Supporting Information

Copper-Catalyzed Arylstannylation of Arynes in Sequence

Hideya Tanaka, Hitoshi Kuriki, Teruhiko Kubo, Itaru Osaka and Hiroto Yoshida*

Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan

yhiroto@hiroshima-u.ac.jp

Table of Contents

1.	General remarks	S2
2.	GC calibration curves	S4
3.	Optimization of reaction conditions	S9
4.	Synthesis of aryne precursors	S17
5.	Synthesis of arylstannanes	S17
6.	Synthesis of ortho-stannylbiaryls	S19
7.	Synthesis of stannylteraryls via sequential insertion	
	of different arynes to tributyl(pentafluorophenyl)stannanes	S32
8.	A one-pot sequential insertion of the same arynes	S35
9.	GC trace of a one-pot sequential insertion of benzynes	S38
10.	Mechanistic studies on the proposed catalytic cycle	S39
11.	Gram-scale arylstannylation and transformations	
	of the resulting ortho-stannylbiaryl	S43
12.	Synthesis of π -extended arylstannane by chemoselective	
	MKS reaction of an ortho-stannylbiaryl generated from 11	S48
13.	Tin-proton coupling constants in products (¹ H NMR)	S49
14.	References	S51
15.	Acknowledgements	S52
16.	NMR spectra	S53

1. General remarks

All manipulations of oxygen- and moisture-sensitive materials were conducted with a standard Schlenk technique under an argon atmosphere. Nuclear magnetic resonance spectra were taken on a Varian System 500 (¹H, 500 MHz; ¹³C, 125 MHz; ¹⁹F, 470 MHz; ¹¹⁹Sn, 186 MHz; ³¹P, 202 MHz) spectrometer using residual chloroform (¹H, δ = 7.26) or CDCl₃ (¹³C, $\delta = 77.16$) as an internal standard, and hexafluorobenzene (¹⁹F, $\delta =$ -163.6), tetramethytin (¹¹⁹Sn, $\delta = 0$) or H₃PO₄ (³¹P, $\delta = 0$) as an external standard (solvent: CDCl₃). ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, sext = sextet, m = multiplet), coupling constants (Hz), integration. GC analysis was performed on a Shimadzu GC-2014 (GC conditions: Column: TC-1 (GL Science), 30 m × 0.25 mm, film 0.25 µm; Flow rate: 1.89 mL/min; Injector temperature: 250 °C; Oven temperature: 100 °C to 250 °C at 20 °C/min, hold at 250 °C for 10 min; FID temperature: 250 °C). High-resolution mass spectra were obtained with a Thermo Fisher Scientific LTQ Orbitrap XL spectrometer or a JEOL JMS-T100GCV spectrometer. Melting points were measured with Yanaco Micro Melting Point apparatus and uncorrected. Preparative recycling gel permeation chromatography was performed with GL Science PU 614 equipped with Shodex GPC H-2001L and -2002L columns (chloroform as an eluent). Column chromatography was carried out using Merck Kieselgel 60. All arylstannylated products were purified by column chromatography using 10% w/w anhydrous potassium carbonate-silica as a stationary phase.¹ All microwave reactions (Biotage, Initiator+) were conducted in a sealed tube, and the reaction temperature was maintained by an external infrared sensor. Unless otherwise noted, commercially available reagents were used without purification. All solvents were dried over activated molecular sieves 3Å. Commercial grade 18-crown-6 and CuCl were purified according to a literature procedures,² and stored under an argon atmosphere.

Abbreviations

Å: Angstrom
equiv: Equivalent
aq.: Aqueous
Mp: Melting point
CuTC: Copper(I) 2-thiophenecarboxylate

€ S C − Cu

CuMS: Copper(I) 3-methylsalicylate

_Cu ОH

DEE: 1,2-Diethoxyethane $H_3C_0 \sim CH_3$

C₁₂H₂₆O₃: Diethylene glycol dibutyl ether

H₃C(H₂C)₃ 0 0 (CH₂)₃CH₃

THF: Tetrahydrofuran

DME: 1,2-Dimethoxyethane

diglyme: Diethylene glycol dimethyl ether

DCM: Dichloromethane

DMF: N,N-Dimethylformamide

2. GC calibration curves

	GC Area		Amount of Substance					
Entry			X	(mmol)		У		
	1a	$C_{12}H_{26}O_3$		1 a	$C_{12}H_{26}O_3$			
1	7154332	3851566	1.8575125	0.05	0.05	1.00		
2	8639158	9304781	0.9284644	0.05	0.10	0.50		
3	7570432	12338071	0.6135831	0.05	0.15	0.33		

Table S1. Data for the GC Calibration Curve (1a)

 $x = (GC \text{ area of } 1a)/(GC \text{ area of } C_{12}H_{26}O_3)$

y = (amount of substance of 1a)/(amount of substance of $C_{12}H_{26}O_3$)

Figure S1. GC Calibration Curve for Decision of the Yield (1a)

Entry	GU	Area	X	(mmol)		У
	2a	$C_{12}H_{26}O_3$	-	2a	$C_{12}H_{26}O_3$	
1	4866420	6166143	0.7892162	0.05	0.05	1.00
2	3248633	7832454	0.4147657	0.05	0.10	0.50
3	3169155	11069768	0.2862892	0.05	0.15	0.33

Table S2. Data for the GC Calibration Curve (2a)

 $x = (GC \text{ area of } 2a)/(GC \text{ area of } C_{12}H_{26}O_3)$

y = (amount of substance of 2a)/(amount of substance of $C_{12}H_{26}O_3$)

Figure S2. GC Calibration Curve for Decision of the Yield (2a)

2a

	GC	Area		Amount o	of Substance	
Entry		11100	X	x (mmol)		У
	3 aa	$C_{12}H_{26}O_3$		3 aa	$C_{12}H_{26}O_3$	
1	6256758	2550646	2.4530092	0.03	0.03	1.00
2	5725552	4711439	1.2152449	0.03	0.06	0.50
3	5807025	7132070	0.8142131	0.03	0.09	0.33

Table S3. Data for the GC Calibration Curve (3aa)

 $x = (GC \text{ area of } 3aa)/(GC \text{ area of } C_{12}H_{26}O_3)$

y = (amount of substance of 3aa)/(amount of substance of $C_{12}H_{26}O_3$)

Figure S3. GC Calibration Curve for Decision of the Yield (3aa)

3aa

	CC	Aroo		Amount o	of Substance	
Entry	GC	GC Area		(mmol)		У
	4 aaa	$C_{12}H_{26}O_3$		4 aaa	$C_{12}H_{26}O_3$	
1	6727060	2633692	2.5542319	0.03	0.03	1.00
2	5970068	5068912	1.1777810	0.03	0.06	0.50
3	5751109	7756233	0.7414822	0.03	0.09	0.33

Table S4. Data for the GC Calibration Curve (4aaa)

 $x = (GC \text{ area of } 4aaa)/(GC \text{ area of } C_{12}H_{26}O_3)$

 $y = (amount of substance of 4aaa)/(amount of substance of C_{12}H_{26}O_3)$

Figure S4. GC Calibration Curve for Decision of the Yield (4aaa)

4aaa

	GC Area		Amount of Substance				
Entry		Genita		(mmol)		У	
	1k	$C_{12}H_{26}O_3$		1k	$C_{12}H_{26}O_3$		
1	12711078	6883316	1.8466504	0.05	0.05	1.00	
2	11186708	11198873	0.9989137	0.05	0.10	0.50	
3	12533437	18743307	0.6686887	0.05	0.15	0.33	

Table S5. Data for the GC Calibration Curve (1k)

 $x = (GC \text{ area of } \mathbf{1k})/(GC \text{ area of } C_{12}H_{26}O_3)$

y = (amount of substance of 1k)/(amount of substance of $C_{12}H_{26}O_3$)

Figure S5. GC Calibration Curve for Decision of the Yield (1k)

3. Optimization of reaction conditions

General procedure: A Schlenk tube equipped with a magnetic stirring bar was flame-dried after addition of KF (4.0 equiv, 0.40 mmol) under an argon atmosphere. The tube was charged with 18-crown-6 (2.0 equiv, 0.20 mmol), Cu catalyst (5 mol %, 5.0 μ mol), DEE (0.67 mL), **1a** (1.0 equiv, 0.10 mmol) and **2a** (2.0 equiv, 0.20 mmol) under an argon atmosphere. The resulting mixture was stirred at 130 °C for 6 h. C₁₂H₂₆O₃ as an internal standard (0.50 equiv, 0.050 mmol) was added to the mixture. The yields of products were determined by GC analysis based on calibration curves obtained using an authentic samples.

The dual insertion of benzyne into the C(aryl)–Sn bond of **1a** was found to occur smoothly with copper(I) 2-thiophenecarboxylate (CuTC, 5 mol %) to provide a 72% yield of a stannylteraryl (**4aaa**) as the major product (Table S6, entry 1). Although the yields of **4aaa** observed with CuCl or CuI became slightly lower (Table S6, entries 2

and 3), the product distribution was similar on the whole, indicating that the counteranion of the copper catalysts scarcely affects a catalytic cycle of the arylstannylation. In marked contrast, the use of copper(I) 3-methylsalicylate (CuMS) resulted in the preferential formation of a *ortho*-stannylbiaryl (**3aa**) (Table S6, entry 4).

Table S7. Synthesis of ortho-Stannylbiaryl: Effect of Copper Catalyst^a

Entur	Cu Catalust	Time (h)	Yield (%) ^{b}		
Entry	Cu Catalyst	Time (n)	3ba	4baa	
1 ^{<i>c</i>}	CuCN	66	22	10	
2	CuI	69	32	15	
3	CuCl	71	35	13	
4	CuMS	68	41	10	
5	CuTC	68	24	19	
6	Cu(II) acetylacetonate	72	6	14	
7	SIMesCuCl	25	18	3	
8	IMesCuCl	45	22	8	
9	$CuCl(PPh_3)_3$	24	47	7	

^{*a*} **1b** (0.30 mmol), **2a** (0.36 mmol), Cu catalyst (15.0 μ mol), KF (0.72 mmol), 18-crown-6 (0.36 mmol), THF (3 mL), 65 °C. ^{*b*} Isolated yields are shown (The products were isolated by preparative recycling gel permeation chromatography). ^{*c*} The conditions in Entry 1 are identical to those of our previous work.³

Table S8. Synthesis of *ortho*-Stannylbiaryl: Effect of Ligand^a

Entry	Ligand	Time (h)	NMR Yield (%) ^b
1 ^c	PPh ₃	45	63
2	PPh ₃ (10 mol %)	26	63
3	PBu ₃	39	0
4	di(1-adamantyl)-n-butylphosphine	22	0
5	dppe	43	6
6	dppp	43	40
7	dppb	20	0
8	dppo	42	0
9	dppf	28	0
10	XantPhos	28	0
11	rac-BINAP	26	0
12	P[2,4,6-(CH ₃) ₃ -C ₆ H ₂] ₃	39	0
13	$P(4-Me-C_6H_4)_3$	22	16
14	P(4-MeO-C ₆ H ₄) ₃	22	8
15	$P(C_{6}F_{5})_{3}$	21	14
16	P[3,5-(CF ₃) ₂ -C ₆ H ₃] ₃	25	0
17	$P(4-CF_3-C_6H_4)_3$	23	11
18	tri(2-furyl)phosphine	29	0
19	AsPh ₃	24	0
20	Ligand A	24	0
21	Ligand B	42	16

^{*a*} **1b** (0.30 mmol), **2a** (0.36 mmol), CuCl (15.0 μ mol), Ligand (15.0 μ mol), KF (0.72 mmol), 18-crown-6 (0.36 mmol), THF (3 mL), 65 °C. ^{*b*} Yield was determined by ¹H NMR analysis of the crude reaction mixture. ^{*c*} Transmetalation between an

arylstannane and a Cu catalyst was reported to be suppressed by adding 1 molar equiv of strong donors like $PPh_{3.}^{4}$ Thus, the teraryl was not formed in Entry 1 in spite of the use of 1.2 molar equiv of the benzyne precursors.

Table S9. Synthesis of *ortho*-Stannylbiaryl: Effect of Copper Catalyst in the Presence of PPh_3^a

2	CuMS	68
^{<i>a</i>} 1b (0.30 mmol),	2a (0.36 mmol), Cu catalyst (15.0 μmol),	PPh ₃ (15.0 µmol), KF (0.72
mmol), 18-crown-	6 (0.36 mmol), THF (3 mL), 65 °C, 45 h.	^b Yield was determined by
¹ H NMR analysis	of the crude reaction mixture.	

