Metal-free C-H Amination of Arene with N-Fluorobenzenesulfonimide Catalysed by Nitroxyl Radical at Room Temperature

Qi Miao,[†] Zhong Shao,[†] Cuiying Shi,[†] Lifang Ma,[†] Fang Wang,[†] Ruoqi Fu,[†] Haochen Gao,[†] and Ziyuan Li,^{*,†}

[†]Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering,

Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China

E-mail: liziyuan@scu.edu.cn Fax: (+86) 28-8540-5221

Supporting Information

Table of Contents

General Remarks	S2
Optimization of the Reaction Conditions	S 3
Preperation of Pyrrole and Indole Substrates 3i-r	S4~S6
Experimental Procedure and Characterization Data for products	S7~S16
Competition Experiments between Electron-rich/deficient Arenes	S17
Deutorium Labeling Experiment	S18
Kinetic Isotope Effect (KIE) Experiments	S19
Deprotection Experiment	S20
¹ H NMR, ¹³ C NMR spectra of products 2 , 4 and 5	S21~S54

General Remarks

All commercially available compounds were purchased from TCI, Alfa-Aesar, Acros, J&K Chemicals, TEMPO was purchased from TCI (98.0% purity, CAS No. 2564-83-2). and Adamas-beta. *N*-fluorobenzenesulfonimide (NFSI) (97.0% purity, CAS No. 133745-75-2) and Deterated water (D₂O) (99.90% purity, CAS No. 7789-20-0) were purchased from Adamas-beta. Ethyl acetate (EtOAc) (99.8%, SafeDry, water < 50 ppm), 1,4-dioxane (99.7%, SafeDry, water < 50 ppm) and acetonitrile (MeCN) (99.9%, SafeDry, water < 50 ppm) were also purchased from Adamas-beta. 1,2-Dichloroethane (DCE) (99.5%, SuperDry) were purchased from J&K chemicals. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Oxazole and thiazole substrates 1 were prepared from corresponding nitriles by our previous reported methods.^[1] Furans, thiophenes, flavone and mesitylene were acquired from Adamas-beta and TCI, and were employed directly. Products were purified by flash chromatography on silica gel using petroleum ether and ethyl acetate as the effluents. ¹H-NMR spectra were recorded on Bruker AVANCE III-400 spectrometers. Chemical shifts (in ppm) were referenced with TMS in CDCl₃ or DMSO (0 ppm). ¹³C-NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl₃ (δ = 77.00 ppm) or DMSO (δ = 40.00 ppm). High resolution mass spectra were obtained from an Agilent 6520B Q-TOF mass spectrometer with electron spray ionization (ESI) as the ion source.

References

[1] For the preparation of various oxazole-4-carboxylic derivative substrates, see (a) Wang, Y.; Li, Z.; Huang, Y.; Tang, C.; Wu, X.; Xu, J.; Yao, H. *Tetrahedron* 2011, 67, 7406; (b) Li, Z.; Ma, L.; Xu, J.; Kong, L.; Wu, X.; Yao, H. *Chem. Commun.* 2012, 48, 3763; (c) Wang, X.; Lei, B.; Ma, L.; Jiao, H.; Xing, H.; Chen, J.; Li, Z. *Adv. Synth. Catal.* 2017, *359*, 4284; (d) Lei, B.; Wang, X.; Ma, L.; Jiao, H.; Zhu, L.; Li, Z. *Org. Biomol. Chem.* 2017, *15*, 6084; (e) Wang, X.; Lei, B.; Ma, L.; Zhu, L.; Zhang, X.; Zuo, H.; Zhuang, D.; Li, Z. *Chem. Asian J.* 2017, *12*, 2799.

Optimization of the Reaction Conditions

Table S1 Optimization of the reaction conditions^a

(0.3 mmol) + F = N + F =							
Entry	TEMPO	Solvent	Time	Yield			
	(mol%)	(2 mL)	(h)	(%) ^b			
1	40	TCE	12	84			
2	20	TCE	12	62			
3	20	DCE	12	58			
4	20	MeCN	12	trace			
5	20	EtOAc	12	52			
6	20	TCE	24	81			
7	20	MeCN	24	48			
8	20	EtOAc	24	88			
9	15	EtOAc	24	90			
10	10	EtOAc	24	59			
11	0	EtOAc	24	0			
12 ^c	15	EtOAc	24	76			

^{*a*} The reaction was performed with **1a** (0.3 mmol), NFSI (1.2 mmol) and TEMPO in solvent (2 mL) at 25 °C under argon (1 atm) for 12 h or 24 h. ^{*b*} Isolated yields of **3a** after column chromatography on silica gel. ^{*c*} Loading of NFSI was decline to 0.9 mmol.

Preperation of Pyrrole and Indole Substrates 3i-r

Typical Procedure: To a solution of *N*-unsubstituted pyrrole or indole (5 mmol) in DCE (25 mL) was added DMAP (1 mmol, 0.2 eq) and TEA (10 mmol, 2 eq) at 0 °C. After stirring for 25 minutes, acetic anhydride (Ac₂O, 20 mmol, 4 eq) was added slowly, and then the reaction mixture was stirred at 60 °C overnight. The mixture was then cooled to room temperature, quenched with saturated NH₄Cl (aq.), extracted with EtOAc, washed with water, and dried over Na₂SO₄. After removel of Na₂SO₄ by filtration, the organic phase was concentrated *in vacuo* to give dark residue, which was purified by flash chromatography on silica gel, using petroleum ether and ethyl acetate as the effluent, to afford the corresponding pyrrole and indole substrates **3i-r**.

