209 -0.62651 -1.87647
С	2.28515 -2.0312 -0.91294
С	0.4596 4.40196 -0.66154
С	-3.10687 -0.83815 3.02717
Н	-2.59021 -1.7526 3.28795
С	4.37846 -1.99842 -2.07525
С	3.29178 -2.71078 -1.58532

С	-3.19153	1.21509	1.7364
Н	-2.73089	1.87769	1.00895
В	1.06888	0.04085	0.08267
C	-4.30399	-0.48594	3.63978
Н	-4.7337	-1.14469	4.38778
C	-4.39274	1.55201	2.35012
Н	-4.88516	2.48423	2.09221
C	-4.94871	0.70158	3.30169
Н	-5.88289	0.968	3.78657

6.1.6. Compound C

F	-3.12905 -0.57865 2.01355
F	-1.17363 -3.09873 -0.73291
F	-4.76682 1.25349 2.99304
F	-0.19647 0.04974 2.67531
F	-0.61704 -5.05835 0.93936
F	-1.32042 2.66297 -0.93901
0	0.27858 0.70769 -0.14817
F	2.45166 0.68098 2.13371
F	-4.72115 3.80478 2.04692
F	2.84729 1.61671 -2.46468
F	5.67888 3.7281 0.61976
F	4.46765 2.40661 2.65708
F	-2.97768 4.47538 0.06693
F	0.17593 -4.5392 3.49353
F	0.38305 -1.9567 4.33665
F	4.87175 3.32921 -1.94129
0	-0.27101 -1.49783 -3.38072
Ν	-1.48841 -0.51655 -1.56207
Ν	1.56166 -0.94225 -1.03228
С	2.58598 1.12356 -0.17518

С	-2.07859 0.95702 0.53171
С	1.45086 0.19672 -0.47523
С	-0.7069 -1.40642 0.88545
С	-3.01531 0.65968 1.52207
С	-3.89925 1.59799 2.04549
С	-2.11578 2.27415 0.06615
С	-0.79758 -2.74214 0.51005
С	-0.51111 -3.8012 1.36448
С	-0.29726 -1.19868 2.20348
С	-2.9473 -0.39389 -1.9754
Н	-3.43234 -0.06677 -1.05296
С	2.813 -1.51947 -1.30216
С	3.23051 1.80161 -1.20348
С	-2.98605 3.23873 0.55789
С	-3.87978 2.89902 1.56492
С	4.05831 2.21807 1.408
С	-0.78062 -1.03472 -2.45339
С	3.01432 1.34688 1.12801
С	-0.10434 -3.54071 2.66415
С	0.00324 -2.22322 3.08985
С	4.68281 2.89157 0.3639
С	3.17621 -1.79492 -2.62386
Н	2.50345 -1.51209 -3.42691
С	3.6679 -1.89455 -0.25956
Н	3.36499 -1.70409 0.76637
В	-0.95288 -0.08158 -0.02375
С	-3.11232 0.68186 -3.04185
Н	-2.56044 0.38049 -3.94431
Н	-2.67304 1.62063 -2.69277
С	4.27259 2.68304 -0.94765
С	-3.54238 -1.72898 -2.40691
Н	-3.40643 -2.4721 -1.61661
Н	-3.01415 -2.1016 -3.2962

С	-5.0228 -1.5441 -2.74674
Н	-5.44107 -2.50039 -3.07767
Н	-5.56996 -1.26479 -1.83581
С	-4.592 0.85477 -3.38863
Н	-5.1231 1.25155 -2.51242
Н	-4.69608 1.60514 -4.17927
С	-5.22514 -0.46873 -3.81191
Н	-4.77102 -0.80314 -4.75504
Н	-6.29323 -0.33073 -4.01156
С	5.24677 -2.77799 -1.8585
Н	6.19151 -3.26687 -2.07568
С	4.87796 -2.51901 -0.54131
Н	5.53356 -2.80722 0.27545
С	4.39125 -2.41281 -2.89546
Н	4.66973 -2.61341 -3.92607