	F F F F 1b 1.0 equiv	CuMS (5 mol %) PPh ₃ (5 mol %) KF (2.4 equiv) 18-crown-6 (1.2 equiv)	F F SnBu ₃ 3ba	
Entry	Solvent	Temperature (°C)	Time (h)	Yield (%)b
1	THF	65	43	50
2	DME	80	19	0
3	DEE	120	27	65
4	diglyme	160	5	0

Table S10. Synthesis of *ortho*-Stannylbiaryl: Effect of Solvent and Temperature^a

^{*a*} **1b** (0.30 mmol), **2a** (0.36 mmol), CuMS (15.0 μ mol), PPh₃ (15.0 μ mol), KF (0.72 mmol), 18-crown-6 (0.36 mmol), solvent (3 mL). ^{*b*} Isolated yields are shown (The products were isolated by preparative recycling gel permeation chromatography).

Table S11. Synthesis of ortho-Stannylbiaryl: Comparison between Condition A andB

Condition **B**^b **Condition** A^a Ar-SnBu₃ Entry Yield $(\%)^c$ Time (h) Yield $(\%)^d$ Time (h) a 1b 1c 1d **1e** 1f 1g 1h 1i 1j 0^e 1k

^{*a*} **1** (0.30 mmol), **2a** (0.36 mmol), CuMS (15.0 μ mol), PPh₃ (15.0 μ mol), KF (0.72 mmol), 18-crown-6 (0.36 mmol), DEE (3 mL), 120 °C. ^{*b*} **1** (0.10 mmol), **2a** (0.10 mmol), CuTC (5.0 μ mol), KF (0.20 mmol), 18-crown-6 (0.10 mmol), DEE (0.67 mL), 130 °C. ^{*c*} Isolated yields are shown (The products were isolated by preparative recycling gel permeation chromatography). ^{*d*} Isolated yields are shown (The products were isolated by preparative were isolated by silica gel-column chromatography). ^{*e*} Yield was determined by ¹¹⁹Sn NMR analysis of the crude reaction mixture.

Table S12. Synthesis of Stannylteraryl: Optimization of Equivalence^{*a*}

	TMS 2a OTf (X equiv)	
3a 1.0 e	CuTC (5 mol %) KF (2X equiv) 18-crown-6 (X equiv) DEE, 130 °C, 12 h SnBu ₃ a quiv	F5 Bu3Sn 4aaa
Entry	Х	Yield $(\%)^b$
1	1.5	55
2	2.0	46

^{*a*} **3aa** (0.10 mmol), **2a** (0.1 × X mmol), CuTC (5.0 μ mol), KF (0.1 × 2X mmol), 18-crown-6 (0.1 × X mmol), DEE (0.67 mL), 130 °C, 12 h. ^{*b*} Isolated yields are shown (The products were isolated by silica gel-column chromatography).

		TMS 2 OTf (X e	2a quiv)		
	F ₅ SnBu ₃	CuTC (5 mol %) KF (2X equiv) 18-crown-6 (X equ DEE, 130 °C, 6 h		+ + Bu ₃ Sn	F5
	1a 1.0 equiv		3aa	4aa;	a
Entry	X		$C_{12}H_{26}O_{3}$	3 aa	4 aaa
1 b	2.0	GC area	123491	85769	462338
1	2.0	Yield (%)	-	14	72
\mathbf{a}^{c}	2.2	GC area	171135	129263	173346
2	2.2	Yield (%)	_	31	44
\mathbf{a}^d	2.0	GC area	62675	82100	26830
3"	3.0	Yield (%)	_	27	11

Table S13. One-Pot Synthesis of Stannylteraryl: Optimization of Equivalence^a

^{*a*} **1a** (0.10 mmol), **2a** (0.1 × X mmol), CuTC (5.0 µmol), KF (0.1 × 2X mmol), 18-crown-6 (0.1 × X mmol), DEE (0.67 mL), 130 °C, 6 h. Yield was determined by GC analysis of the crude reaction mixture. ^{*b*} $C_{12}H_{26}O_3$ (0.050 mmol) was added to the resulting mixture. ^{*c*} $C_{12}H_{26}O_3$ (0.10 mmol) was added to the resulting mixture. ^{*d*} The resulting mixture was stirred at 200 °C for 6 h under microwave irradiation. $C_{12}H_{26}O_3$ (0.050 mmol) was added to the resulting mixture was not the resulting mixture. A stannyltetraaryl wasn't observed under forcing conditions with excess amount of a suitable aryne precursor.

4. Synthesis of aryne precursors

2-(Trimethylsilyl)phenyl triflate (2a),⁵ 3,6-dimethyl-2-(trimethylsilyl)phenyl triflate (2b),⁶ 4,5-dimethyl-2-(trimethylsilyl)phenyl triflate (2c),⁷ 4,5-difluoro-2-(trimethylsilyl)phenyl triflate (2d),⁸ 3-(trimethylsilyl)-2-naphthyl triflate (2e),⁶ 3-methoxy-2-(trimethylsilyl)phenyl triflate (2f),⁸ 6-methoxy-2-(trimethylsilyl)phenyl triflate (2f),⁹ 6-chloro-2-(trimethylsilyl)phenyl triflate (2g),⁹ 5-chloro-3-methoxy-2-(trimethylsilyl)phenyl triflate (2h),¹⁰ 1-(trimethylsilyl)-2-naphthyl triflate (2i)¹¹ and 4-chloro-3-methoxy-2-(trimethylsilyl)phenyl triflate (1j)³ were prepared according to literature procedures.

5. Synthesis of arylstannanes

All arylstannanes were prepared according to literature procedures.^{3,12–17}

(2,5-bis(trifluoromethyl)phenyl)tributylstannane (1g)

¹**H NMR:** δ 0.89 (t, J = 7.3 Hz, 9H), 1.07 – 1.22 (m, 6H), 1.33 (sext, J = 7.3 Hz, 6H), 1.42 – 1.58 (m, 6H), 7.66 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 8.1 Hz, $J_{\text{Sn-Hmeta}} = 10.4$ Hz, 1H), 7.84 (s, $J_{\text{Sn-Hortho}} = 37.0$ Hz, 1H)

¹³**C NMR:** δ 11.03 (d, J = 2.1 Hz, $J_{Sn-C} = 353.3$, 337.6 Hz), 13.72, 27.37, 28.94, 123.97 (q, $J_{C-F} = 273.1$ Hz), 124.57 (q, $J_{C-F} = 273.8$ Hz), 125.28 (q, J = 3.7 Hz), 126.23 (q, J = 4.6 Hz), 132.40 (q, $J_{C-CF3} = 31.9$ Hz), 134.02 (q, J = 3.7 Hz), 139.88 (q, $J_{C-CF3} = 30.3$ Hz), 142.73 (q, J = 4.2 Hz)

¹⁹**F NMR:** δ -64.76, -62.63

¹¹⁹Sn NMR: δ -19.24

HRMS (APCI) Calcd for C₁₆H₂₁F₆Sn: [M–Bu]⁺, 447.05639. Found: *m*/*z* 447.05652.

(2,4-bis(trifluoromethyl)phenyl)tributylstannane (1h)

¹**H NMR:** δ 0.88 (t, J = 7.3 Hz, 9H), 1.05 – 1.22 (m, 6H), 1.33 (sext, J = 7.3 Hz, 6H), 1.42 – 1.54 (m, 6H), 7.69 (d, J = 7.5 Hz, 1H), 7.75 (d, J = 7.7 Hz, $J_{Sn-Hortho} = 35.6$ Hz, 1H), 7.90 (s, 1H)

¹³**C NMR:** δ 11.05 (d, J = 2.1 Hz, $J_{Sn-C} = 352.7$, 337.1 Hz), 13.75, 27.41, 28.96, 122.53 (dt, J = 8.4, 4.1 Hz), 123.81 (q, $J_{C-F} = 272.2$ Hz), 124.53 (q, $J_{C-F} = 273.6$ Hz), 126.92, 130.75 (q, $J_{C-CF3} = 33.1$ Hz), 137.38 (q, $J_{C-CF3} = 30.8$ Hz), 138.25, 146.70 (d, J = 3.6 Hz)

¹⁹**F NMR:** δ -64.76, -62.47

¹¹⁹Sn NMR: δ -21.06

HRMS (APCI) Calcd for $C_{16}H_{21}F_6Sn$: $[M-Bu]^+$, 447.05639. Found: m/z 447.05640.

(4-bromo-2,3,5,6-tetrafluorophenyl)tributylstannane (1n)

¹**H** NMR: δ 0.90 (t, J = 7.3 Hz, 9H), 1.21 – 1.26 (m, 6H), 1.33 (sext, J = 7.3 Hz, 6H), 1.51 – 1.57 (m, 6H)

¹³**C NMR:** δ 11.64, 13.74, 27.27, 28.94, 100.02 (tt, $J_{C-CF} = 22.7$, $J_{C-CCF} = 2.8$ Hz), 117.58 (tt, $J_{C-CF} = 50.0$, $J_{C-CCF} = 4.1$ Hz), 144.26 (dm, $J_{C-F} = 252.9$ Hz), 148.96 (dddd, $J_{C-F} = 236.0$, $J_{C-CF} = 18.9$, $J_{C-CCF} = 12.4$, $J_{C-CCCF} = 3.9$ Hz)

¹⁹**F NMR:** δ -134.58 (dd, J = 26.3, 11.8 Hz), -121.42 (dd, J = 26.3, 11.8 Hz)

¹¹⁹Sn NMR: δ -18.84

HRMS (APCI) Calcd for $C_{14}H_{18}^{79}BrF_4Sn$: $[M-Bu]^+$, 460.95445. Found: m/z 460.95444.

6. Synthesis of ortho-stannylbiaryls

NMR Yield: A Schlenk tube equipped with a magnetic stirring bar was flame-dried after addition of KF (2.0 equiv, 0.20 mmol) under an argon atmosphere. The tube was charged with 18-crown-6 (1.0 equiv, 0.10 mmol), CuTC (5 mol %, 5.0 μ mol), DEE (0.67 mL), **1** (1.0 equiv, 0.10 mmol) and **2a** (1.0 equiv, 0.10 mmol) under an argon atmosphere. The resulting mixture was stirred at 130 °C for 4 h. The mixture was diluted with hexane (30 mL) before filtration. The yields of products were determined by ¹¹⁹Sn NMR analysis of the crude reaction mixture using tributyl(vinyl)stannane as an internal standard (solvent: CDCl₃).

Isolated Yield: A Schlenk tube equipped with a magnetic stirring bar was flame-dried after addition of KF (2.0 equiv, 0.20 mmol) under an argon atmosphere. The tube was charged with 18-crown-6 (1.0 equiv, 0.10 mmol), CuTC (5 mol %, 5.0 μ mol), DEE (0.67 mL), **1** (1.0 equiv, 0.10 mmol) and **2** (1.0 equiv, 0.10 mmol) under an argon atmosphere. The resulting mixture was stirred at 130 °C for the period as specified in Fig. 2, 3 and 9. The mixture was diluted with hexane (30 mL) before filtration. The organic solution was washed twice with brine and dried over MgSO₄. Evaporation of the solvent followed by silica gel-column chromatography (hexane as an eluent) gave the corresponding product.

tributyl(2',3',4',5',6'-pentafluoro-[1,1'-biphenyl]-2-yl)stannane (3aa)

Isolated in 73% yield as a colorless oil.

¹**H NMR**: δ 0.77 – 0.83 (m, 6H), 0.86 (t, J = 7.3 Hz, 9H), 1.26 (sext, J = 7.2 Hz, 6H), 1.32 – 1.42 (m, 6H), 7.19 – 7.25 (m, 1H), 7.39 – 7.45 (m, 2H), 7.57 – 7.62 (m, 1H) ¹³**C NMR**: δ 9.97 ($J_{Sn-C} = 342.9, 327.7$ Hz), 13.68, 27.49, 29.00, 118.91 (td, J = 19.9, 3.3 Hz), 128.45, 128.55, 130.45, 133.81, 137.47, 137.69 (dm, $J_{C-F} = 253.3$ Hz), 140.71 (dm, $J_{C-F} = 253.8$ Hz), 144.52 ($J_{Sn-C} = 354.5, 339.3$ Hz), 144.58 (dm, $J_{C-F} = 241.8$ Hz) ¹⁹**F NMR**: δ -163.76 (td, J = 22.8, 8.3 Hz), -157.12 (t, J = 20.8 Hz), -141.29 (dd, J = 23.6, 8.2 Hz) ¹¹⁹**Sn NMR**: δ -39.53

HRMS (APCI) Calcd for C₂₀H₂₂F₅Sn: [M–Bu]⁺, 477.06581. Found: *m*/*z* 477.06546.

tributyl(2',3',5',6'-tetrafluoro-[1,1'-biphenyl]-2-yl)stannane (3ba)

Isolated in 66% yield as a colorless oil.