Methyl 1-Acetyl-1*H*-pyrrole-2-carboxylate (3i):

Light yellow oil. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.34-7.33$ (m, 1H), 6.96-6.95 (m, 1H), 6.23-6.21 (m, 1H), 3.85 (s, 3H), 2.60 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 169.01$, 161.39, 126.17, 124.73, 122.57, 110.79, 51.91, 24.60 ppm; HRMS *m*/*z* (ESI) calcd for [C₈H₉NO₃+Na]⁺ 190.0475, found 190.0475.

Ethyl 1-Acetyl-1*H*-pyrrole-2-carboxylate (3j):

Light yellow oil. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.34-7.33$ (m, 1H), 6.96-6.94 (m, 1H), 6.23-6.21 (m, 1H), _{3j} 4.32 (q, 2H, J = 7.1 Hz), 2.60 (s, 3H), 1.35 (t, 3H, J = 7.1 Hz) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 169.16$, 161.13, 126.12, 125.23, 122.44, 115.08, 110.85, 61.02, 24.73, 14.17 ppm; HRMS m/z (ESI) calcd for [C₉H₁₁NO₃+Na]⁺ 204.0631, found 204.0635.

Ethyl 1-Acetyl-3-methyl-1*H*-pyrrole-2-carboxylate (3k):

^{MB} ^H ^H ^H ^H ^H ^{NMR} (CDCl₃, 400 MHz): $\delta = 7.14$ (d, 1H, J = 3.2 Hz), 6.08 (d, 1H, J = 3.2 Hz), 4.33 (q, ^{Ac} ^{2H}, J = 7.1 Hz), 2.51 (s, 3H), 2.22 (s, 3H), 1.35 (t, 3H, J = 7.1 Hz) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 168.46$, 162.32, 132.51, 124.03, 114.33, 61.10, 24.14, 14.33, 12.50 ppm; HRMS m/z (ESI) calcd for [C₁₀H₁₃NO₃+Na]⁺ 218.0788, found 218.0791.

Methyl 1-Acetyl-1*H*-indole-3-carboxylate (3l):

Ethyl 1-Acetyl-1*H*-indole-3-carboxylate (3m):

White solid, m.p. 82-83 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.45-8.43$ (m, 1H), 8.16-8.12 (m, 2H), 7.43-7.36 (m, 2H), 4.43 (q, 2H, J = 7.1 Hz), 2.70 (s, 3H), 1.45 (t, 3H, J = 7.1 Hz) ppm; ¹³C NMR (CDCl₃, 100 **MHz**): $\delta = 168.87, 164.12, 136.02, 131.25, 127.42, 126.00, 124.86, 121.67, 116.57, 114.17, 60.69, 24.00, 124.86, 121.67, 116.57, 114.17, 60.69, 24.00, 124.86, 121.67, 116.57, 114.17, 60.69, 24.00, 124.86, 121.67, 116.57, 114.17, 60.69, 24.00, 124.86, 121.67, 116.57, 114.17, 60.69, 24.00, 124.86, 12$ 14.55 ppm; **HRMS** *m*/*z* (ESI) calcd for [C₁₃H₁₃NO₃+Na]⁺ 254.0788, found 254.0793.

Methyl 1-Acetyl-1*H*-indole-2-carboxylate (3n):

White solid, m.p. 48-49 °C. ¹**H** NMR (CDCl₃, 400 MHz): $\delta = 8.12$ (d, 1H, J = 8.5 Hz), 7.63 (d, 1H, J = 7.9Hz), 7.47-7.43 (m, 1H), 7.32-7.27 (m, 2H), 3.94 (s, 3H), 2.61 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz): Àc 3n $\delta = 171.06, 162.21, 138.52, 129.44, 128.08, 127.20, 123.90, 122.57, 118.47, 115.30, 52.67, 27.27$ ppm;

HRMS m/z (ESI) calcd for $[C_{12}H_{11}NO_3+H]^+$ 218.0812, found 218.0819.

Ethyl 1-Acetyl-1*H*-indole-2-carboxylate (30):

Ethyl 1-Acetyl-5-fluoro-1H-indole-2-carboxylate (3p):

Ethyl 1-Acetyl-5-chloro-1H-indole-2-carboxylate (3q):

Ethyl 1-Acetyl-6-chloro-1H-indole-2-carboxylate (3r):

Light yellow solid, m.p. 38-39 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 8.19-8.18 (m, 1H), 7.52 (d, 1H, *J* = 8.4 Hz), 7.28 (s, 1H), 7.25 (dd, 1H, *J* = 8.4 Hz, 1.8 Hz), 4.40 (q, 2H, *J* = 7.1 Hz), 2.60 (s, 3H), 1.41 (t, 3H, *J* = 7.1 Hz) ppm; ¹³C NMR (CDCl₃, 100 MHz): δ = 171.01, 161.45, 138.81, 134.10, 130.30, 125.57,

124.72, 123.20, 117.91, 115.65, 61.96, 27.27, 14.34 ppm; **HRMS** *m*/*z* (ESI) calcd for [C₁₃H₁₂ClNO₃+H]⁺ 288.0398, found 288.0398.

Experimental Procedure and Characterization Data

Typical Procedure: To a reaction tube charged with NFSI (378 mg, 1.2 mmol) was added a solution of arene substrate **1** or **3** (0.3 mmol) in solvent (1 mL) under argon (1 atm). The reaction mixture was stirred at 25 °C, and then a solution of TEMPO (7.0 mg, 0.045 mmol, 15 mol%) in solvent (1 mL) was added. After stirring at 25 °C for 24 hours, the mixture was concentrated *in vacuo* to give dark residue, which was purified by flash chromatography on silica gel, using petroleum ether and ethyl acetate as the effluent, to afford the corresponding aminated arene products **2** or **4**.