6.1.7. Compound 2

F	5.39753 4.26692 17.0257
F	9.37736 3.54783 15.54727
F	2.76281 4.61804 17.23602
F	6.85788 7.00777 17.58443
F	10.78619 3.28716 17.75778
F	5.47737 7.34957 13.42884
0	7.75072 7.02069 14.71963
F	10.11075 8.11993 16.32055
F	1.46055 6.31245 15.59681
F	8.91926 8.84649 11.82379
F	11.46066 12.03507 14.11075
F	11.36297 10.52263 16.35274
F	2.84747 7.69054 13.69406
F	10.2854 4.85453 19.9302

F	8.31588	6.7204	19.80226
F	10.2285	11.18764	11.84514
0	8.92242	4.1858	12.16166
Ν	7.47755	4.70165	13.88009
Ν	9.32828	6.08676	13.38364
С	9.5112	8.41778	14.06181
С	5.57999	5.82927	15.24882
С	8.82456	7.09692	14.05279
С	8.00775	5.27742	16.45429
С	4.81818	5.14891	16.18778
С	3.44866	5.30459	16.31242
С	4.85885	6.66968	14.41814
С	9.037	4.3545 1	6.57385
С	9.79951	4.19778	17.72047
С	7.81076	6.04866	17.59057
С	6.56151	3.57049	13.58199
Н	5.92499	3.57298	14.32715
С	10.65995	6.1804	12.79975
С	9.54238	9.22558	12.94241
С	3.49041	6.8547	14.51514
С	2.79248	6.16403	15.47576
С	10.75811	10.1045	15.2376
С	8.53363	4.85293	13.08275
С	10.11452	8.88239	15.21667
С	9.55372	4.98139	18.80999
С	8.54835	5.92555	18.74936
С	10.80666	10.8726	69 14.1016
С	10.82646	6.55339	11.49025
Н	10.09207	6.70989	0 10.94156
С	11.72311	5.90851	13.62732
Н	11.58633	5.63906	6 14.50685
В	7.18452	5.61629	15.07492
С	5.72303	3.84234	12.38359

Н	6.29359	3.88896	11.60053
Н	5.28988	4.704	12.48769
С	10.19447	10.4460	1 12.94445
С	7.14785	2.20025	13.60524
Н	7.58103	2.04986	14.46001
Н	7.82106	2.12629	12.91083
С	6.08846	1.14928	13.38925
Н	6.51786	0.2847	13.29429
Н	5.51831	1.11164	14.17309
С	4.67287	2.78543	12.16647
Н	4.00004	2.85967	12.86122
Н	4.23768	2.94146	11.31374
С	5.23725	1.40526	12.18021
Н	5.77122	1.27211	11.38143
Н	4.50967	0.76401	12.16203
С	13.20177	6.44288	11.81493
Н	14.06428	6.54322	11.48189
С	13.01224	6.04717	13.11378
Н	13.74731	5.87026	13.65534
С	12.1221	6.69135	11.00475
Н	12.25832	6.95435	10.12318

6.1.8. Compound D

Charge = 0 Multiplicity = 1

F	1.44404	8.45374	4.20154
F	7.56381	12.52469	1.87866
F	3.35802	14.61265	1.73805
F	1.58032	12.2969	1.46581
0	4.24318	9.37695	3.89776
F	2.43962	10.15881	7.07838
0	4.4801	12.30309	3.61074
F	2.49606	14.22616	4.68793