¹**H NMR:** δ 0.77 – 0.83 (m, 6H), 0.86 (t, *J* = 7.3 Hz, 9H), 1.26 (sext, *J* = 7.3 Hz, 6H), 1.32 – 1.42 (m, 6H), 7.10 (tt, *J* = 9.7, 7.2 Hz, 1H), 7.22 – 7.28 (m, 1H), 7.38 – 7.45 (m, 2H), 7.60 (dd, *J* = 5.9, 2.9 Hz, 1H)

¹³**C** NMR: δ 9.92 ($J_{\text{Sn-C}}$ = 342.8, 327.5 Hz), 13.70, 27.48, 28.99, 105.08 (t, $J_{\text{C-CF}}$ = 22.5 Hz), 124.66 (t, $J_{\text{C-CF}}$ = 19.3 Hz), 128.33, 128.36, 130.15, 134.95 (t, J = 2.2 Hz), 137.37, 144.20 (dm, $J_{\text{C-F}}$ = 236.3 Hz), 144.20 ($J_{\text{Sn-C}}$ = 358.3, 342.4 Hz), 146.09 (dm, $J_{\text{C-F}}$ = 248.8 Hz)

¹⁹**F NMR:** δ -141.93 (ddd, J = 21.3, 12.7, 7.3 Hz), -140.64 (dt, J = 22.8, 11.5 Hz)

¹¹⁹Sn NMR: δ -39.64

HRMS (APCI) Calcd for C₂₀H₂₃F₄Sn: [M–Bu]⁺, 459.07524. Found: *m*/*z* 459.07504.

tributyl(2',4',6'-trifluoro-[1,1'-biphenyl]-2-yl)stannane (3ca)

Isolated in 74% yield as a colorless oil.

¹**H** NMR: δ 0.76 – 0.82 (m, 6H), 0.85 (t, *J* = 7.3 Hz, 9H), 1.25 (sext, *J* = 7.3 Hz, 6H), 1.36 (tt, *J* = 8.2, 5.9 Hz, 6H), 6.75 (dd, *J* = 8.8, 6.7 Hz, 2H), 7.20 – 7.25 (m, 1H), 7.38 (dt, *J* = 5.5, 2.2 Hz, 2H), 7.55 – 7.60 (m, 1H)

¹³**C NMR:** δ 9.87 ($J_{\text{Sn-C}}$ = 341.8, 326.6 Hz), 13.74, 27.52, 29.02, 99.89 - 100.59 (m), 118.09 (td, $J_{\text{C-CF}}$ = 21.9, $J_{\text{C-CCCF}}$ = 4.7 Hz), 127.81, 128.20, 130.53, 136.02, 137.15, 144.49 ($J_{\text{Sn-C}}$ = 371.0, 354.4 Hz), 160.80 (ddd, $J_{\text{C-F}}$ = 248.0, $J_{\text{C-CCF}}$ = 14.8, 9.9 Hz), 162.16 (dt, $J_{\text{C-F}}$ = 249.1, $J_{\text{C-CCF}}$ = 15.2 Hz)

¹⁹**F NMR:** δ -110.51, -109.64

¹¹⁹Sn NMR: δ -39.97

HRMS (APCI) Calcd for C₂₀H₂₄F₃Sn: [M–Bu]⁺, 441.08466. Found: *m*/*z* 441.08444.

tributyl(2',6'-difluoro-[1,1'-biphenyl]-2-yl)stannane (3da)

Isolated in 60% yield as a colorless oil.

¹**H NMR:** δ 0.73 – 0.78 (m, 6H), 0.84 (t, J = 7.2 Hz, 9H), 1.23 (sext, J = 7.2 Hz, 6H), 1.34 (tdd, J = 8.7, 7.1, 3.5 Hz, 6H), 6.96 (ddd, J = 8.4, 6.0, 1.1 Hz, 2H), 7.26 (dd, J =7.1, 1.8 Hz, 1H), 7.31 (tt, J = 8.4, 6.4 Hz, 1H), 7.35 – 7.42 (m, 2H), 7.55 – 7.60 (m, 1H) ¹³**C NMR:** δ 9.83 ($J_{Sn-C} = 341.5$, 326.3 Hz), 13.75, 27.51, 29.01, 111.27 – 111.65 (m), 121.63 (t, $J_{C-CF} = 21.3$ Hz), 127.60, 128.09, 129.18 (t, J = 10.0 Hz), 130.32, 136.94, 137.05, 144.25 (J_{Sn-C} = 375.0, 357.9 Hz), 160.70 (dd, J_{C-F} = 247.1, J_{C-CCF} = 7.2 Hz) ¹⁹F NMR: δ -113.05 ¹¹⁹Sn NMR: δ -40.21 HRMS (APCI) Calcd for C₂₀H₂₅F₂Sn: [M-Bu]⁺, 423.09408. Found: *m/z* 423.09424.

tributyl(2'-fluoro-[1,1'-biphenyl]-2-yl)stannane (3ea)

Isolated in 44% yield as a colorless oil.

¹**H NMR:** δ 0.70 – 0.76 (m, 6H), 0.84 (t, J = 7.3 Hz, 9H), 1.23 (sext, J = 7.2 Hz, 6H), 1.34 (tdd, J = 8.5, 7.1, 3.4 Hz, 6H), 7.12 (ddd, J = 9.5, 8.2, 1.2 Hz, 1H), 7.17 (td, J = 7.4, 1.2 Hz, 1H), 7.22 (td, J = 7.5, 2.0 Hz, 1H), 7.30 – 7.38 (m, 4H), 7.54 – 7.58 (m, 1H) ¹³**C NMR:** δ 10.45 ($J_{Sn-C} = 341.9$, 326.7 Hz), 13.77, 27.50, 29.08, 115.80 (d, J = 22.4Hz), 123.91 (d, J = 3.7 Hz), 127.01, 127.83, 129.21 (d, J = 7.8 Hz), 129.83, 131.88 (d, J = 3.2 Hz), 132.76 (d, J = 16.3 Hz), 137.13, 143.14 ($J_{Sn-C} = 381.4$, 364.9 Hz), 143.77, 159.96 (d, $J_{C-F} = 245.5$ Hz) ¹⁹**F NMR:** δ -116.99

¹¹⁹Sn NMR: δ -39.77

HRMS (APCI) Calcd for $C_{20}H_{26}FSn$: $[M-Bu]^+$, 405.10350. Found: m/z 405.10349.

tributyl(2',4',6'-tris(trifluoromethyl)-[1,1'-biphenyl]-2-yl)stannane (3fa)

Isolated in 40% yield as a colorless oil.

¹**H NMR:** δ 0.51 – 0.57 (m, 6H), 0.82 (t, *J* = 7.3 Hz, 9H), 1.19 (sext, *J* = 7.2 Hz, 6H), 1.30 (ddt, *J* = 11.8, 8.2, 6.0 Hz, 6H), 7.14 (d, *J* = 7.6 Hz, 1H), 7.31 (td, *J* = 7.6, 1.4 Hz, 1H), 7.38 (td, *J* = 7.4, 1.3 Hz, 1H), 7.47 (d, *J* = 7.4 Hz, 1H), 8.20 (s, 2H) ¹³**C NMR:** δ 10.07 ($J_{\text{Sn-C}}$ = 342.3, 327.1 Hz), 13.59, 27.43, 28.84, 122.65 (q, $J_{\text{C-F}}$ = 275.5 Hz), 122.85 (q, $J_{\text{C-F}}$ = 272.8 Hz), 126.36, 126.56, 127.95, 130.10, 130.87 (q, $J_{\text{C-F}}$ = 34.5 Hz), 132.90 (q, $J_{\text{C-CF3}}$ = 30.3 Hz), 136.08, 139.42, 144.56 ($J_{\text{Sn-C}}$ = 369.9, 348.7 Hz), 146.93

¹⁹**F NMR:** δ -64.54, -59.01

¹¹⁹Sn NMR: δ -42.40

HRMS (APCI) Calcd for C₂₃H₂₄F₉Sn: [M–Bu]⁺, 591.07508. Found: *m*/*z* 591.07501.

(2',5'-bis(trifluoromethyl)-[1,1'-biphenyl]-2-yl)tributylstannane (3ga)

Isolated in 79% yield as a colorless oil.

¹**H NMR:** δ 0.64 (dddd, J = 38.2, 13.0, 9.9, 6.5 Hz, 6H), 0.82 (t, J = 7.2 Hz, 9H), 1.21 (sext, J = 7.2 Hz, 6H), 1.26 – 1.36 (m, 6H), 7.23 (d, J = 7.4 Hz, 1H), 7.35 (dtd, J = 20.9, 7.4, 1.5 Hz, 2H), 7.52 – 7.56 (m, 2H), 7.75 (d, J = 8.2 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H) ¹³**C NMR:** δ 10.03 ($J_{Sn-C} = 342.4$, 327.3 Hz), 13.64, 27.39, 28.95, 123.43 (q, $J_{C-F} = 273.1$ Hz), 123.49 (q, $J_{C-F} = 274.9$ Hz), 124.45 (q, J = 3.6 Hz), 126.98 (q, J = 5.2 Hz), 127.24, 127.45, 129.15, 129.31 (q, J = 3.4 Hz), 132.30 (q, $J_{C-CF3} = 30.2$ Hz), 133.46 (q, $J_{C-CF3} = 32.9$ Hz), 136.80, 142.40 ($J_{Sn-C} = 369.2$, 352.7 Hz), 145.11, 145.43 ¹⁹**F NMR:** δ -64.78, -59.23

¹¹⁹Sn NMR: δ -40.21

HRMS (APCI) Calcd for C₂₂H₂₅F₆Sn: [M–Bu]⁺, 523.08769. Found: *m*/*z* 523.08771.

(2',4'-bis(trifluoromethyl)-[1,1'-biphenyl]-2-yl)tributylstannane (3ha)

Isolated in 69% yield as a colorless oil.

¹**H NMR:** δ 0.64 (dddd, J = 48.6, 13.0, 10.0, 6.5 Hz, 6H), 0.83 (t, J = 7.2 Hz, 9H), 1.21 (sext, J = 7.1 Hz, 6H), 1.26 – 1.36 (m, 6H), 7.22 (d, J = 7.4 Hz, 1H), 7.31 – 7.43 (m, 3H), 7.54 (dd, J = 7.2, 1.6 Hz, 1H), 7.83 (d, J = 7.9 Hz, 1H), 8.01 (s, 1H) ¹³**C NMR:** δ 10.21 ($J_{Sn-C} = 342.3$, 327.1 Hz), 13.63, 27.41, 28.96, 123.25 – 123.51 (m), 123.43 (q, $J_{C-F} = 274.6$ Hz), 123.59 (q, $J_{C-F} = 272.4$ Hz), 127.22, 127.44, 128.01 (d, J = 3.3 Hz), 128.90, 129.97(q, $J_{C-CF3} = 30.6$ Hz), 130.26 (q, $J_{C-CF3} = 33.5$ Hz), 133.15, 136.73, 142.28 ($J_{Sn-C} = 369.5$, 353.2 Hz), 145.48, 147.82

¹⁹**F NMR:** δ -64.21, -58.95

¹¹⁹Sn NMR: δ -40.40

HRMS (APCI) Calcd for $C_{22}H_{25}F_6Sn$: $[M-Bu]^+$, 523.08769. Found: m/z 523.08734.

tributyl(2'-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)stannane (3ia)

Isolated in 62% yield as a colorless oil.

¹**H** NMR: $\delta 0.56 - 0.72$ (m, 6H), 0.83 (t, J = 7.2 Hz, 9H), 1.21 (sext, J = 7.2 Hz, 6H), 1.26 - 1.40 (m, 6H), 7.25 (d, J = 10.9 Hz, 2H), 7.32 (quin d, J = 7.3, 1.6 Hz, 2H), 7.47 (t, J = 7.7 Hz, 1H), 7.50 - 7.58 (m, 2H), 7.73 (d, J = 7.8 Hz, 1H)

¹³**C** NMR: δ 10.13 ($J_{\text{Sn-C}}$ = 341.4, 326.3 Hz), 13.72, 27.45, 29.00, 124.25 (q, $J_{\text{C-F}}$ = 274.3 Hz), 126.12 (q, J = 5.2 Hz), 126.84, 127.02, 127.51, 129.00 (q, $J_{\text{C-CF3}}$ = 29.4 Hz), 129.18 (d, J = 1.8 Hz), 131.27, 132.30, 136.49, 142.54 ($J_{\text{Sn-C}}$ = 385.8, 368.6 Hz), 144.01 (d, J = 1.7 Hz), 147.00

¹⁹**F NMR**: δ -58.41

¹¹⁹Sn NMR: δ -41.38

HRMS (APCI) Calcd for $C_{21}H_{26}F_3Sn$: $[M-Bu]^+$, 455.10031. Found: *m*/*z* 455.10010.