Methyl 2-Phenyl-5-(N, N-diphenylsulfonylamino)oxazole-4-carboxylate (2a):

The reaction of 0.3 mmol of methyl 2-phenyloxazole-4-carboxylate (**1a**) with 1.2 mmol of NFSI in 2 $M = \frac{1}{2a} \sum_{i=1}^{N} \frac{1}{2a}$

Methyl 2-(4-Methoxylphenyl)-5-(N, N-diphenylsulfonylamino)oxazole-4-carboxylate (2b):

The reaction of 0.3 mmol of methyl 2-(4-methoxylphenyl)oxazole-4-carboxylate (**1b**) with 1.2 mmol of NFSI in 2 mL of EtOAc afforded 95% of **2b** after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 to 3:1, v/v) as the effluent. White solid, m.p. 182-184

^oC. ¹H NMR (CDCl₃, 400 MHz): δ = 8.05-7.97 (m, 6H), 7.72 (t, 2H, *J* = 7.5 Hz), 7.61-7.57 (m, 4H), 6.98 (d, 2H, *J* = 8.9 Hz), 3.86 (s, 3H), 3.42 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz): δ = 162.53, 161.25, 159.72, 140.11, 138.76, 134.49, 131.88, 128.99, 128.87, 128.79, 118.26, 114.27, 55.36, 51.85 ppm; HRMS *m*/*z* (ESI) calcd for [C₂₄H₂₀N₂O₈S₂+Na]⁺ 551.0553, found 551.0551.

Methyl 2-(4-Trifluoromethylphenyl)-5-(N, N-diphenylsulfonylamino)oxazole-4-carboxylate (2c):

The reaction of 0.3 mmol of methyl 2-(4-trifluoromethylphenyl)oxazole- 4-carboxylate (1c) with 1.2 mmol of NFSI in 2 mL of EtOAc afforded 51% of 2c after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 to 3:1, v/v) as the effluent. White solid, m.p. 192-193

°C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.18$ (d, 2H, J = 8.1 Hz), 8.06-8.03 (m, 4H), 7.77-7.73 (m, 4H), 7.63-7.59 (m, 4H), 3.44 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 159.67$, 159.42, 141.53, 138.71, 134.72, 133.46 (q, J = 32.7 Hz),

132.23, 129.14, 129.00, 128.91, 127.37, 125.98 (q, J = 3.7 Hz), 123.52 (q, J = 270.8 Hz), 52.09 ppm; HRMS m/z (ESI) calcd for [C₂₄H₁₇F₃N₂O₇S₂+Na]⁺ 589.0321, found 589.0325.

Methyl 2-(4-Fluorophenyl)-5-(N, N-diphenylsulfonylamino)oxazole-4-carboxylate (2d):

The reaction of 0.3 mmol of methyl 2-(4-fluorophenyl)oxazole-4-carboxylate (1d) with 1.2 mmol of NFSI in 2 mL of EtOAc afforded 79% of 2d after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 to 3:1, v/v) as the effluent. White solid, m.p. 194-196 °C. ¹H **NMR** (**CDCl**₃, 400 MHz): $\delta = 8.06-8.03$ (m, 6H), 7.75-7.71 (m, 2H), 7.62-7.58 (m, 4H), 7.18 (t, 2H, J = 8.7 Hz), 3.42 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz): δ = 164.93 (d, J = 252.3 Hz), 160.29, 159.55, 140.80, 138.72, 134.60, 131.99, 129.34 (d, J = 9.0 Hz), 129.06, 128.92, 122.08 (d, J = 3.1 Hz), 116.22 (d, J = 22.1 Hz), 51.96 ppm; HRMS m/z (ESI) calcd for [C₂₃H₁₇FN₂O₇S₂+Na]⁺ 539.0353, found 539.0356.

Methyl 2-(4-Chlorophenyl)-5-(N, N-diphenylsulfonylamino)oxazole-4-carboxylate (2e):

The reaction of 0.3 mmol of methyl 2-(4-chlorophenyl)oxazole-4-carboxylate (1e) with 1.2 mmol of NFSI in 2 mL of EtOAc afforded 63% of 2e after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 to 3:1, v/v) as the effluent. White solid, m.p. 216-217 °C. ¹H

NMR (CDCl₃, 400 MHz): δ = 8.05-8.02 (m, 4H), 7.99 (d, 2H, J = 8.6 Hz), 7.73 (t, 2H, J = 7.5 Hz), 7.62-7.58 (m, 4H), 7.47 $(d, 2H, J = 8.6 \text{ Hz}), 3.43 \text{ (s, 3H) ppm}; {}^{13}\text{C}$ NMR (CDCl₃, 100 MHz): $\delta = 160.24, 159.52, 140.97, 138.73, 138.30, 134.63, 138.30, 134.63, 138.30, 139$ 132.08, 129.30, 129.09, 128.96, 128.29, 124.22, 52.01 ppm; **HRMS** m/z (ESI) calcd for $[C_{23}H_{17}ClN_2O_7S_2+Na]^+$ 555.0058, found 555.0061.

Methyl 2-(2-Chlorophenyl)-5-(N, N-diphenylsulfonylamino)oxazole-4-carboxylate (2f):

The reaction of 0.3 mmol of methyl 2-(2-chlorophenyl)oxazole-4-carboxylate (1f) with 1.2 mmol of NFSI in 2 mL of EtOAc afforded 67% of 2f after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 to 3:1, v/v) as the effluent. Light yellow solid, m.p. 137-138 °C. ¹H NMR

(CDCl₃, 400 MHz): $\delta = 8.11$ (dd, 1H, J = 7.8 Hz, 1.5 Hz), 8.07-8.05 (m, 4H), 7.72 (t, 2H, J = 7.5 Hz), 7.61-7.57 (m, 4H), 7.52-7.37 (m, 3H), 3.44 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 159.52, 159.44, 141.20, 138.81, 134.58, 133.00,$ 132.51, 131.75, 131.22, 129.10, 129.01, 128.93, 126.96, 124.82, 52.02 ppm; HRMS m/z (ESI) calcd for $[C_{23}H_{17}ClN_2O_7S_2+Na]^+$ 555.0058, found 555.0060.