F	5.79561 7.72578 2.0103
F	-0.11694 10.56066 7.71085
F	7.57443 8.47776 4.0538
F	-0.08985 14.60651 5.28554
F	6.18413 5.75628 0.24569
F	3.627 7.34619 6.36124
F	-0.9566 12.84693 2.11654
F	7.2143 13.23965 4.46881
Ν	4.49977 11.27052 1.62766
F	-1.0955 9.04082 4.88049
F	8.73642 14.82564 1.09894
F	-2.30337 11.23152 3.84795
F	4.35825 5.27684 -1.68327
F	1.70938 8.79873 -0.06142
Ν	5.25911 10.32178 5.66071
F	-1.4209 12.76768 6.81775
F	2.10718 6.78603 -1.82604
F	7.2116 16.98586 0.48473
F	4.5254 16.88714 0.81674
F	8.89352 15.01759 5.61589
F	4.63103 4.89225 6.89079
F	4.43469 13.41915 8.23044
F	6.16333 15.11766 9.40906
F	8.58217 6.01215 4.55679
С	4.78802 12.29121 2.37053
F	7.08768 4.21312 5.99106
F	8.37305 15.94399 8.10926
С	3.71868 8.32019 1.07736
С	2.58358 12.18646 5.86489
С	5.73276 13.30961 6.27326
С	1.62235 10.34146 2.80379
С	5.00852 9.30146 4.91203
С	5.43337 13.52441 1.82604

С	4.80348	11.27695 0.2075
С	4.84008	7.51969 1.08234
С	1.86425	11.29411 6.61855
С	6.11266	10.14451 6.82439
С	5.59105	7.9539 5.2042
С	6.80445	13.59838 1.65339
С	0.87417	9.5558 3.67199
С	5.85898	10.50926 -0.25565
Н	6.4057	10.05031 0.34031
С	4.00141	11.9875 -0.67563
Н	3.29933	12.50913 -0.35857
С	7.41108	14.76722 1.2334
С	0.94821	11.45416 2.31076
С	1.86556	13.28605 5.43162
С	0.52594	11.46387 6.95553
С	4.68437	14.65639 1.55213
С	-1.03917	10.93882 3.50931
С	-0.42421	9.83779 4.0289
С	6.63231	15.86383 0.93294
С	6.91182	13.7269 5.69391
С	5.50608	13.77186 7.53821
С	-0.35007	11.77327 2.64111
С	2.82964	8.06875 0.0664
С	5.29829	11.1273 -2.51163
Н	5.46124	11.06991 -3.42631
С	7.47139	10.33028 6.71649
Н	7.85106	10.55782 5.89975
С	6.08944	10.43377 -1.62683
Н	6.78641	9.90738 -1.94722
С	-0.1311	12.58135 6.49737
С	5.53441	9.81747 8.03953
Н	4.61629	9.69125 8.10594
С	0.53561	13.50861 5.72047

С	4.84247	7.02376 5.90971
С	5.07754	6.49962 0.17762
С	5.26648	15.81121 1.0923
С	8.27305	10.1778 7.84697
Н	9.19397	10.29735 7.78223
С	4.26239	11.90901 -2.04018
Н	3.73438	12.38549 -2.63945
С	6.35087	9.68024 9.16172
Н	5.97149	9.47339 9.98509
С	6.6085	5.42271 5.73043
С	4.1548	6.26404 -0.80678
С	6.85044	7.59552 4.75433
С	7.79555	14.61008 6.25832
С	7.70947	9.84907 9.06045
Н	8.24935	9.74218 9.81079
С	3.00392	7.02535 -0.8599
С	7.35521	6.33473 5.02492
С	5.34059	5.76363 6.19192
С	6.393	14.67837 8.15574
С	7.54185	15.07284 7.51828
В	3.47813	9.80533 2.36621
В	4.49349	12.071 5.36224

6.1.9. Compound 4

Al	1.62228	0.53318	1.01907
Al	-1.65411	0.1548	-1.1871
F	3.45843	2.79141	0.10669
F	-0.87543	-3.27291	2.5078
F	-3.23308	0.80415	2.45903
F	-0.77388	2.4253	2.18225
0	1.14826	0.28457	-0.71144