(3',5'-bis(trifluoromethyl)-[1,1'-biphenyl]-2-yl)tributylstannane (3ja)

Isolated in 49% yield as a colorless oil.

¹**H NMR:** δ 0.70 – 0.76 (m, 6H), 0.82 (t, J = 7.2 Hz, 9H), 1.21 (sext, J = 7.2 Hz, 6H), 1.26 – 1.40 (m, 6H), 7.32 (dd, J = 6.9, 2.1 Hz, 1H), 7.40 (ddd, J = 5.9, 3.2, 1.9 Hz, 2H), 7.56 – 7.60 (m, 1H), 7.79 (s, 2H), 7.89 (s, 1H) ¹³**C NMR:** δ 10.74 ($J_{Sn-C} = 343.4$, 328.1 Hz), 13.63, 27.39, 29.07, 120.99 (quin, J = 3.8

Hz), 123.48 (q, J_{C-F} = 272.9 Hz), 127.68, 128.50, 129.04, 131.70 (q, J_{C-CF3} = 33.2 Hz), 137.66, 141.96 (J_{Sn-C} = 358.4, 342.3 Hz), 147.36, 147.74

¹⁹**F NMR:** δ -64.40

¹¹⁹Sn NMR: δ -37.20

HRMS (APCI) Calcd for $C_{22}H_{25}F_6Sn$: $[M-Bu]^+$, 523.08769. Found: m/z 523.08795.

2'-(tributylstannyl)-[1,1'-biphenyl]-2-carbonitrile (3la)

Isolated in 24% yield as a colorless oil.

¹**H NMR:** δ 0.63 – 0.78 (m, 6H), 0.84 (t, *J* = 7.3 Hz, 9H), 1.22 (sext, *J* = 7.2 Hz, 6H), 1.29 – 1.41 (m, 6H), 7.34 – 7.41 (m, 4H), 7.46 (td, *J* = 7.7, 1.0 Hz, 1H), 7.55 – 7.58 (m, 1H), 7.61 (td, *J* = 7.6, 1.2 Hz, 1H), 7.74 (d, *J* = 7.7 Hz, 1H)

¹³C NMR: δ 10.66 (J_{Sn-C} = 342.4, 327.3 Hz), 13.75, 27.49, 29.07, 112.98, 118.26, 127.75, 127.80, 128.14, 129.27, 130.71, 132.33, 133.08, 137.36, 142.30, 146.22, 149.05
¹¹⁹Sn NMR: δ -39.23

HRMS (ESI) Calcd for C₂₅H₃₆NSn: [M+H]⁺, 470.18642. Found: *m*/*z* 470.18655.

tributyl(2',3',4',5',6'-pentafluoro-3,6-dimethyl-[1,1'-biphenyl]-2-yl)stannane (3ab)

Isolated in 78% yield as a colorless oil.

¹**H NMR:** δ 0.66 – 0.72 (m, 6H), 0.84 (t, *J* = 7.3 Hz, 9H), 1.24 (sext, *J* = 7.1 Hz, 6H), 1.29 – 1.42 (m, 6H), 1.96 (s, 3H), 2.46 (s, 3H), 7.18 (d, *J* = 5.2 Hz, *J*_{Sn-Hmeta} = 15.3 Hz, 2H)

¹³**C NMR:** δ 11.20 ($J_{\text{Sn-C}}$ = 338.5, 323.6 Hz), 13.62, 20.41, 25.02, 27.41, 28.90, 118.03 (td, J = 21.2, 3.6 Hz), 130.49, 130.71, 133.57, 134.10, 137.98 (dm, $J_{\text{C-F}}$ = 251.9 Hz), 140.79 (dm, $J_{\text{C-F}}$ = 253.8 Hz), 143.05, 144.21 ($J_{\text{Sn-C}}$ = 382.4, 364.3 Hz), 144.44 (dm, $J_{\text{C-F}}$ = 241.3 Hz)

¹⁹**F NMR:** δ -163.63 (td, J = 23.3, 8.4 Hz), -157.35 (t, J = 20.7 Hz), -141.04 (dd, J = 23.8, 8.3 Hz)

¹¹⁹Sn NMR: δ -48.89

HRMS (APCI) Calcd for C₂₂H₂₆F₅Sn: [M–Bu]⁺, 505.09711. Found: *m*/*z* 505.09677.

tributyl(2',3',4',5',6'-pentafluoro-4,5-dimethyl-[1,1'-biphenyl]-2-yl)stannane (3ac)

Isolated in 66% yield as a colorless oil.

¹**H NMR:** δ 0.76 – 0.81 (m, 6H), 0.86 (t, J = 7.3 Hz, 9H), 1.26 (sext, J = 7.1 Hz, 6H), 1.37 (tt, J = 8.0, 5.8 Hz, 6H), 2.29 (s, 3H), 2.33 (s, 3H), 7.01 (s, $J_{\text{Sn-Hmeta}} = 13.8$ Hz, 1H), 7.32 (s, $J_{\text{Sn-Hortho}} = 40.0$ Hz, 1H)

¹³**C** NMR: δ 9.89 ($J_{\text{Sn-C}}$ = 342.2, 326.9 Hz), 13.69, 19.77, 19.78, 27.51, 29.02, 118.95 (td, J = 20.0, 3.5 Hz), 131.20, 131.57, 137.09, 137.16, 137.64 (dm, $J_{\text{C-F}}$ = 251.6 Hz),

138.82, 140.54 (dm, $J_{C-F} = 253.3$ Hz), 140.75 ($J_{Sn-C} = 367.2$, 350.8 Hz), 144.64 (dm, $J_{C-F} = 241.3$ Hz) ¹⁹F NMR: δ -163.99 (td, J = 23.3, 8.3 Hz), -157.56 (t, J = 20.8 Hz), -141.31 (dd, J = 23.9, 8.3 Hz) ¹¹⁹Sn NMR: δ -40.91 HRMS (APCI) Calcd for C₂₂H₂₆F₅Sn: [M-Bu]⁺, 505.09711. Found: m/z 505.09653.

tributyl(2',3',4,4',5,5',6'-heptafluoro-[1,1'-biphenyl]-2-yl)stannane (3ad)

Isolated in 40% yield as a colorless oil.

¹**H** NMR: $\delta 0.77 - 0.83$ (m, 6H), 0.86 (t, J = 7.2 Hz, 9H), 1.25 (sext, J = 7.1 Hz, 6H), 1.35 (tt, J = 7.9, 5.7 Hz, 6H), 7.07 (dd, J = 10.9, 6.9 Hz, $J_{\text{Sn-Hmeta}} = 10.5$ Hz, 1H), 7.34 (t, J = 9.3 Hz, $J_{\text{Sn-Hortho}} = 37.3$ Hz, 1H)

¹³**C NMR:** δ 10.17 ($J_{\text{Sn-C}}$ = 347.4, 331.9 Hz), 13.64, 27.41, 28.88, 117.12 (td, J = 18.9, 3.2 Hz), 119.92 (d, J = 16.8 Hz), 125.59 (d, J = 14.1 Hz), 129.90, 137.74 (dm, $J_{\text{C-F}}$ = 254.4 Hz), 141.13 (dm, $J_{\text{C-F}}$ = 255.1 Hz), 141.91 (d, J = 4.9 Hz), 144.59 (dm, $J_{\text{C-F}}$ = 242.5 Hz), 150.20 (dd, J = 250.2, 12.4 Hz), 150.58 (dd, J = 255.0, 11.1 Hz)

¹⁹**F NMR:** δ -163.21 (td, J = 22.6, 8.3 Hz), -155.84 (t, J = 20.8 Hz), -141.19 (dd, J = 23.4, 8.3 Hz), -139.95 - -139.77 (m), -139.30 (dt, J = 19.9, 9.7 Hz)

¹¹⁹Sn NMR: δ -33.37 (d, J = 7.1 Hz)

HRMS (APCI) Calcd for C₂₀H₂₀F₇Sn: [M–Bu]⁺, 513.04697. Found: *m*/*z* 513.04645.

tributyl(3-(perfluorophenyl)naphthalen-2-yl)stannane (3ae)

Isolated in 66% yield as a colorless oil.

¹**H NMR:** δ 0.84 – 0.91 (m, 15H), 1.29 (sext, J = 7.3 Hz, 6H), 1.36 – 1.49 (m, 6H), 7.55 (dt, J = 20.7, 6.9 Hz, 2H), 7.74 (s, $J_{\text{Sn-Hmeta}} = 12.4$ Hz, 1H), 7.83 (d, J = 7.9 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 8.06 (s, $J_{\text{Sn-Hortho}} = 44.3$ Hz, 1H)

¹³**C NMR:** δ 10.10 ($J_{\text{Sn-C}}$ = 342.9, 327.7 Hz), 13.70, 27.51, 29.03, 118.89 (td, J = 19.8, 3.4 Hz), 126.81, 127.11, 127.75, 128.00, 129.65, 130.46, 132.94, 137.74 (dm, $J_{\text{C-F}}$ = 251.5 Hz), 137.93, 140.80 (dm, $J_{\text{C-F}}$ = 254.0 Hz), 141.03 ($J_{\text{Sn-C}}$ = 353.8, 338.0 Hz), 144.76 (dm, $J_{\text{C-F}}$ = 242.1 Hz)

¹⁹**F NMR:** δ -163.65 (td, J = 23.3, 8.3 Hz), -156.89 (t, J = 20.8 Hz), -140.94 (dd, J = 23.7, 8.2 Hz)

¹¹⁹Sn NMR: δ -36.89

HRMS (APCI) Calcd for $C_{24}H_{24}F_5Sn$: $[M-Bu]^+$, 527.08146. Found: m/z 527.08105.

tributyl(2',3',4',5',6'-pentafluoro-3-methoxy-[1,1'-biphenyl]-2-yl)stannane (3af)

Isolated in 79% yield as a colorless oil.

¹**H** NMR: δ 0.69 – 0.74 (m, 6H), 0.84 (t, J = 7.3 Hz, 9H), 1.22 (sext, J = 7.2 Hz, 6H), 1.31 – 1.40 (m, 6H), 3.83 (s, 3H), 6.82 (d, J = 7.4 Hz, $J_{Sn-Hmeta} = 10.2$ Hz, 1H), 6.91 (d, J = 8.1 Hz, $J_{Sn-Hmeta} = 13.0$ Hz, 1H), 7.39 (t, J = 7.9 Hz, 1H)

¹³**C** NMR: δ 10.84 ($J_{\text{Sn-C}}$ = 355.0, 339.1 Hz), 13.70, 27.43, 29.02, 55.44, 109.57, 118.48 (td, J = 19.5, 3.4 Hz), 123.74, 129.99, 133.25 ($J_{\text{Sn-C}}$ = 346.4, 331.0 Hz), 134.73, 137.68 (dm, $J_{\text{C-F}}$ = 249.9 Hz), 140.61 (dm, $J_{\text{C-F}}$ = 253.4 Hz), 144.58 (dm, $J_{\text{C-F}}$ = 241.7 Hz), 163.96

¹⁹F NMR: δ -164.16 (td, J = 22.8, 8.1 Hz), -157.88 (t, J = 20.8 Hz), -142.44 (dd, J = 23.6, 8.0 Hz)
¹¹⁹Sn NMR: δ -46.49

HRMS (APCI) Calcd for C₂₁H₂₄F₅OSn: [M–Bu]⁺, 507.07638. Found: *m*/*z* 507.07593.

tributyl(3-chloro-2',3',4',5',6'-pentafluoro-[1,1'-biphenyl]-2-yl)stannane (3ag)

Isolated in 55% yield as a colorless oil.

¹**H** NMR: $\delta 0.78 - 0.83$ (m, 6H), 0.84 (t, J = 7.3 Hz, 9H), 1.23 (sext, J = 7.3 Hz, 6H), 1.30 - 1.47 (m, 6H), 7.06 (d, J = 7.4 Hz, $J_{\text{Sn-Hmeta}} = 7.6$ Hz, 1H), 7.33 (t, J = 7.8 Hz, 1H), 7.44 (d, J = 8.0 Hz, $J_{\text{Sn-Hmeta}} = 8.4$ Hz, 1H)

¹³C NMR: δ 11.99 (J_{Sn-C} = 352.9, 337.4 Hz), 13.64, 27.35, 28.81, 118.07 (td, J = 19.6, 3.7 Hz), 129.13, 129.53, 129.84, 135.55, 137.77 (dm, J_{C-F} = 253.6 Hz), 140.94 (dm, J_{C-F} = 254.4 Hz), 143.57, 144.57 (dm, J_{C-F} = 242.7 Hz), 145.14 (J_{Sn-C} = 319.9, 305.2 Hz) ¹⁹F NMR: δ -163.54 (td, J = 23.0, 8.4 Hz), -156.77 (t, J = 20.8 Hz), -142.09 (dd, J = 23.5, 8.3 Hz) ¹¹⁹Sn NMR: δ -33.39

HRMS (APCI) Calcd for C₂₀H₂₁³⁵ClF₅Sn: [M–Bu]⁺, 511.02684. Found: *m/z* 511.02655.

tributyl(5-chloro-2',3',4',5',6'-pentafluoro-3-methoxy-[1,1'-biphenyl]-2-yl)stannane (3ah)

Isolated in 68% yield as a colorless oil.