Methyl 2-"Propyl-5-(N, N-diphenylsulfonylamino)oxazole-4-carboxylate (2g):

The reaction of 0.3 mmol of methyl 2^{-n} propyloxazole-4-carboxylate (1g) with 1.2 mmol of NFSI in 2 mL of EtOAc afforded 66% of 2g after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 to 3:1, v/v) as the effluent. White solid, m.p. 131-132 °C. ¹H NMR (CDCl₃, 400 **MHz**): $\delta = 8.01-7.99$ (m, 4H), 7.72-7.70 (t, 2H, J = 7.5 Hz), 7.61-7.57 (m, 4H), 3.40 (s, 3H), 2.80 (t, 2H, J = 7.6 Hz), 1.81 (h, 2H, J = 7.6 Hz), 1.00 (t, 3H, J = 7.6 Hz) ppm; ¹³C NMR (CDCl₃, 150 MHz): $\delta = 165.24$, 159.64, 140.70, 138.81, 134.52, 130.69, 129.05, 128.90, 51.86, 30.32, 20.12, 13.45 ppm; **HRMS** m/z (ESI) calcd for $[C_{20}H_{20}N_2O_7S_2+Na]^+$ 487.0604, found 487.0612.

N-Ethyl 2-Phenyl-5-(N', N'-diphenylsulfonylamino)oxazole-4-formamide (2h):

The reaction of 0.3 mmol of N-ethyl 2-phenyloxazole-4-formamide (1h) with 1.2 mmol of NFSI in 2 mL of EtOAc afforded 77% of **2h** after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 to 3:1, v/v) as the effluent. White solid, m.p. 167-168 °C. ¹H NMR (CDCl₃, 400 **MHz**): $\delta = 8.07 - 8.05$ (m, 4H), 7.96-7.94 (m, 2H), 7.69 (t, 2H, J = 7.5 Hz), 7.58-7.44 (m, 7H), 6.96 (t, 1H, J = 5.5 Hz), 3.26 (p, 2H, J = 7.2 Hz), 1.12 (t, 3H, J = 7.2 Hz) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 160.06$, 157.95, 138.55, 137.82, 134.44, 134.26, 131.72, 129.06, 128.91, 128.88, 126.76, 125.92, 33.88, 14.66 ppm; HRMS m/z (ESI) calcd for $[C_{24}H_{21}N_3O_6S_2+Na]^+$ 534.0764, found 534.0766.

N-^{*n*}Butyl 2-Phenyl-5-(*N*['], *N*[']-diphenylsulfonylamino)oxazole-4-formamide (2i):

The reaction of 0.3 mmol of *N*-^{*n*}butyl 2-phenyloxazole-4-formamide (1i) with 1.2 mmol of NFSI in 2 SO₂Ph mL of EtOAc afforded 81% of 2i after flash chromatography on silica gel using petroleum ether and CONHⁿBu 2i ethyl acetate (6:1 to 3:1, v/v) as the effluent. White solid, m.p. 160-161 °C. ¹H NMR (CDCl₃, 400 **MHz**): $\delta = 8.07 - 8.05$ (m, 4H), 7.96-7.94 (m, 2H), 7.69 (t, 2H, J = 7.5 Hz), 7.57-7.44 (m, 7H), 6.97 (t, 1H, J = 5.7 Hz), 3.22 (q, 2H, J = 7.0 Hz), 1.50-1.43 (m, 2H), 1.36-1.31 (m, 2H), 0.93 (t, 3H, J = 7.2 Hz) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta =$ 160.01, 157.99, 138.53, 137.75, 134.39, 134.27, 131.67, 129.02, 128.87, 128.84, 126.73, 125.89, 38.70. 31.40. 19.94. 13.66 ppm; **HRMS** m/z (ESI) calcd for $[C_{24}H_{21}N_3O_6S_2+H]^+$ 540.1258, found 540.1258.

Methyl 2-Phenyl-5-(N, N-diphenylsulfonylamino)thiazole-4-carboxylate (2j):

The reaction of 0.3 mmol of methyl 2-phenylthiazole-4-carboxylate (1j) with 1.2 mmol of NFSI in 2 SO₂Ph SO₂Ph mL of EtOAc afforded 65% of 2j after flash chromatography on silica gel using petroleum ether and ÌN CO₂Me 2j ethyl acetate (6:1 to 3:1, v/v) as the effluent. White solid, m.p. 169-171 °C. ¹H NMR (CDCl₃, 400 **MHz**): $\delta = 8.06-8.00$ (m, 6H), 7.74 (t, 2H, J = 7.5 Hz), 7.63-7.59 (m, 4H), 7.53-7.47 (m, 3H), 3.44 (s, 3H) ppm; ¹³C NMR

 $(CDCl_3, 100 \text{ MHz}): \delta = 168.21, 159.61, 145.71, 138.49, 134.19, 132.11, 131.29, 128.85, 128.80, 128.76, 126.61, 51.66$

ppm; **HRMS** *m*/*z* (ESI) calcd for [C₂₃H₁₈N₂O₆S₃+Na]⁺ 537.0219, found 537.0228.