F	0.48006 2.25431 -2.61063
0	-1.21684 -0.21361 0.51586
F	-3.60162 2.20272 -0.23021
F	2.27692 -2.39899 0.65535
F	0.46446 4.92578 -2.56271
F	1.30595 -3.30401 -2.17417
F	-3.6317 4.90132 -0.24013
F	4.53142 -3.84383 0.91785
F	3.33671 0.96049 -2.28314
F	-1.07354 5.07059 2.00826
F	-2.68238 -2.68117 -0.38645
N	0.28274 -0.38319 2.11895
F	3.18118 5.46102 0.02927
F	-2.92465 -4.44147 3.8215
F	0.90213 6.61476 0.96755
F	6.8211 -2.64038 1.77117
F	4.59361 1.45437 2.10306
N	-0.1891 -0.75298 -2.12331
F	-1.57668 6.26777 -1.3844
F	6.82899 0.00975 2.35207
F	-5.12955 -2.9914 4.45119
F	-5.28687 -0.37143 3.7726
F	-5.09641 -3.84386 -0.63753
F	5.6153 -0.15929 -3.15694
F	-4.24301 1.05394 -2.81899
F	-6.64769 -0.1148 -3.06076
F	3.58291 -4.40085 -3.0746
С	-0.9192 -0.56316 1.67159
F	5.74444 -2.83776 -3.56087
F	-7.08583 -2.56609 -1.98048
С	3.34247 -0.40517 1.34418
С	-1.57231 2.11561 -1.42271
С	-3.37423 -0.75057 -1.56499

С	1.39044 2.49273 1.20269
С	1.00616 -0.51192 -1.67899
С	-1.99438 -1.19834 2.48186
С	0.5772 -0.62841 3.50093
С	3.39809 -1.76556 1.0712
С	-0.55732 2.86094 -2.00817
С	-0.39303 -1.3146 -3.41952
С	2.23205 -1.13015 -2.24092
С	-1.9373 -2.54332 2.83282
С	2.35691 3.32816 0.65153
С	1.34303 -1.73615 3.86096
Н	1.66824 -2.42864 3.0935
С	0.12658 0.26886 4.47049
Н	-0.44746 1.13777 4.16506
С	-2.98946 -3.15718 3.49833
С	0.2461 3.13465 1.65876
С	-2.59747 2.85334 -0.84244
С	-0.53768 4.25034 -2.0038
С	-3.14599 -0.47849 2.79083
С	1.06251 5.30059 1.04387
С	2.2242 4.70842 0.56215
С	-4.12245 -2.4157 3.81519
С	-3.65314 -2.00343 -1.03561
С	-4.42089 -0.14429 -2.24892
С	0.05695 4.5086 1.58517
С	4.5374 0.16214 1.7725
С	1.18786 -1.06911 6.17612
Н	1.4268 -1.24222 7.22095
С	-1.18717 -2.45179 -3.56357
Н	-1.59034 -2.93469 -2.68011
С	1.6415 -1.95441 5.20162
Н	2.22843 -2.82299 5.48425
С	-1.58475 4.94077 -1.40395

С	0.13649 -0.67553 -4.5429
Н	0.69576 0.24674 -4.41786
С	-2.6311 4.24128 -0.81474
С	3.37209 -0.35186 -2.46348
С	4.54015 -2.54228 1.19941
С	-4.20505 -1.07201 3.46306
С	-1.42403 -2.96485 -4.83352
Н	-2.03361 -3.85636 -4.9442
С	0.43062 0.03975 5.80863
Н	0.07802 0.73531 6.56409
С	-0.10662 -1.19772 -5.80887
Н	0.30034 -0.69633 -6.68169
С	4.61986 -2.29036 -3.1334
С	5.71006 -1.92834 1.63251
С	2.33036 -2.50791 -2.44665
С	-4.88199 -2.63681 -1.15799
С	-0.88259 -2.34393 -5.95674
Н	-1.07255 -2.74829 -6.94617
С	5.71148 -0.56983 1.92517
С	3.50742 -3.08986 -2.89472
С	4.55399 -0.91723 -2.92132
C	-5.67294 -0.73021 -2.3978
C	-5.9006 -1.98459 -1.84436