¹**H** NMR: $\delta 0.67 - 0.73$ (m, 6H), 0.83 (t, J = 7.3 Hz, 9H), 1.21 (sext, J = 7.2 Hz, 6H), 1.33 (tt, J = 8.1, 6.1 Hz, 6H), 3.83 (s, 3H), 6.84 (s, $J_{\text{Sn-Hmeta}} = 10.2$ Hz, 1H), 6.87 (s, $J_{\text{Sn-Hmeta}} = 12.0$ Hz, 1H)

¹³**C** NMR: δ 10.85 ($J_{\text{Sn-C}}$ = 356.6, 340.8 Hz), 13.68, 27.38, 28.95, 55.73, 110.41, 117.44 (td, J = 19.3, 3.7 Hz), 123.53, 131.91 ($J_{\text{Sn-C}}$ = 330.2, 315.7 Hz), 135.60, 135.63, 137.71 (dm, $J_{\text{C-F}}$ = 253.0 Hz), 140.89 (dm, $J_{\text{C-F}}$ = 254.3 Hz), 144.49 (dm, $J_{\text{C-F}}$ = 242.7 Hz), 164.65

¹⁹**F NMR:** δ -163.87 (td, J = 22.7, 8.2 Hz), -157.09 (t, J = 20.8 Hz), -142.40 (dd, J = 23.4, 8.2 Hz)

¹¹⁹Sn NMR: δ -43.70

HRMS (APCI) Calcd for $C_{21}H_{23}^{35}ClF_5OSn$: $[M-Bu]^+$, 541.03741. Found: m/z 541.03711.

tributyl(2-(perfluorophenyl)naphthalen-1-yl)stannane (3ai)

Isolated in 68% yield as a colorless oil.

¹**H** NMR: δ 0.82 (t, J = 7.3 Hz, 9H), 0.84 – 0.89 (m, 6H), 1.23 (sext, J = 7.3 Hz, 6H), 1.31 – 1.47 (m, 6H), 7.22 (d, J = 8.2 Hz, $J_{Sn-Hmeta} = 9.6$ Hz, 1H), 7.53 – 7.60 (m, $J_{Sn-Hperi} = 12.0$ Hz, 2H), 7.89 (t, J = 7.7 Hz, 2H), 7.95 – 8.01 (m, 1H)

¹³**C NMR:** δ 11.75 ($J_{\text{Sn-C}}$ = 341.4, 326.3 Hz), 13.61, 27.36, 28.94, 119.36 (td, J = 20.0, 3.5 Hz), 126.36, 126.53, 127.87, 129.15, 129.23, 130.38, 132.63, 133.26, 137.83 (dm, $J_{\text{C-F}}$ = 252.6 Hz), 139.14, 140.84 (dm, $J_{\text{C-F}}$ = 254.1 Hz), 144.83 (dm, $J_{\text{C-F}}$ = 242.2 Hz), 146.04 ($J_{\text{Sn-C}}$ = 353.7, 337.4 Hz)

¹⁹**F NMR:** δ -163.68 (td, J = 23.1, 22.6, 7.8 Hz), -157.13 (t, J = 20.7 Hz), -141.82 – -141.61 (m)

¹¹⁹Sn NMR: δ -46.37

HRMS (APCI) Calcd for C₂₄H₂₄F₅Sn: [M–Bu]⁺, 527.08146. Found: *m*/*z* 527.08118.

(4'-bromo-4-chloro-2',3',5',6'-tetrafluoro-3-methoxy-[1,1'-biphenyl]-2yl)tributylstannane (3nj)

Isolated in 59% yield as a colorless oil.

¹**H NMR:** δ 0.72 – 0.80 (m, 6H), 0.84 (t, *J* = 7.3 Hz, 9H), 1.22 (sext, *J* = 7.3 Hz, 6H), 1.29 – 1.44 (m, 6H), 3.95 (s, 3H), 6.91 (d, *J* = 8.0 Hz, *J*_{Sn-Hmeta} = 11.5 Hz, 1H), 7.42 (d, *J* = 8.1 Hz, 1H)

¹³**C NMR:** δ 11.22 ($J_{\text{Sn-C}}$ = 353.0, 337.4 Hz), 13.67, 27.46, 28.97, 61.51 (d, J = 2.1 Hz), 99.32 (t, $J_{\text{C-CF}}$ = 22.5 Hz), 121.96 (t, $J_{\text{C-CF}}$ = 19.3 Hz), 127.40, 127.43, 131.60, 133.76, 140.16 ($J_{\text{Sn-C}}$ = 316.3, 302.0 Hz), 144.48 (ddt, $J_{\text{C-F}}$ = 247.9, $J_{\text{C-CF}}$ = 14.2, $J_{\text{C-CCF}}$ = $J_{\text{C-CCF}}$ = 4.6 Hz), 145.10 (ddt, $J_{\text{C-F}}$ = 248.9, $J_{\text{C-CF}}$ = 16.2, $J_{\text{C-CCF}}$ = $J_{\text{C-CCCF}}$ = 4.1 Hz), 160.69

¹⁹**F NMR:** δ -140.89 (dd, J = 22.7, 9.4 Hz), -135.06 (dd, J = 22.4, 9.1 Hz)

¹¹⁹Sn NMR: δ -44.54

HRMS (APCI) Calcd for $C_{21}H_{23}^{79}Br^{35}ClF_4OSn$: $[M-Bu]^+$, 600.95734. Found: m/z 600.95624.

7. Synthesis of stannylteraryls via sequential insertion of different arynes to tributyl(pentafluorophenyl)stannanes

General procedure: A Schlenk tube equipped with a magnetic stirring bar was flame-dried after addition of KF (3.0 equiv, 0.30 mmol) under an argon atmosphere. The tube was charged with 18-crown-6 (1.5 equiv, 0.15 mmol), CuTC (5 mol %, 5.0 μ mol), DEE (0.67 mL), **3** (1.0 equiv, 0.10 mmol) and **2** (1.5 equiv, 0.15 mmol) under an argon atmosphere. The resulting mixture was stirred at 130 °C for 12 h. The mixture was diluted with hexane (30 mL) before filtration. The organic solution was washed twice with brine and dried over MgSO₄. Evaporation of the solvent followed by silica gel-column chromatography (hexane as an eluent) gave the corresponding product.

tributyl(2'',3'',4'',5'',6''-pentafluoro-[1,1':2',1''-terphenyl]-2-yl)stannane (4aaa)

Isolated in 55% yield as a colorless oil.

¹**H** NMR: δ 0.58 – 0.81 (m, 6H), 0.84 (t, J = 7.3 Hz, 9H), 1.24 (sext, J = 7.3 Hz, 6H), 1.30 – 1.48 (m, 6H), 6.86 (d, J = 7.6 Hz, 1H), 7.06 (t, J = 7.5 Hz, 1H), 7.20 (t, J = 7.4 Hz, 1H), 7.34 (t, J = 7.7 Hz, 2H), 7.49 (dq, J = 21.2, 7.4 Hz, 3H)

¹³**C NMR:** δ 10.58 ($J_{\text{Sn-C}}$ = 341.8, 327.1 Hz), 13.75, 27.47, 29.13, 115.94 (td, J = 19.4, 3.4 Hz), 125.75, 126.67, 127.10, 127.49, 128.48, 129.71, 130.74, 131.20, 137.33, 137.39 (dm, $J_{\text{C-F}}$ = 252.5 Hz), 140.56 (dm, $J_{\text{C-F}}$ = 253.2 Hz), 143.42 ($J_{\text{Sn-C}}$ = 384.9, 366.6 Hz), 143.44 ($J_{\text{Sn-C}}$ = 384.1, 367.8 Hz), 143.65 (dm, $J_{\text{C-F}}$ = 248.3 Hz), 144.67 (dm, $J_{\text{C-F}}$ = 249.4 Hz), 146.07, 147.42

¹⁹**F NMR:** δ -164.39 – -163.79 (m), -156.88 (t, J = 20.6 Hz), -142.35 (d, J = 16.7 Hz), -138.25 (d, J = 17.7 Hz)

¹¹⁹Sn NMR: δ -41.34, -41.30

HRMS (APCI) Calcd for C₂₆H₂₆F₅Sn: [M–Bu]⁺, 553.09711. Found: *m*/*z* 553.09705.

tributyl(2'',3'',4'',5'',6''-pentafluoro-6'-methoxy-[1,1':2',1''-terphenyl]-2yl)stannane (4afa)

Isolated in 87% yield as a colorless oil.

¹**H NMR:** δ 0.70 (qt, *J* = 17.8, 8.7 Hz, 6H), 0.85 (t, *J* = 7.2 Hz, 9H), 1.25 (sext, *J* = 7.1 Hz, 6H), 1.31 – 1.45 (m, 6H), 3.75 (s, 3H), 6.86 (d, *J* = 7.4 Hz, 1H), 6.93 (d, *J* = 7.6 Hz, 1H), 7.05 (d, *J* = 8.4 Hz, 1H), 7.09 (t, *J* = 7.5 Hz, 1H), 7.15 (t, *J* = 7.3 Hz, 1H), 7.38 – 7.46 (m, 2H)

¹³**C NMR:** δ 10.22 ($J_{\text{Sn-C}}$ = 340.8, 325.7 Hz), 13.76, 27.58, 29.13, 55.74, 111.82, 115.96 (td, J = 19.9, 3.6 Hz), 122.83, 126.52, 127.35, 127.91, 128.64, 129.06, 134.34, 136.53, 137.20 (dm, $J_{\text{C-F}}$ = 251.1 Hz), 140.42 (dm, $J_{\text{C-F}}$ = 253.0 Hz), 143.15, 143.43 (dm, $J_{\text{C-F}}$ = 247.0 Hz), 144.36 (dm, $J_{\text{C-F}}$ = 247.9 Hz), 144.89 ($J_{\text{Sn-C}}$ = 405.0, 387.4 Hz), 144.92 ($J_{\text{Sn-C}}$ = 405.2, 386.8 Hz), 157.38

¹⁹**F NMR:** δ -164.89 – -164.55 (m), -157.28 (t, J = 20.8 Hz), -141.76 (d, J = 23.2 Hz), -138.25 (d, J = 22.8 Hz)

¹¹⁹Sn NMR: δ -45.16, -45.09

HRMS (APCI) Calcd for C₂₇H₂₈F₅OSn: [M–Bu]⁺, 583.10768. Found: *m*/*z* 583.10809.

tributyl(6'-chloro-2'',3'',4'',5'',6''-pentafluoro-[1,1':2',1''-terphenyl]-2-yl)stannane (4aga)

Isolated in 63% yield as a colorless oil.

¹**H NMR:** $\delta 0.62 - 0.79$ (m, 6H), 0.84 (t, J = 7.3 Hz, 9H), 1.24 (sext, J = 7.2 Hz, 6H),

1.30 – 1.46 (m, 6H), 6.93 (d, *J* = 7.4 Hz, 1H), 7.13 (t, *J* = 7.4 Hz, 1H), 7.19 (t, *J* = 7.3 Hz, 1H), 7.23 (d, *J* = 7.6 Hz, 1H), 7.37 – 7.44 (m, 2H), 7.59 (d, *J* = 8.1 Hz, 1H)

¹³C NMR: δ 10.50 (J_{Sn-C} = 341.8, 326.6 Hz), 10.52 (J_{Sn-C} = 341.8, 326.7 Hz), 13.71, 27.54, 29.11, 115.31 (td, J = 19.8, 3.8 Hz), 127.14, 127.46, 128.49, 128.65, 128.67, 129.23, 130.98, 135.14, 137.01, 137.25 (dm, J_{C-F} = 247.6 Hz), 140.72 (dm, J_{C-F} = 254.1 Hz), 143.46 (dm, J_{C-F} = 239.7 Hz), 143.99, 144.15 (dm, J_{C-F} = 249.7 Hz), 144.19 (J_{Sn-C} = 377.6, 360.4 Hz), 144.21 (J_{Sn-C} = 378.0, 363.2 Hz), 144.36

¹⁹**F NMR:** δ -164.12 (dtd, J = 67.2, 22.7, 7.1 Hz), -156.17 (t, J = 20.8 Hz), -140.49 (d, J = 23.2 Hz), -138.18 (d, J = 23.1 Hz)

¹¹⁹Sn NMR: δ -45.92, -45.84

HRMS (APCI) Calcd for $C_{26}H_{25}^{35}$ ClF₅Sn: $[M-Bu]^+$, 587.05814. Found: m/z 587.05792.

tributyl(2'',3'',4'',5'',6''-pentafluoro-6'-methoxy-3,6-dimethyl-[1,1':2',1''terphenyl]-2-yl)stannane (4afb)

Isolated in 54% yield as a colorless oil.