Methyl 2-(4-Methylphenyl)-5-(N, N-diphenylsulfonylamino)thiazole-4-carboxylate (2k):

The reaction of 0.3 mmol of methyl 2-(4-methylphenyl)thiazole-4-carboxylate (**1k**) with 1.2 mmol of NFSI in 2 mL of EtOAc afforded 81% of **2k** after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 to 3:1, v/v) as the effluent. White solid, m.p. 138-139 °C. ¹H

NMR (CDCl₃, 400 MHz): $\delta = 8.03-8.01$ (m, 4H), 7.86 (d, 2H, J = 8.0 Hz), 7.70 (t, 2H, J = 7.5 Hz), 7.59-7.55 (m, 4H), 7.26 (d, 2H, J = 8.0 Hz), 3.39 (s, 3H), 2.40 (s, 3H) ppm; ¹³C **NMR (CDCl₃, 100 MHz)**: $\delta = 168.63$, 159.87, 145.81, 142.07, 138.75, 134.35, 133.94, 129.72, 129.68, 129.02, 128.96, 126.74, 51.83, 21.46 ppm; **HRMS** m/z (ESI) calcd for [C₂₄H₂₀N₂O₆S₃+Na]⁺ 551.0376, found 551.0375.

Methyl 2-(2-Methoxylphenyl)-5-(N, N-diphenylsulfonylamino)thiazole-4-carboxylate (2l):

The reaction of 0.3 mmol of methyl 2-(2-methoxylphenyl)thiazole-4-carboxylate (11) with 1.2 mmol of NFSI in 2 mL of EtOAc afforded 91% of 21 after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 to 3:1, v/v) as the effluent. White solid, m.p. 179-180 °C. ¹H

NMR (CDCl₃, 400 MHz): $\delta = 8.51$ (dd, 1H, J = 7.9 Hz, 1.5 Hz), 8.02-8.00 (m, 4H), 7.69 (t, 2H, J = 7.5 Hz), 7.58-7.54 (m, 4H), 7.46-7.42 (m, 1H), 7.12-7.08 (m, 1H), 7.02 (d, 1H, J = 8.3 Hz), 3.99 (s, 3H), 3.38 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 162.07$, 160.28, 156.63, 143.84, 138.88, 134.48, 134.17, 132.17, 128.95, 128.90, 128.34, 121.06, 121.02, 111.05, 55.55, 51.65 ppm; HRMS m/z (ESI) calcd for [C₂₄H₂₀N₂O₇S₃+H]⁺ 545.0505, found 545.0504.

Methyl 2-(4-Fluorophenyl)-5-(N, N-diphenylsulfonylamino)thiazole-4-carboxylate (2m):

Ň

2n

The reaction of 0.3 mmol of methyl 2-(4-fluorophenyl)thiazole-4-carboxylate (**1m**) with 1.2 mmol of NFSI in 2 mL of EtOAc afforded 62% of **2m** after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 to 3:1, v/v) as the effluent. White solid, m.p. 152-154 °C. ¹H

NMR (CDCl₃, 400 MHz): $\delta = 8.03$ -7.96 (m, 6H), 7.73-7.69 (m, 2H), 7.61-7.56 (m, 4H), 7.18-7.13 (m, 2H), 3.39 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 167.13$, 164.68 (d, J = 251.5 Hz), 159.77, 145.97, 138.70, 134.50, 134.43, 129.08, 128.98, 128.92, 128.72 (d, J = 3.1 Hz), 116.24 (d, J = 22.0 Hz), 51.90 ppm; HRMS m/z (ESI) calcd for [C₂₃H₁₇FN₂O₆S₃+Na]⁺ 555.0125, found 555.0127.

N-Ethyl 2-Phenyl-5-(*N'*, *N'*-diphenylsulfonylamino)thiazole-4-formamide (2n):

^{SO₂Ph} N_{SO_2Ph} The reaction of 0.3 mmol of *N*-ethyl 2-phenylthiazole-4-formamide (**1n**) with 1.2 mmol of NFSI in 2

mL of EtOAc afforded 61% of **2n** after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 to 3:1, v/v) as the effluent. Light yellow solid, m.p. 207-208 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.05-8.03$ (m, 4H), 7.92-7.90 (m, 2H), 7.67 (t, 2H, J = 7.5 Hz), 7.56-7.52 (m, 4H), 7.48-7.46 (m, 3H), 7.19 (t, 1H, J = 5.4 Hz), 3.17 (p, 2H, J = 7.2 Hz), 1.07 (t, 3H, J = 7.2 Hz) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 167.46$, 158.36, 148.07, 138.60, 134.20, 132.41, 131.37, 131.02, 129.13, 129.06, 128.86, 126.57, 33.88, 14.71 ppm; HRMS m/z (ESI) calcd for [C₂₄H₂₁N₃O₅S₃+Na]⁺ 550.0536, found 550.0546.

N-(Benzofuran-2-yl)-*N*-(phenylsulfonyl)benzenesulfonamide (4a):

The reaction of 0.3 mmol of 2,3-benzofuran (**3a**) with 0.6 mmol of NFSI in 2 mL of DCE afforded 91% of **4a** So₂Ph **4a** after flash chromatography on silica gel using petroleum ether and ethyl acetate (10:1, v/v) as the effluent. Colorless solid, m.p. 144-145 °C. ¹H NMR (CDCl₃, **400** MHz): $\delta = 8.06-8.03$ (m, 4H), 7.72-7.68 (m, 2H), 7.60-7.56 (m, 5H), 7.46 (dd, 1H, J = 8.3 Hz, 0.6 Hz), 7.37 (td, 1H, J = 8.3 Hz, 1.2 Hz), 7.29-7.24 (m, 1H), 6.59 (d, 1H, J = 0.8 Hz) ppm; ¹³C NMR (CDCl₃, **100** MHz): $\delta = 153.67$, 141.65, 138.90, 134.39, 129.13, 128.68, 127.18, 126.27, 123.43, 121.89, 111.77, 109.02 ppm; HRMS m/z (ESI) calcd for [C₂₀H₁₅NO₅S₂+Na]⁺ 436.0284, found 436.0290.