6.1.10. Compound E

Charge = 0 N	Iultiplicity = 1	
F	0.95004 2.25489 2.17371	
F	3.55836 1.33294 -1.01499	
F	-2.99465 -2.74255 0.68235	
F	0.7644 1.30823 -2.46237	
F	-5.17474 -3.344 -0.79023	
F	-2.19606 1.01619 -2.04898	
F	0.55531 4.82399 1.65107	
F	-5.85633 -1.77896 -2.89597	

F	-4.36784 0.39491 -3.52962
F	1.27493 -2.7742 -0.43859
F	5.48847 0.06136 -2.32771
F	0.37039 3.90641 -2.96211
0	-0.23139 -0.55025 -0.56471
F	5.35458 -2.62724 -2.71988
F	0.26122 5.6911 -0.91042
F	3.22757 -4.02932 -1.75882
Ν	-1.32861 -0.30073 1.41105
С	-1.30179 -0.54619 0.10267
С	0.88007 1.64723 -0.12739
С	0.81329 2.60014 0.88602
С	3.4108 0.01508 -1.20027
С	-2.54549 -0.84364 -0.6429
С	2.29429 -0.6525 -0.70672
С	-2.90141 -0.06482 -1.74423
С	-3.32753 -1.95591 -0.33349
С	-4.02256 -0.36773 -2.50341
С	0.7197 2.14645 -1.42079
С	-4.44603 -2.27839 -1.08791
С	-2.56505 0.01644 2.07145
С	0.61062 3.95655 0.64301
С	-4.79037 -1.48073 -2.17451
С	0.51632 3.48814 -1.70731
С	4.44209 -0.62651 -1.87647
С	2.28515 -2.0312 -0.91294
С	0.4596 4.40196 -0.66154
С	-3.10687 -0.83815 3.02717
Н	-2.59021 -1.7526 3.28795
С	4.37846 -1.99842 -2.07525
С	3.29178 -2.71078 -1.58532
С	-3.19153 1.21509 1.7364
Н	-2.73089 1.87769 1.00895
С	-4.30399 -0.48594 3.63978
Н	-4.7337 -1.14469 4.38778
С	-4.39274 1.55201 2.35012
Н	-4.88516 2.48423 2.09221
С	-4.94871 0.70158 3.30169
Н	-5.88289 0.968 3.78657

6.1.11. Compound F

Charge = 0 N	Iultiplicity	r = 1	
F	-2.9232	6.49211	9.10782
F	-1.87491	10.3524	7.27272
F	2.05138	7.30538	13.32688
F	0.7327	8.99796	7.45296
F	4.25924	5.78904	13.5981
F	1.77703	6.08986	8.78543
F	-3.01237	5.14959	6.81364
F	5.26393	4.45317	11.44788
F	4.06716	4.65928	9.03005
F	-0.235	10.72488	11.70136
F	-1.96669	12.98113	3 7.08543
F	0.61111	7.6371	5.15378
0	0.41058	8.4176	10.26051
F	-1.34277	14.54872	9.22374
0	-2.59879	6.92106	12.44527
F	-1.25336	5.68893	4.82357
F	-0.42718	13.3904	11.51684
Ν	-0.50957	6.74842	11.5086
Ν	-1.99896	8.44756	10.83098
С	0.52325	7.34867	10.93943
С	-1.83987	7.39506	11.63867
С	-1.11969	7.86338	8.37309
С	-2.03509	6.84045	8.15163
С	-1.47022	11.0482	8 8.35427
С	1.86839	6.71775	11.05073
C	-3.24778	9.16744	10.9692
С	-1.02178	10.3976	3 9.49161
С	2.41703	6.06641	9.9567