¹**H** NMR: $\delta 0.51 - 0.68$ (m, 6H), 0.84 (t, J = 7.2 Hz, 9H), 1.22 (sext, J = 7.2 Hz, 6H), 1.27 - 1.40 (m, 6H), 1.77 (s, 3H), 2.36 (s, 3H), 3.75 (s, 3H), 6.92 (q, J = 7.6 Hz, 3H), 7.05 (d, J = 8.2 Hz, 1H), 7.42 (t, J = 8.0 Hz, 1H)

¹³**C NMR:** δ 11.39 ($J_{\text{Sn-C}} = 337.2, 322.2 \text{ Hz}$), 11.42 ($J_{\text{Sn-C}} = 337.4, 322.5 \text{ Hz}$), 13.76, 19.84 (d, J = 5.6 Hz), 24.78, 27.57, 29.15, 55.65, 111.86, 115.58 (td, J = 19.0, 3.3 Hz), 123.41, 128.37, 128.57, 128.80, 129.60, 133.30, 133.79, 137.21 (dm, $J_{\text{C-F}} = 250.8 \text{ Hz}$), 140.25 (dm, $J_{\text{C-F}} = 253.3 \text{ Hz}$), 141.30, 142.52, 143.85 (dm, $J_{\text{C-F}} = 247.2 \text{ Hz}$), 144.22 (dm, $J_{\text{C-F}} = 242.9 \text{ Hz}$), 144.51, 144.55, 157.85

¹⁹**F** NMR: δ -164.60 (dtd, J = 92.4, 23.6, 23.0, 7.3 Hz), -157.30 (t, J = 21.1 Hz), -141.31 (dd, J = 23.3, 6.6 Hz), -135.91 (d, J = 23.9 Hz)

¹¹⁹Sn NMR: δ -52.96, -52.77

HRMS (APCI) Calcd for C₂₉H₃₂F₅OSn: [M–Bu]⁺, 611.13898. Found: *m*/*z* 611.13959.

8. A one-pot sequential insertion of the same arynes

General procedure: A Schlenk tube equipped with a magnetic stirring bar was flame-dried after addition of KF (4.0 equiv, 0.40 mmol) under an argon atmosphere. The tube was charged with 18-crown-6 (2.0 equiv, 0.20 mmol), CuTC (5 mol %, 5.0 μ mol), DEE (0.67 mL), **1a** (1.0 equiv, 0.10 mmol) and **2** (2.0 equiv, 0.20 mmol) under an argon atmosphere. The resulting mixture was stirred at 130 °C for the period as specified in Fig. 5. The mixture was diluted with hexane (30 mL) before filtration. The organic solution was washed twice with brine and dried over MgSO₄. Evaporation of the solvent followed by silica gel-column chromatography (hexane as an eluent) gave the corresponding product.

tributyl(2'',3'',4,4',4'',5,5',5'',6''-nonafluoro-[1,1':2',1''-terphenyl]-2-yl)stannane (4add)

Isolated in 16% yield as a colorless oil.

¹**H NMR (400 MHz):** δ 0.68 – 0.83 (m, 6H), 0.86 (t, *J* = 7.2 Hz, 9H), 1.26 (sext, *J* = 7.2 Hz, 6H), 1.33 – 1.47 (m, 6H), 6.67 (dd, *J* = 11.2, 7.0 Hz, 1H), 7.13 (dd, *J* = 10.4, 7.9 Hz, 1H), 7.17 – 7.26 (m, 2H)

¹³**C NMR** (**100 MHz**): δ 10.77 ($J_{\text{Sn-C}} = 347.6, 332.1 \text{ Hz}$), 13.66, 27.39, 28.98, 113.32 (td, J = 19.0, 3.5 Hz), 117.62 (d, J = 16.4 Hz), 119.87 (d, J = 17.5 Hz), 120.52 (d, J = 18.0 Hz), 122.22, 125.42 (d, J = 13.7 Hz), 136.05 – 136.67 (m), 138.41 – 139.25 (m), 139.76 – 140.20 (m), 140.63, 141.42, 141.96, 142.16 – 142.66 (m), 143.02 – 143.43 (m), 144.64 – 145.03 (m), 145.51 – 145.90 (m), 149.16 (dd, J = 250.0, 13.0 Hz), 149.70 (dd, J = 251.9, 13.0 Hz), 149.72 (dd, J = 254.4, 11.2 Hz), 150.73 (dd, J = 254.1, 12.5 Hz)

¹⁹**F NMR:** δ -162.42 (dtd, J = 152.6, 22.4, 7.5 Hz), -154.04 (t, J = 21.0 Hz), -141.88 (d, J = 23.1 Hz), -141.25 (dt, J = 17.1, 7.8 Hz), -139.82 (dt, J = 20.1, 9.9 Hz), -138.97 (dt, J = 18.6, 8.7 Hz), -138.55 (d, J = 23.1 Hz), -136.16 (dt, J = 18.7, 8.7 Hz)

¹¹⁹Sn NMR: δ -34.33

HRMS (APCI) Calcd for C₂₆H₂₂F₉Sn: [M–Bu]⁺, 625.05943. Found: *m/z* 625.05927.

mixture of tributyl(2'',3'',4'',5'',6''-pentafluoro-3,6'-dimethoxy-[1,1':2',1''terphenyl]-2-yl)stannane and tributyl(2'',3'',4'',5'',6''-pentafluoro-6,6'-dimethoxy-[1,1':2',1''-terphenyl]-2-yl)stannane (4aff)

Isolated in 87% yield as a colorless oil.

¹**H NMR:** δ 0.54 – 0.76 (m, 8H), 0.81 – 0.89 (m, 12H), 1.23 (dq, J = 14.3, 7.2 Hz, 8H), 1.29 – 1.45 (m, 8H), 3.45 (s, 1H), 3.74 (s, 3H), 3.74 (s, 1H), 3.76 (s, 3H), 6.51 (dm, J = 6.5 Hz, $J_{\text{Sn-Hmeta}}$ = 11.8 Hz, 1H), 6.59 (d, J = 7.3 Hz, 0.3H), 6.67 (d, J = 7.5 Hz, $J_{\text{Sn-Hmeta}}$ = 14.8 Hz, 1H), 6.90 (d, J = 7.6 Hz, 1H), 6.93 (d, J = 7.7 Hz, 0.3H), 7.02 (ddd, J = 8.4, 3.7, 0.9 Hz, 1.3H), 7.06 – 7.12 (m, 1.3H), 7.16 (dd, J = 8.1, 7.3 Hz, 0.3H), 7.38 – 7.46 (m, 1.3H)

¹³**C NMR:** δ 10.29 ($J_{Sn-C} = 341.2$, 325.0 Hz), 10.31 ($J_{Sn-C} = 340.6$, 325.5 Hz), 10.87 ($J_{Sn-C} = 354.8$, 339.0 Hz), 10.89 ($J_{Sn-C} = 354.9$, 339.1 Hz), 13.78, 13.81, 27.61, 29.16, 29.21, 54.48, 55.12, 55.66, 55.74, 107.82, 109.56, 111.69, 112.18, 116.05 (td, J = 19.7, 3.6 Hz), 122.53, 122.62, 127.64, 128.19, 128.53, 128.58, 128.66, 128.93, 129.39, 129.95, 130.49, 133.18, 133.21, 133.89, 137.27 (dm, $J_{C-F} = 250.7$ Hz), 140.39 (dm, $J_{C-F} = 252.7$ Hz), 143.63 (dm, $J_{C-F} = 243.3$ Hz), 144.35 (dm, $J_{C-F} = 242.3$ Hz), 144.39, 147.79, 147.84, 155.79, 157.46, 157.54, 163.00

¹⁹**F** NMR: δ -165.65 (dtd, *J* = 206.0, 23.3, 22.4, 7.0 Hz), -164.72 (dtd, *J* = 99.2, 23.0, 22.5, 7.5 Hz), -157.95 (t, *J* = 20.9 Hz), -157.45 (t, *J* = 20.9 Hz), -143.28 (dd, *J* = 23.1, 7.1 Hz), -141.37 (dd, *J* = 23.7, 7.2 Hz), -138.17 (dd, *J* = 23.9, 6.2 Hz), -137.66 (dd, *J* = 23.8, 6.6 Hz)

¹¹⁹Sn NMR: δ -49.90, -49.83, -43.69, -43.57
HRMS (APCI) Calcd for $C_{28}H_{30}F_5O_2Sn$: $[M-Bu]^+$, 613.11824. Found: m/z 613.11877.

mixture of tributyl(4,5'-dichloro-2'',3'',4'',5'',6''-pentafluoro-3,6'-dimethoxy-[1,1':2',1''-terphenyl]-2-yl)stannane and tributyl(5,5'-dichloro-2'',3'',4'',5'',6''pentafluoro-6,6'-dimethoxy-[1,1':2',1''-terphenyl]-2-yl)stannane (4ajj)

Isolated in 45% yield as a colorless oil.

¹**H** NMR: $\delta 0.61 - 0.80$ (m, 6.4H), 0.85 (t, J = 7.3 Hz, 9.6H), 1.24 (sext, J = 7.2 Hz, 6.4H), 1.28 - 1.47 (m, 6.4H), 3.35 (s, 3H), 3.40 (s, 0.2H), 3.78 (s, 0.2H), 3.92 (s, 3H), 6.54 (d, J = 8.0 Hz, $J_{\text{Sn-Hmeta}} = 11.6$ Hz, 1H), 6.68 (d, J = 8.7 Hz, $J_{\text{Sn-Hmeta}} = 15.1$ Hz, 0.07H), 7.02 (d, J = 8.3 Hz, 1H), 7.05 (s, 0.07H), 7.10 (d, J = 8.0 Hz, 1H), 7.12 (s, 0.07H), 7.48 (d, J = 8.3 Hz, 1H), 7.51 (d, J = 8.3 Hz, 0.2H)

¹³**C NMR:** δ 11.37, 11.39, 11.48 ($J_{Sn-C} = 356.8$, 340.9 Hz), 11.49 ($J_{Sn-C} = 356.4$, 340.9 Hz), 13.77, 13.82, 27.54, 27.59, 29.04, 29.07, 55.59, 59.76, 59.94, 61.34, 114.73 (td, J = 19.5, 3.8 Hz), 125.36, 126.09, 126.40, 127.17, 129.76, 130.39, 130.51, 137.40 (dm, $J_{C-F} = 251.8$ Hz), 139.54, 140.83 (dm, $J_{C-F} = 254.3$ Hz), 141.21, 141.23, 142.11, 143.54 (dm, $J_{C-F} = 243.2$ Hz), 144.31 (dm, $J_{C-F} = 241.6$ Hz), 154.39, 159.96

¹⁹**F NMR:** δ -164.72 (td, J = 23.3, 7.4 Hz), -163.76 (dtd, J = 67.7, 22.6, 7.6 Hz), -156.49 (t, J = 21.0 Hz), -155.84 (t, J = 20.9 Hz), -142.30 (dd, J = 23.4, 7.0 Hz), -141.36 (d, J = 23.5 Hz), -138.15 (d, J = 23.5 Hz), -136.27 (d, J = 22.8 Hz)

¹¹⁹Sn NMR: δ -48.07, -48.01, -43.71, -43.56

HRMS (APCI) Calcd for $C_{28}H_{28}^{35}Cl_2F_5O_2Sn$: $[M-Bu]^+$, 681.04030. Found: m/z 681.04004.

9. GC trace of a one-pot sequential insertion of benzynes

A Schlenk tube equipped with a magnetic stirring bar was flame-dried after addition of KF (4.0 equiv, 0.40 mmol, 0.0231 g) under an argon atmosphere. The tube was charged with 18-crown-6 (2.0 equiv, 0.20 mmol, 0.0534 g), CuTC (5 mol %, 5.2 μ mol, 0.0010 g), DEE (0.67 mL), **1a** (1.0 equiv, 0.10 mmol, 0.0456 g), **2a** (2.0 equiv, 0.20 mmol, 0.0599 g) and C₁₂H₂₆O₃ as an internal standard (0.50 equiv, 0.050 mmol, 0.0111 g) under an argon atmosphere. The resulting mixture was stirred at 130 °C and monitored by GC analysis based on calibration curves obtained using an authentic samples.