N-(5-Acetylfuran-2-yl)-*N*-(phenylsulfonyl)benzenesulfonamide (4b):

The reaction of 0.3 mmol of 1-(furan-2-yl)ethan-1-one (**3b**) with 1.2 mmol of NFSI in 2 mL of MeCN afforded 90% of **4b** after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 to 3:1, v/v) as the effluent. Colorless solid, m.p. 156-157 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.00$ -7.98 (m, 4H), 7.71 (t, 2H, J = 7.5 Hz), 7.60-7.56 (m, 4H), 7.15 (d, 1H, J = 3.6 Hz), 6.37 (d, 1H, J = 3.6 Hz), 2.37 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 186.47$, 151.75, 141.73, 138.58, 134.58, 129.17, 128.59, 117.05, 114.10, 25.88 ppm; HRMS m/z (ESI) calcd for [C₁₈H₁₅NO₆S₂+Na]⁺ 428.0233, found 428.0239.

Methyl 5-(N-(phenylsulfonyl)phenylsulfonamido)furan-2-carboxylate (4c):

 $\sum_{\substack{M \in O \\ 0 \\ 4c}} \sum_{\substack{SO_2Ph \\ SO_2Ph \\ 4c}} SO_2Ph$ The reaction of 0.3 mmol of methyl furan-2-carboxylate (**3c**) with 0.6 mmol of NFSI in 2 mL of MeCN afforded 76% of **4c** after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 to 3:1, *v/v*) as the effluent. Colorless solid, m.p. 176-177 °C. ¹H NMR (CDCl₃, **400** MHz): $\delta = 8.01$ -7.99 (m, 4H), 7.72-7.68 (m, 2H), 7.60-7.56 (m, 4H), 7.17 (d, 1H, J = 3.5 Hz), 6.31 (d, 1H, J = 3.5 Hz), 3.88 (s, 3H) ppm; ¹³C NMR (CDCl₃, **100** MHz): $\delta = 158.18$, 144.11, 142.00, 138.60, 134.52, 129.17, 128.68, 118.75, 113.66, 52.14 ppm; HRMS *m/z* (ESI) calcd for [C₁₈H₁₅NO₇S₂+Na]⁺ 444.0182, found 444.0187.

The reaction of 0.3 mmol of benzo[b]thiophene (**3d**) with 0.6 mmol of NFSI in 2 mL of EtOAc afforded 62% of **4d** after flash chromatography on silica gel using petroleum ether and ethyl acetate (10:1, ν/ν) as the effluent. Colorless solid, m.p. 111-112 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.04-8.02$ (m, 4H), 7.75-7.68 (m, 4H), 7.59-7.55 (m, 4H), 7.41-7.34 (m, 2H), 7.02 (s, 1H) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 140.27$, 138.72, 136.72, 134.32, 134.17, 129.10, 128.79, 128.73, 126.09, 124.76, 124.75, 122.38 ppm; HRMS m/z (ESI) calcd for [C₂₀H₁₅NO₄S₃+Na]⁺ 452.0055, found 452.0063.

N-(Phenylsulfonyl)-N-(5-phenylthiophen-2-yl)benzenesulfonamide (4e):

The reaction of 0.3 mmol of 2-phenylthiophene (**3e**) with 0.6 mmol of NFSI in 2 mL of 1,4-dioxane afforded 87% of **4e** after flash chromatography on silica gel using petroleum ether and ethyl acetate (10:1, v/v) as the effluent. Colorless solid, m.p. 108-109 °C. ¹H NMR (CDCl₃, **400** MHz): $\delta = 8.04$ -8.02 (m, 4H), 7.69 (t, 2H, J = 7.5 Hz), 7.59-7.53 (m, 6H), 7.39-7.30 (m, 3H), 7.12 (d, 1H, J = 3.9 Hz), 6.70 (d, 1H, J = 3.9 Hz) ppm; ¹³C NMR (CDCl₃, **100** MHz): $\delta = 147.64$, 138.76, 134.23, 133.49, 132.59, 132.45, 129.07, 128.98, 128.75, 128.46, 125.93, 121.36 ppm; **HRMS** m/z (ESI) calcd for [C₂₂H₁₇NO₄S₃+Na]⁺ 478.0212, found 478.0220.

N-(5-Methylthiophen-2-yl)-*N*-(phenylsulfonyl)benzenesulfonamide (4f):

The reaction of 0.3 mmol of 2-methylthiophene (**3f**) with 0.6 mmol of NFSI in 2 mL of EtOAc afforded 82% of **4f** after flash chromatography on silica gel using petroleum ether and ethyl acetate (10:1, v/v) as the effluent. Colorless solid, m.p. 111-112 °C. ¹H NMR (CDCl₃, **400** MHz): $\delta = 8.00$ -7.98 (m, 4H), 7.69-7.65 (m, 2H), 7.56-7.53 (m, 4H), 6.58 (dd, 1H, J = 3.7 Hz, 1.0 Hz), 6.51 (d, 1H, J = 3.7 Hz), 2.45 (d, 3H, J = 0.7 Hz) ppm; ¹³C NMR (CDCl₃, **100** MHz): $\delta = 143.78$, 138.79, 134.10, 131.67, 130.66, 128.96, 128.65, 123.90, 15.99 ppm; HRMS m/z (ESI) calcd for [C₁₇H₁₅NO₄S₃+Na]⁺ 416.0055, found 416.0057.