С	2.5351	6.64788	12.26143
С	3.57314	5.31543	10.07629
С	-0.22411	8.06003	7.32447
С	3.67726	5.8929	12.40396
С	-0.39434	5.42719	12.1101
С	-2.09762	6.12041	6.97664
С	4.18513	5.22052	11.30916
С	-0.25537	7.36841	6.14159
С	-1.56454	12.42471	8.24049
С	-4.10015	9.28936	9.88464
Н	-3.8806	8.89656	9.07076
С	-0.68056	11.24519	10.53614
С	-1.20961	6.39175	5.96585
С	-0.22448	5.29917	13.47856
Н	-0.12973	6.05012	14.01892
С	-1.23815	13.21482	9.31536
С	-0.78576	12.62026	10.47334
С	-0.53352	4.3366	11.28436
Н	-0.64221	4.44556	10.36719
С	-3.56084	9.75744	12.17904
Н	-2.98568	9.66972	12.90457
С	-5.60151	10.59831	11.23004
Н	-6.39376	11.07701	11.31992
С	-5.28728	10.00313	10.01973
Н	-5.8688	10.08029	9.29809
С	-4.73911	10.48221	12.30579
Н	-4.94861	10.89	13.11494
С	-0.19905	4.02403	14.02396
Н	-0.07754	3.91364	14.93935
С	-0.50811	3.06549	11.85197
Н	-0.59574	2.31401	11.31113
С	-0.35354	2.91859	13.21214
Н	-0.35322	2.06747	13.58699

6.1.12. Compound 5

Charge =	0 Multiplicity = 1
Ga	1.82332 0.81301 -0.65233
F	-1.74301 3.55948 0.26774
F	4.2862 -0.92175 -0.68738
F	-2.82538 0.37521 -3.04191
0	-0.99631 -0.00772 -0.88001
F	-4.13661 4.7288 -0.07824
F	-5.22056 1.56767 -3.39136
F	1.87353 2.60819 1.90133
F	0.41482 -0.36327 -3.33787
F	3.80576 4.21707 2.88407
F	1.25165 -2.32574 -4.95363
F	4.57575 1.6668 -1.8467
F	3.57693 -3.62083 -4.45131
F	5.09432 -2.9228 -2.29961
F	6.49382 3.28895 -0.86559
F	6.11364 4.55954 1.49925
F	-5.87707 3.74305 -1.91492
Ν	0.24279 1.81742 -1.23915
С	3.18229 2.04419 0.01997
С	3.02005 2.72831 1.21425
С	2.31565 -0.58146 -1.93521
С	0.41891 3.09637 -1.84209
С	5.17275 3.7532 1.02479
С	-0.92439 1.23461 -1.16199
С	-2.19721 1.96297 -1.41373
С	3.99061 3.57339 1.73477
С	0.79969 4.19051 -1.06696
Н	0.8616 4.07477 0.00955

С	-2.55913 3.08305 -0.66817
С	4.36599 2.26347 -0.66569
С	0.91033 5.54339 -3.06403
Н	1.09536 6.50203 -3.53889
С	3.51303 -1.25125 -1.73938
С	-3.79831 3.68649 -0.8245
С	-3.1235 1.44964 -2.32158
С	0.55862 4.43943 -3.83603
Н	0.47777 4.53003 -4.91496
С	0.32637 3.20948 -3.22968
Н	0.0776 2.32852 -3.81423
С	3.95729 -2.28105 -2.55414
С	1.57097 -0.97074 -3.03816
С	3.17873 -2.64452 -3.64723
С	5.36599 3.09937 -0.18687
С	-4.69534 3.17205 -1.75333
С	-4.35932 2.05226 -2.50701
С	1.9841 -1.98051 -3.89929
С	1.02887 5.41629 -1.68195
Н	1.30703 6.2745 -1.07789
Ga	-1.82333 -0.81302 0.65233
F	1.74299 -3.55947 -0.26778
F	-4.28623 0.92174 0.68747
F	2.82539 -0.37521 3.04187
0	0.99628 0.00771 0.88
F	4.13661 -4.72877 0.07815
F	5.22058 -1.56766 3.39128
F	-1.8736 -2.60819 -1.90134
F	-0.41474 0.36325 3.33781
F	-3.80587 -4.21704 -2.88405
F	-1.25152 2.3257 4.95362
F	-4.57576 -1.66678 1.84674
F	-3.57682 3.6208 4.45139