Entry	Time (h)		$C_{12}H_{26}O_3$	1a	2a	3aa	4aaa
1	0.5	GC area	33156	74486	_	35977	0
		Yield (%)	_	60	83 ^{<i>a</i>}	22	0
2	1	GC area	53325	12292	90548	169755	7133
		Yield (%)	_	6	55	65	6
3	1.5	GC area	47569	0	53693	123622	98058
		Yield (%)	_	0	36	53	41
4	2	GC area	82256	0	56593	136548	242807
		Yield (%)	_	0	22	34	57
5	2.5	GC area	52332	0	26056	71136	168400
		Yield (%)	_	0	15	28	62
6	3	GC area	80711	0	27155	90843	274952
		Yield (%)	_	0	10	23	66
7	4.5	GC area	58436	0	8920	51600	220553
		Yield (%)	_	0	4	18	72
8	6	GC area	123491	0	10175	85769	462338
		Yield (%)	_	0	2	14	72

Table S14. GC Trace of a One-Pot Sequential Insertion of Benzynes

^{*a*} The GC yield of **2a** was determined by using 0.2 mmol of $C_{12}H_{26}O_3$ instead of 0.05 mmol.

Entry	Time (h)		$C_{12}H_{26}O_3$	2a
1'	0.5	GC area	188959	125307
1	0.5	Yield (%)	_	83

10. Mechanistic studies on the proposed catalytic cycle Fig. 7A

A Schlenk tube equipped with a magnetic stirring bar was flame-dried after addition of KF (3.0 equiv, 0.30 mmol) under an argon atmosphere. The tube was charged with 18-crown-6 (1.5 equiv, 0.15 mmol), CuTC (1.0 equiv, 0.10 mmol), DEE (0.67 mL) and 1 (1.0 equiv, 0.10 mmol) under an argon atmosphere. The resulting mixture was stirred at 30 °C for 1 h. The mixture was diluted with hexane (30 mL) before filtration. The conversions and yields were determined by ¹¹⁹Sn NMR analysis of the crude reaction mixture using tributyl(vinyl)stannane as an internal standard (solvent: CDCl₃).

Fig. 7B

A Schlenk tube equipped with a magnetic stirring bar was flame-dried after addition of KF (3.0 equiv, 0.30 mmol) under an argon atmosphere. The tube was charged with 18-crown-6 (1.5 equiv, 0.15 mmol), **5** (1.0 equiv, 0.10 mmol) and DEE (0.67 mL) under an argon atmosphere. The resulting mixture was stirred at 30 °C for 5 min. The mixture was diluted with hexane (30 mL) before filtration. The conversion of **5** was determined by 119 Sn NMR analysis of the crude reaction mixture using tributyl(vinyl)stannane as an internal standard (solvent: CDCl₃).

Figure S6. ¹¹⁹Sn NMR Spectra of the Experiments Described in Fig. 7

Fig. 7C

Phenylcopper was prepared according to a literature procedure.¹⁸

A round-bottom flask equipped with a magnetic stirring bar was flame-dried under an argon atmosphere. The flask was charged with phenyl bromide (1.0 equiv, 1.0 mmol, 0.1569 g) and THF (2.0 mL) and cooled to -78 °C under an argon atmosphere. To this solution, *n*-butyllithium (1.55 M in *n*-hexane, 1.0 equiv, 1.0 mmol, 0.65 mL) was added dropwise via syringe. The resulting mixture was stirred at -78 °C for 1 h. To this mixture, cuprous bromide (1.05 equiv, 1.05 mmol, 0.1506 g) in THF (6.2 mL) was added dropwise via syringe over a period of 15 min before the resulting mixture was stirred at -10 °C for 3 h (mixture X). A mixture Y of KF (3.0 equiv, 3.0 mmol, 0.1747 g), 18-crown-6 (0.116 M in THF, 1.5 equiv, 1.5 mmol, 13.0 mL) and Bu₃SnF (1.0 equiv, 1.0 mmol, 0.3086 g) were added to the mixture X (mixture Z). The resulting mixture Z was stirred at -10 °C for 10 min. $C_{12}H_{26}O_3$ as an internal standard (0.50 equiv, 0.50 mmol, 0.1093 g) was added to the mixture. The yields of products were determined by GC analysis based on calibration curves obtained using an authentic samples.

GC area: 1605631 (**1k**), 803189 (C₁₂H₂₆O₃). Yield of **1k**: 54%

Formation of CuF as an actual catalytic intermediate

General procedure: A Schlenk tube equipped with a magnetic stirring bar was flame-dried after addition of KF (3.0 equiv, 0.30 mmol) under an argon atmosphere. The tube was charged with 18-crown-6 (1.5 equiv, 0.15 mmol), CuMS (1.0 equiv, 0.10 mmol), PPh₃ (X equiv, $0.1 \times X$ mmol), DEE (0.20 mL), under an argon atmosphere. The resulting mixture was stirred at room temperature for 15 min. The formation of CuF(PPh₃)₃ was determined by ¹⁹F, ³¹P NMR analysis of the crude reaction mixture (solvent: CDCl₃).

Table S15. Formation of CuF as an Actual Catalytic Intermediate

	о он Ме СиМS 1.0 еqu	KF (3.0 equiv) 18-crown-6 (1.5 e PPh ₃ (X equiv) DEE, rt, 15 min iv	equiv) ────► CuF(PPh ₃) ₃
Entry	Х	¹⁹ F NMR Chemical Shift (ppm)	³¹ P NMR Chemical Shift (ppm)
1	0	_	_
2	3.0	-210.5	-3.51

CuF(PPh₃)₃·2MeOH is known.¹⁹

¹⁹F NMR (282 MHz, CD₃CN) δ -204.8

³¹P NMR (202 MHz, CDCl₃) δ -3.55

Commercially available CuF(PPh₃)₃·2MeOH (actual chemical shift) ¹⁹F NMR (470 MHz, CDCl₃) δ **-203.3**

In addition, the counteranion-independent catalytic activity observed with CuTC, CuCl or CuI (Table S6, entries 1–3) indicates that these Cu(I) salts are swiftly converted into CuF, which serves as the actual catalytic intermediate.

¹⁹F NMR (Table S15, Entry 2, CDCl₃)

³¹P NMR (Table S15, Entry 2, CDCl₃)

11. Gram-scale arylstannylation and transformations of the resulting *ortho*-stannylbiaryl

Gram-scale arylstannylation

A round-bottom flask equipped with a magnetic stirring bar was flame-dried after addition of KF (2.0 equiv, 8.0 mmol, 0.4650 g) under an argon atmosphere. The tube was charged with 18-crown-6 (1.0 equiv, 4.0 mmol, 1.0577 g), CuTC (5 mol %, 0.2 mmol, 0.0380 g), DEE (26.7 mL), **1a** (1.0 equiv, 4.0 mmol, 1.8288 g) and **2a** (1.0 equiv, 4.0 mmol, 1.1934 g) under an argon atmosphere. The resulting mixture was stirred at 130 °C for 6 h. The mixture was diluted with hexane before filtration. The organic solution was washed twice with brine and dried over MgSO₄. Evaporation of the solvent followed by silica gel-column chromatography (hexane as an eluent) gave **3aa** (74%, 1.5702 g) as a colorless oil.

Fig. 8A

2,3,4,5,6-pentafluoro-1,1'-biphenyl (6)

6 was prepared according to a literature procedure.²⁰

A Schlenk tube equipped with a magnetic stirring bar was charged with **3aa** (1.0 equiv, 0.10 mmol, 0.0534 g), THF (1.0 mL) and aq. HCl (12 M, 10 equiv, 1.0 mmol, 0.08 mL) under an argon atmosphere. The resulting mixture was stirred at 25 °C for 3 h. After the mixture was quenched with saturated NaHCO₃ aqueous solution and diluted with hexane, the organic layer was washed twice with brine and dried over MgSO₄. Evaporation of the solvent followed by silica gel-column chromatography using 10% w/w anhydrous potassium carbonate-silica as a stationary phase (ethyl acetate as an eluent) gave **6** (97%) as a white solid.

This compound is known.²¹

Nuclear magnetic resonance spectrum of **6** were taken on a Varian 400-MR (¹H, 400 MHz; ¹³C, 100 MHz; ¹⁹F, 376 MHz).

¹**H NMR (400 MHz):** δ 7.40 – 7.54 (m, 5H)

¹³**C** NMR (100 MHz): δ 116.06 (td, $J_{C-CF} = 17.4$, $J_{C-CCF} = 4.2$ Hz), 126.53, 128.86, 129.44, 130.28, 137.95 (dm, $J_{C-F} = 249.9$ Hz), 140.50 (dm, $J_{C-F} = 253.6$ Hz), 144.26 (dm, $J_{C-F} = 247.5$ Hz)

¹⁹**F NMR (376 MHz):** δ -163.98 (td, *J* = 22.2, 7.7 Hz), -157.35 (t, *J* = 20.9 Hz), -144.99 (dd, *J* = 22.6, 7.6 Hz).

2,2',3,4,5,6-hexafluoro-1,1'-biphenyl (7)

7 was prepared according to a literature procedure.²²

A Schlenk tube equipped with a magnetic stirring bar was charged with AgOTf (2.0 equiv, 0.20 mmol, 0.0514 g), 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (F-TEDA, 1.2 equiv, 0.12 mmol, 0.0425 g), acetone (1 mL) and **3aa** (1.0 equiv, 0.10 mmol, 0.0537 g) under an argon atmosphere. The resulting mixture was stirred at 25 °C for 30 min. After the mixture was diluted with hexane, the organic solution was washed twice with brine and dried over MgSO₄. Evaporation of the solvent followed by silica gel-column chromatography using 10% w/w anhydrous potassium carbonate-silica as a stationary phase (hexane as an eluent) gave a mixture of **7** (61%) and **6** (19%) as a white solid.

This compound is known.²³

¹**H NMR:** δ 7.20 – 7.32 (m, 2H), 7.35 (t, *J* = 7.0 Hz, 1H), 7.45 – 7.54 (m, 1H)

¹³**C NMR:** δ 110.29 (td, $J_{C-CF} = 18.5$, $J_{C-CCF} = 3.9$ Hz), 114.32 (d, $J_{C-CF} = 17.0$ Hz), 116.32 (d, $J_{C-CF} = 21.6$ Hz), 124.49 (d, $J_{C-CCF} = 3.6$ Hz), 131.85 (d, $J_{C-CCF} = 8.3$ Hz), 132.12, 137.87 (dm, $J_{C-F} = 252.8$ Hz), 141.24 (dm, $J_{C-F} = 254.7$ Hz), 144.47 (dm, $J_{C-F} = 249.2$ Hz), 160.03 (d, $J_{C-F} = 250.7$ Hz)

¹⁹**F NMR:** δ -163.81 (td, J = 21.8, 7.5 Hz), -155.84 (t, J = 20.8 Hz), -142.04 (dd, J = 20.7, 10.1 Hz), -114.53

2,3,4,5,6-pentafluoro-2'-iodo-1,1'-biphenyl (8)

8 was prepared according to a literature procedure.²⁰

A Schlenk tube equipped with a magnetic stirring bar was charged with **3aa** (1.0 equiv, 0.10 mmol, 0.0537 g), DCM (1.0 mL) and I₂ (1.5 equiv, 0.15 mmol, 0.0380 mL) under an argon atmosphere. The resulting mixture was stirred at 25 °C for 30 min. After the mixture was quenched with saturated Na₂S₂O₃ aqueous solution and saturated NaHCO₃ aqueous solution and diluted with DCM, the organic layer was washed twice with brine and dried over MgSO₄. Evaporation of the solvent followed by silica gel-column chromatography using 10% w/w anhydrous potassium carbonate-silica as a stationary phase (ethyl acetate as an eluent) gave **8** (95%) as a white solid. This compound is known.²⁴

¹**H NMR:** δ 7.19 (t, *J* = 7.7 Hz, 1H), 7.25 (d, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 1H)

¹³**C NMR:** δ 99.73, 118.47 (td, $J_{C-CF} = 19.3$, $J_{C-CCF} = 4.0$ Hz), 128.53, 131.16, 131.32, 132.63, 137.83 (dm, $J_{C-F} = 253.0$ Hz), 139.68, 141.41 (dm, $J_{C-F} = 254.5$ Hz), 144.08 (dm, $J_{C-F} = 248.0$ Hz)

¹⁹**F NMR:** δ -163.58 (dt, *J* = 22.0, 11.3 Hz), -155.71 (t, *J* = 20.8 Hz), -141.39 (dd, *J* = 22.6, 7.3 Hz)

Fig. 8B

2,3,3",4,5,6-hexafluoro-1,1':2',1"-terphenyl (9)

9 was prepared according to a literature procedure.²⁵

A reaction tube equipped with a magnetic stirring bar was flame-dried after addition of LiBr (6.0 equiv, 0.60 mmol, 0.0525 g) under an argon atmosphere. The tube was charged with CuCl (5.0 equiv, 0.50 mmol, 0.0500 g), Pd(PPh₃)₄ (10 mol %, 10.0 μ mol, 0.0116 g), DMF (1.0 mL), 1-fluoro-3-iodobenzene (1.8 equiv, 0.18 mmol, 0.0402 g) and **3aa** (1.0 equiv, 0.10 mmol, 0.0542 g) under an argon atmosphere. The resulting mixture was stirred at 160 °C for 30 min under microwave irradiation. After the mixture was diluted with diethyl ether (30 mL), the organic solution was washed four times with brine and dried over MgSO₄. Evaporation of the solvent followed by silica gel-column chromatography using 10% w/w anhydrous potassium carbonate-silica as a stationary phase (hexane as an eluent) gave **9** (53%) as a white solid.