N-(Phenylsulfonyl)-*N*-(5-(trimethylsilyl)thiophen-2-yl)benzenesulfonamide (4g):

The reaction of 0.3 mmol of trimethyl(thiophen-2-yl)silane (**3g**) with 1.2 mmol of NFSI in 2 mL of 1,4-dioxane afforded 72% of **4g** after flash chromatography on silica gel using petroleum ether and ethyl acetate (10:1, v/v) as the effluent. Colorless solid, m.p. 103-104 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.99-7.97$ (m, 4H), 7.68 (t, 2H, J = 7.5 Hz), 7.57-7.53 (m, 4H), 7.04 (d, 1H, J = 3.6 Hz), 6.75 (d, 1H, J = 3.6 Hz), 0.30 (s, 9H) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 145.63$, 138.79, 138.16, 134.12, 132.10, 128.97, 128.72, -0.33 ppm; HRMS *m*/*z* (ESI) calcd for [C₁₉H₂₁NO₄S₃Si+Na]⁺ 474.0294, found 474.0302.

The reaction of 0.3 mmol of 1-(thiophen-2-yl)ethan-1-one (**3h**) with 1.2 mmol of NFSI in 2 mL of EtOAc afforded 57% of **4h** after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 to 3:1, v/v) as the effluent. Colorless solid, m.p. 155-156 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.99-7.97$ (m, 4H), 7.71 (t, 2H, J = 7.5 Hz), 7.60-7.56 (m, 4H), 7.51 (d, 1H, J = 4.0 Hz), 6.77 (d, 1H, J = 4.0 Hz), 2.53 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 190.27$, 146.14, 141.02, 138.34, 134.53, 132.38, 130.26, 129.22, 128.71, 26.39 ppm; HRMS m/z (ESI) calcd for [C₁₈H₁₅NO₅S₃+Na]⁺ 444.0005, found 444.0013.

Methyl 1-Acetyl-5-(N-(phenylsulfonyl)phenylsulfonamido)-1H-pyrrole-2-carboxylate (4i):

Ethyl 1-Acetyl-5-(*N*-(phenylsulfonyl)phenylsulfonamido)-1*H*-pyrrole-2-carboxylate (4j):

The reaction of 0.3 mmol of ethyl 1-acetyl-1*H*-pyrrole-2-carboxylate (**3j**) with 0.6 mmol of NFSI in 2 mL of EtOAc afforded 82% of **4j** after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1, v/v) as the effluent. Colorless solid, m.p. 96-97 °C. ¹H NMR (CDCl₃, **400** MHz): $\delta = 8.01$ -7.99 (m, 4H), 7.70 (t, 2H, J = 7.5 Hz), 7.57-7.53 (m, 4H), 6.88 (d, 1H, J = 3.9 Hz), 5.86 (d, 1H, J = 3.9 Hz), 4.32 (q, 2H, J = 7.1 Hz), 2.48 (s, 3H), 1.35 (t, 3H, J = 7.1 Hz) ppm; ¹³C NMR (CDCl₃, **100** MHz): $\delta = 170.69$, 159.95, 137.72, 135.80, 134.46, 129.59, 128.70, 125.18, 124.98, 117.55, 114.24, 61.32, 28.22, 14.17 ppm; HRMS m/z (ESI) calcd for $[C_{21}H_{20}N_2O_7S_2+Na]^+$ 499.0604, found 499.0609.

Ethyl 1-Acetyl-3-methyl-5-(N-(phenylsulfonyl)phenylsulfonamido)-1H-pyrrole-2-carboxylate (4k):

 $\underset{AC}{Me} \underbrace{Ne}_{AC} \underbrace{Ne}_{SO_2Ph} \underbrace{Ne}_{SO_2Ph} \\ \text{The reaction of 0.3 mmol of ethyl 1-acetyl-3-methyl-1$ *H*-pyrrole-2-carboxylate (**3k**) with 0.6 mmol of NFSI in 2 mL of EtOAc afforded 90% of**4k**after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1, <math>v/v) as the effluent. Colorless solid, m.p. 131-132 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.01-7.99$ (m, 4H), 7.69 (t, 2H, J = 7.5 Hz), 7.57-7.53 (m, 4H), 5.73 (s, 1H), 4.32 (q, 2H, J = 7.2 Hz), 2.39 (s, 3H), 2.26 (s, 3H), 1.35 (t, 3H, J = 7.2 Hz) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 170.47$, 160.73, 137.81, 134.41, 129.72, 129.52, 128.66, 123.57, 122.29, 116.71, 61.09, 28.07, 14.16, 13.00 ppm; HRMS m/z (ESI) calcd for [C₂₂H₂₂N₂O₇S₂+Na]⁺ 513.0761, found 513.0757.

Methyl 1-Acetyl-2-(N-(phenylsulfonyl)phenylsulfonamido)-1H-indole-3-carboxylate (41):

The reaction of 0.3 mmol of methyl 1-acetyl-1*H*-indole-3-carboxylate (**3**l) with 0.6 mmol of NFSI in 2 mL of EtOAc afforded 87% of **4**l after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 to 3:1, v/v) as the effluent. Light yellow oil. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.31$ (d, 1H, *J*

= 7.9 Hz), 8.06-8.04 (m, 4H), 7.77 (d, 1H, J = 8.4 Hz), 7.68 (t, 2H, J = 7.5 Hz), 7.56-7.52 (m, 4H), 7.46-7.36 (m, 2H), 3.19 (s, 3H), 2.46 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 169.46$, 162.33, 138.92, 134.25, 134.04, 129.92, 128.76, 128.60, 126.69, 125.47, 124.17, 122.82, 114.28, 113.27, 50.64, 26.66 ppm; HRMS *m*/*z* (ESI) calcd for [C₂₄H₂₀N₂O₇S₂+Na]⁺ 535.0604, found 535.0604.