F	-5.09428 2.	92278	2.29974
F	-6.49385 -3.	28891	0.86565
F	-6.11373 -4.	55949 -	-1.4992
F	5.87709 -3.	74301	1.91481
Ν	-0.24281 -1	.81743	1.23913
С	-3.18233 -2.	.04419	-0.01995
С	-3.02012 -2.	.72829	-1.21424
С	-2.31563 0.	58144	1.93523
С	-0.41892 -3.	.09639	1.84208
С	-5.17282 -3.	.75316	-1.02475
С	0.92437 -1.	23462	1.16197
С	2.19721 -1.	96298	1.4137
С	-3.99069 -3.	.57336	-1.73475
С	-0.79964 -4.	.19054	1.06695
Н	-0.86151 -4	.07481	-0.00957
С	2.55912 -3.	08304	0.66812
С	-4.36602 -2.	.26345	0.66572
С	-0.91031 -5.	.54341	3.06401
Н	-1.09533 -6	.50206	3.53888
С	-3.51302 1.	25123	1.73944
С	3.79831 -3.	68647	0.82443
С	3.12351 -1.	44964	2.32153
С	-0.55864 -4.	.43944	3.83602
Н	-0.47782 -4	.53003	4.91495
С	-0.3264 -3.2	20949	3.22967
Н	-0.07767 -2	.32852	3.81423
С	-3.95725 2.	28103	2.55423
С	-1.57091 0.	97071	3.03816
С	-3.17865 2.	6445	3.6473
С	-5.36604 -3.	.09934	0.18691
С	4.69536 -3.	17203	1.75324
С	4.35933 -2.	05225	2.50694
С	-1.98401 1.	98047	3.89931

С	-1.02881	-5.41632	1.68193
Н	-1.30693	-6.27455	1.07787

6.1.13. Compound G

Charge =	0 Multiplicity = 1
F	0.95004 2.25489 2.17371
F	3.55836 1.33294 -1.01499
F	-2.99465 -2.74255 0.68235
F	0.7644 1.30823 -2.46237
F	-5.17474 -3.344 -0.79023
F	-2.19606 1.01619 -2.04898
F	0.55531 4.82399 1.65107
F	-5.85633 -1.77896 -2.89597
F	-4.36784 0.39491 -3.52962
F	1.27493 -2.7742 -0.43859
F	5.48847 0.06136 -2.32771
F	0.37039 3.90641 -2.96211
0	-0.23139 -0.55025 -0.56471
F	5.35458 -2.62724 -2.71988
F	0.26122 5.6911 -0.91042
F	3.22757 -4.02932 -1.75882
N	-1.32861 -0.30073 1.41105
С	-1.30179 -0.54619 0.10267
С	0.88007 1.64723 -0.12739
С	0.81329 2.60014 0.88602
С	3.4108 0.01508 -1.20027
С	-2.54549 -0.84364 -0.6429
С	2.29429 -0.6525 -0.70672
С	-2.90141 -0.06482 -1.74423
С	-3.32753 -1.95591 -0.33349
С	-4.02256 -0.36773 -2.50341
С	0.7197 2.14645 -1.42079
С	-4.44603 -2.27839 -1.08791
----	----------------------------
С	-2.56505 0.01644 2.07145
С	0.61062 3.95655 0.64301
С	-4.79037 -1.48073 -2.17451
С	0.51632 3.48814 -1.70731
С	4.44209 -0.62651 -1.87647
С	2.28515 -2.0312 -0.91294
С	0.4596 4.40196 -0.66154
С	-3.10687 -0.83815 3.02717
Н	-2.59021 -1.7526 3.28795
С	4.37846 -1.99842 -2.07525
С	3.29178 -2.71078 -1.58532
С	-3.19153 1.21509 1.7364
Н	-2.73089 1.87769 1.00895
С	-4.30399 -0.48594 3.63978
Н	-4.7337 -1.14469 4.38778
С	-4.39274 1.55201 2.35012
Н	-4.88516 2.48423 2.09221
С	-4.94871 0.70158 3.30169
Н	-5.88289 0.968 3.78657
Ga	1.06888 0.04085 0.08267