Mp: 66–68 °C

¹**H NMR:** δ 6.89 (d, J = 7.3 Hz, 2H), 6.93 – 7.01 (m, 1H), 7.18 – 7.27 (m, 1H), 7.35 (d, J = 7.5 Hz, 1H), 7.44 – 7.52 (m, 2H), 7.56 (td, J = 7.5, 1.3 Hz, 1H)

¹³**C** NMR: δ 114.57 (d, $J_{C-CF} = 21.0 \text{ Hz}$), 115.60 (t, $J_{C-CF} = 19.1 \text{ Hz}$), 115.73 (d, $J_{C-CF} = 21.9 \text{ Hz}$), 124.41 (d, $J_{C-CCCF} = 2.8 \text{ Hz}$), 124.97, 128.11, 129.81 (d, $J_{C-CCF} = 8.4 \text{ Hz}$), 130.02, 130.39, 131.41, 137.56 (dm, $J_{C-F} = 251.5 \text{ Hz}$), 140.77 (dm, $J_{C-F} = 248.8 \text{ Hz}$), 141.81, 142.63 (d, $J_{C-CCF} = 7.7 \text{ Hz}$), 144.12 (dm, $J_{C-F} = 242.8 \text{ Hz}$), 162.53 (d, $J_{C-F} = 246.5 \text{ Hz}$)

¹⁹**F NMR:** δ -163.86 (td, J = 22.5, 7.8 Hz), -156.54 (t, J = 20.9 Hz), -141.95 (dd, J = 23.0, 7.8 Hz), -114.73 (q, J = 8.8 Hz)

HRMS (EI) Calcd for C₁₈H₈F₆: M⁺, 338.05302. Found: *m*/*z* 338.05385.

Fig. 8C

2,2"',3,3"',4,4"',5,5"',6,6"'-decafluoro-1,1':2',1"':2",1"'-tetraphenyl (10)

10 was prepared according to a literature procedure.²⁶

A Schlenk tube equipped with a magnetic stirring bar was charged with CuCl (2.6 equiv, 0.129 mmol, 0.0128 g), DMF (0.5 mL) and **3aa** (1.0 equiv, 0.05 mmol, 0.0272 g) under an argon atmosphere. The resulting mixture was stirred at 25 °C for 6 h. After the mixture was diluted with diethyl ether (30 mL), the organic solution was washed three times with brine and dried over MgSO₄. Evaporation of the solvent followed by silica gel-column chromatography using 10% w/w anhydrous potassium carbonate-silica as a stationary phase (hexane as an eluent) gave **10** (41%) as a white solid.

Mp: 120–122 °C

¹**H NMR:** δ 7.11 (d, J = 7.7 Hz, 2H), 7.39 – 7.45 (m, 2H), 7.53 (d, J = 4.6 Hz, 4H)

¹³**C NMR:** δ 114.78 (td, J = 18.7, 3.3 Hz), 125.04, 128.23, 129.67, 130.90, 131.96, 137.56 (dm, $J_{C-F} = 249.2$ Hz), 140.82 (dm, $J_{C-F} = 254.5$ Hz), 141.11, 143.54 (dm, $J_{C-F} = 252.8$ Hz), 144.09 (dm, $J_{C-F} = 243.7$ Hz)

¹⁹**F NMR:** δ -164.06 (dt, J = 105.6, 18.2 Hz), -156.49 (t, J = 20.7 Hz), -145.90 (d, J = 21.3 Hz), -138.71 (d, J = 22.8 Hz)

HRMS (EI) Calcd for C₂₄H₈F₁₀: M⁺, 486.04663. Found: *m*/*z* 486.04662.

12. Synthesis of π -extended arylstannane by chemoselective MKS reaction of an *ortho*-stannylbiaryl generated from 11

4-(5-(4'-chloro-2,3,5,6-tetrafluoro-3'-methoxy-2'-(tributylstannyl)-[1,1'-biphenyl]-4 -yl)thiophen-2-yl)pyridine (11)

A reaction tube equipped with a magnetic stirring bar was charged with $Pd(PPh_3)_4$ (9.7 mol %, 12.5 µmol, 0.0145 g), 4-(5-(trimethylstannyl)thiophen-2-yl)pyridine (1.2 equiv, 0.16 mmol, 0.0506 g), **3lj** (1.0 equiv, 0.13 mmol, 0.0849 g) and DMF (1.3 mL) under an argon atmosphere. The resulting mixture was stirred at 160 °C for 1 h under microwave irradiation. After the mixture was diluted with diethyl ether (30 mL), the organic solution was washed four times with brine and dried over MgSO₄. Evaporation of the solvent followed by preparative recycling gel permeation chromatography gave **11** (76%) as a yellow oil.

¹**H NMR:** δ 0.73 – 0.90 (m, 15H), 1.22 (sext, *J* = 7.3 Hz, 6H), 1.29 – 1.45 (m, 6H), 3.96 (s, 3H), 6.97 (d, *J* = 8.0 Hz, *J*_{Sn-Hmeta} = 11.8 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.54 (d, *J* = 6.1 Hz, 2H), 7.59 (d, *J* = 3.9 Hz, 1H), 7.67 (d, *J* = 3.9 Hz, 1H), 8.65 (d, *J* = 6.0 Hz, 2H)

¹³**C NMR:** δ 11.27 ($J_{\text{Sn-C}}$ = 352.8, 337.2 Hz), 13.68, 27.47, 28.98, 61.51, 113.30 (t, $J_{\text{C-CF}}$ = 14.6 Hz), 120.03, 121.11 (t, $J_{\text{C-CF}}$ = 19.2 Hz), 125.61, 127.31, 127.58, 129.36, 131.55, 131.61, 133.97, 140.25 ($J_{\text{Sn-C}}$ = 318.9, 304.1 Hz), 140.67, 143.74, 143.74 (dm, $J_{\text{C-F}}$ = 245.0 Hz), 144.75 (dm, $J_{\text{C-F}}$ = 236.5 Hz), 150.71, 160.67

¹⁹**F NMR:** δ -142.29 (dd, J = 22.6, 11.6 Hz), -141.49 (dd, J = 22.5, 11.5 Hz)

¹¹⁹Sn NMR: δ -44.53

HRMS (ESI) Calcd for $C_{34}H_{39}^{35}ClF_4NOSSn$: $[M+H]^+$, 740.13935. Found: m/z 740.13977.

13. Tin-proton coupling constants in products (¹H NMR)

The structure of the arylstannylation products could be determined by tin-proton coupling constants in their ¹H NMR spectra.

Figure S9. Evaluation of Tin-Proton Coupling Constants (doublet)

14. References

- 1. D. C. Harrowven, D. P. Curran, S. L. Kostiuk, I. L. Wallis-Guy, S. Whiting, K. J. Stenning, B. Tang, E. Packard and L. Nanson, *Chem. Commun.*, 2010, **46**, 6335.
- For 18-crown-6, see: (a) G. W. Gokel, D. J. Cram, C. L. Liotta, H. P. Harris and F. L. Cook, Org. Synth., 1977, 57, 30. For CuCl, see: (b) J. Österlöf, Acta Chem. Scand., 1950, 4, 374.
- 3. H. Yoshida, T. Kubo, H. Kuriki, I. Osaka, K. Takaki and Y. Ooyama, *ChemistrySelect*, 2017, **2**, 3212.
- V. Farina, S. Kapadia, B. Krishnan, C. Wang and L. S. Liebeskind, J. Org. Chem., 1994, 59, 5905.
- 5. Y. Himeshima, T. Sonoda and H. Kobayashi, Chem. Lett., 1983, 1211.
- 6. H. Yoshida, T. Terayama, J. Ohshita and A. Kunai, Chem. Commun., 2004, 1980.
- 7. H. Yoshida, S. Sugiura and A. Kunai, Org. Lett., 2002, 4, 2767.
- 8. D. Peña, D. Pérez, E. Guitián and L. Castedo, J. Am. Chem. Soc., 1999, 121, 5827.
- 9. D. Peña, A. Cobas, D. Pérez and E. Gutián, Synthesis, 2002, 1454.
- 10. S. Yoshida, K. Shimomori, T. Nonaka and T. Hosoya, Chem. Lett., 2015, 44, 1324.
- 11. D. Peña, D. Pérez, E. Guitián and L. Castedo, Org. Lett., 1999, 1, 1555.
- 12. R. G. Kultyshev, G. K. Surya Prakash, G. A. Olah, J. W. Faller and J. Parr, Organometallics, 2004, 23, 3184.
- A. Vij, R. L. Kirchmeier, R. D. Willett and J. M. Shreeve, *Inorg. Chem.*, 1994, 33, 5456.
- 14. M. Barnard, P. J. Smith and R. F. M. White, J. Organomet. Chem., 1974, 77, 189.
- M. E. Doster, J. A. Hatnean, T. Jeftic, S. Modi and S. A. Johnson, J. Am. Chem. Soc., 2010, 132, 11923.
- 16. H. Yoshida, R. Yoshida and K. Takaki, Angew. Chem., Int. Ed., 2013, 52, 8629.
- Y. Adachi, Y. Ooyama, N. Shibayama and J. Ohshita, *Dalton Trans.*, 2016, 45, 13817.
- 18. G. Costa, A. Camus, L. Gatti and N. Marsich, J. Organomet. Chem., 1966, 5, 568.
- 19. Virginie Cirriez, Corentin Rasson, Thomas Hermant, Julien Petrignet, Jesús Díaz Álvarez, Koen Robeyns and Olivier Riant, *Angew. Chem., Int. Ed.*, 2013, **52**, 1785.
- E. Shirakawa, H. Yoshida, T. Kurahashi, Y. Nakao and T. Hiyama, J. Am. Chem. Soc., 1998, 120, 2975.

- 21. H. Li, J. Liu, C.-L. Sun, B.-J. Li and Z.-J. Shi, Org. Lett., 2011, 13, 276.
- 22. T. Furuya, A. E. Strom and T. Ritter, J. Am. Chem. Soc., 2009, 131, 1662.
- 23. M. Lafrance, D. Shore and K. Fagnou, Org. Lett., 2006, 8, 5097.
- 24. H. J. Frohn and A. Klose, J. Fluor. Chem., 1993, 64, 201.
- R. K. Mohamed, S. Mondal, B. Gold, C. J. Evoniuk, T. Banerjee, K. Hanson and I. V. Alabugin, J. Am. Chem. Soc., 2015, 137, 6335.
- 26. E. Piers, E. J. McEachern and M. A. Romero, Tetrahedron Lett., 1996, 37, 1173.

15. Acknowledgements

We thank Ms. Tomoko Amimoto, the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University for the measurement of HRMS.

16. NMR spectra

S76

142.9 142.8 142.7 142.6 142.5 142.4 142.3 142.2 142.1 142.0 141.9 141.8 141.7 141.6 141.5 141.4 141.3 141.2 141.1 141.0 140.9 140.8 140.7 140.6 140.5 140.4 140.3 140.2 140.1 11 (gpm)

146.9 146.8 146.7 146.6 146.5 146.4 146.2 146.1 146.0 145.9 145.8 145.7 145.6 145.5 145.5 145.2 145.1 145.0 144.9 144.8 144.7 144.6 144.5 144.4 144.3 144.2 144.1 144.0 143.9 143.8 fl (pom)

146.9 146.8 146.7 146.6 146.5 146.4 146.3 146.2 146.1 146.0 145.9 145.9 145.7 145.6 145.5 145.4 145.3 145.2 145.1 145.0 144.9 144.8 144.7 fl (ppm)