6.1.14. Compound H

Charge = 0 Multiplicity = 1

F	-2.9232	6.49211	9.10782
F	-1.87491	10.3524	7.27272
F	2.05138	7.30538	13.32688
F	0.7327	8.99796	7.45296
F	4.25924	5.78904	13.5981
F	1.77703	6.08986	8.78543
F	-3.01237	5.14959	6.81364
F	5.26393	4.45317	11.44788

F	4.06716 4.65928 9.03005
F	-0.235 10.72488 11.70136
F	-1.96669 12.98113 7.08543
F	0.61111 7.6371 5.15378
0	0.41058 8.4176 10.26051
F	-1.34277 14.54872 9.22374
0	-2.59879 6.92106 12.44527
F	-1.25336 5.68893 4.82357
F	-0.42718 13.3904 11.51684
Ν	-0.50957 6.74842 11.5086
Ν	-1.99896 8.44756 10.83098
С	0.52325 7.34867 10.93943
С	-1.83987 7.39506 11.63867
С	-1.11969 7.86338 8.37309
С	-2.03509 6.84045 8.15163
С	-1.47022 11.04828 8.35427
С	1.86839 6.71775 11.05073
С	-3.24778 9.16744 10.9692
С	-1.02178 10.39763 9.49161
С	2.41703 6.06641 9.9567
С	2.5351 6.64788 12.26143
С	3.57314 5.31543 10.07629
С	-0.22411 8.06003 7.32447
С	3.67726 5.8929 12.40396
С	-0.39434 5.42719 12.1101
С	-2.09762 6.12041 6.97664
С	4.18513 5.22052 11.30916
С	-0.25537 7.36841 6.14159
С	-1.56454 12.42471 8.24049
С	-4.10015 9.28936 9.88464
Н	-3.8806 8.89656 9.07076
С	-0.68056 11.24519 10.53614
С	-1.20961 6.39175 5.96585

С	-0.22448	5.29917	13.47856
Н	-0.12973	6.05012	14.01892
С	-1.23815	13.21482	9.31536
С	-0.78576	12.62026	10.47334
С	-0.53352	4.3366	11.28436
Н	-0.64221	4.44556	10.36719
С	-3.56084	9.75744	12.17904
Н	-2.98568	9.66972	12.90457
С	-5.60151	10.59831	11.23004
Н	-6.39376	11.07701	11.31992
С	-5.28728	10.00313	10.01973
Н	-5.8688	10.08029	9.29809
С	-4.73911	10.48221	12.30579
Н	-4.94861	10.89	13.11494
С	-0.19905	4.02403	14.02396
Н	-0.07754	3.91364	14.93935
С	-0.50811	3.06549	11.85197
Н	-0.59574	2.31401	11.31113
С	-0.35354	2.91859	13.21214
Н	-0.35322	2.06747	13.58699
Ga	-1.00311	8.7909	9.70959

7. References

- 1. C. H. Lee, S. J. Lee, J. W. Park, K. H. Kim, B. Y. Lee, J. S. Oh, *J. Mol. Catal. A: Chem* **1998**, *132*, 231.
- 2. K. Ludovici, W. Tyrra, D. Naumann, J. Organomet. Chem. 1992, 441, 363.
- 3. J. Cosier, A. M. Glazer, J. Appl. Cryst. 1986, 19, 105.
- 4. CrysAlisPro, Agilent Technologies, Version 1.171.35.8.
- 5. G. M. Sheldrick, **2013**, SHELXS-2013.
- 6. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281.
- 7. P. Hohenberg, W. Kohn, Phys. Rev. B 1964, 136, B864.
- 8. W. Kohn, L. Sham, J. Phys. Rev. 1965, 140, A1133.
- 9. C. Peng, H. B. Schlegel, Israel J. of Chem. 1993, 33, 449.
- 10. C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. J. Frisch, Comp. Chem. 1996, 17, 49.