Ethyl 1-Acetyl-2-(N-(phenylsulfonyl)phenylsulfonamido)-1H-indole-3-carboxylate (4m):

The reaction of 0.3 mmol of ethyl 1-acetyl-1*H*-indole-3-carboxylate (**3m**) with 0.6 mmol of NFSI in 2 mL of EtOAc afforded 95% of **4m** after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 to 3:1, v/v) as the effluent. Colorless oil. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.30$ (d, 1H, J = 7.9 Hz), 8.06-8.04 (m, 4H), 7.76 (d, 1H, J = 8.4 Hz), 7.68 (t, 2H, J = 7.5 Hz), 7.56-7.53 (m, 4H), 7.46-7.36 (m, 2H), 3.73 (q, 2H, J = 7.1 Hz), 2.46 (s, 3H), 1.09 (t, 3H, J = 7.1 Hz) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 169.46$, 162.02, 139.03, 134.21, 134.03, 129.90, 128.75, 128.60, 126.63, 125.53, 124.10, 123.00, 114.26, 113.72, 60.48, 26.71, 13.88 ppm; HRMS m/z (ESI) calcd for [C₂₅H₂₂N₂O₇S₂+Na]⁺ 549.0761, found 549.0756.

Methyl 1-Acetyl-3-(N-(phenylsulfonyl)phenylsulfonamido)-1H-indole-2-carboxylate (4n):

The reaction of 0.3 mmol of methyl 1-acetyl-1*H*-indole-2-carboxylate (**3n**) with 1.2 mmol of NFSI in 2 mL of EtOAc afforded 71% of **4n** after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 to 3:1, ν/ν) as the effluent. Light yellow solid, m.p. 158-159 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.05-7.98$ (m, 5H), 7.66 (t, 2H, J = 7.5 Hz), 7.53-7.49 (m, 4H), 7.40 (t, 1H, J = 7.5 Hz), 7.10 (t, 1H, J = 7.5 Hz), 6.99 (d, 1H, J = 8.0 Hz), 3.44 (s, 3H), 2.59 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 170.04$, 160.08, 139.21, 135.41, 134.12, 129.16, 129.11, 128.76, 128.16, 125.89, 124.09, 120.75, 120.57, 114.76, 52.39, 27.01 ppm; HRMS *m/z* (ESI) calcd for [C₂₄H₂₀N₂O₇S₂+Na]⁺ 535.0604, found 535.0604.

Ethyl 1-Acetyl-3-(N-(phenylsulfonyl)phenylsulfonamido)-1H-indole-2-carboxylate (40):

The reaction of 0.3 mmol of ethyl 1-acetyl-1*H*-indole-2-carboxylate (**30**) with 1.2 mmol of NFSI in 2 mL of EtOAc afforded 83% of **40** after flash chromatography on silica gel using petroleum ether and ethyl acetate

(6:1 to 3:1, v/v) as the effluent. Light yellow solid, m.p. 145-146 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.02-7.98$ (m, 5H), 7.65 (t, 2H, J = 7.5 Hz), 7.51-7.47 (m, 4H), 7.39-7.35 (m, 1H), 7.07 (t, 1H, J = 7.5 Hz), 6.92 (d, 1H, J = 8.0 Hz), 3.96 (q, 2H, J = 7.2 Hz), 2.59 (s, 3H), 1.08 (t, 3H, J = 7.2 Hz) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 170.04$, 159.86, 139.25, 135.23, 134.09, 129.65, 129.14, 128.73, 127.95, 125.88, 123.95, 120.73, 120.07, 114.68, 62.26, 27.00, 13.67 ppm; HRMS *m/z* (ESI) calcd for $[C_{25}H_{22}N_2O_7S_2+Na]^+$ 549.0761, found 549.0773.

Ethyl 1-Acetyl-5-fluoro-3-(N-(phenylsulfonyl)phenylsulfonamido)-1H-indole-2-carboxylate (4p):

The reaction of 0.3 mmol of ethyl 1-acetyl-5-fluoro-1*H*-indole-2-carboxylate (**3p**) with 0.6 mmol of PhO₂S -SO₂Ph NFSI in 2 mL of EtOAc afforded 62% of 4p after flash chromatography on silica gel using petroleum CO₂Et Àс ether and ethyl acetate (6:1, v/v) as the effluent. Light yellow solid, m.p. 142-143 °C. ¹H NMR (CDCl₃, 4p **400 MHz**): $\delta = 8.05$ (dd, 1H, J = 9.0 Hz, 4.2 Hz), 8.01-7.98 (m, 4H), 7.68 (t, 2H, J = 7.5 Hz), 7.55-7.51 (m, 4H), 7.11 (td, 1H, J = 9.0 Hz, 2.5 Hz), 6.52 (dd, 1H, J = 8.3 Hz, 2.5 Hz), 3.98 (q, 2H, J = 7.2 Hz), 2.58 (s, 3H), 1.09 (t, 3H, J = 7.2 Hz) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 169.89$, 159.66, 159.59 (d, J = 241.8 Hz), 139.17, 134.30, 131.36 (d, J = 68.4 Hz), 129.19, 128.85, 126.96 (d, J = 9.9 Hz), 119.68 (d, J = 4.7 Hz), 116.54 (d, J = 25.5 Hz), 116.53 (d, J = 8.8 Hz), 105.81 (d, J = 25.5 Hz), 116.53 (d, J = 8.8 Hz), 105.81 (d, J = 10.5 Hz), 105.81 (= 24.9 Hz), 62.54, 26.92, 13.72 ppm; **HRMS** m/z (ESI) calcd for $[C_{25}H_{21}FN_2O_7S_2+Na]^+$ 567.0666, found 567.0662.

Ethyl 1-Acetyl-5-chloro-3-(N-(phenylsulfonyl)phenylsulfonamido)-1H-indole-2-carboxylate (4q):

PhO₂S --SO₂Ph CI CO₂Et Ъс 4q

The reaction of 0.3 mmol of ethyl 1-acetyl-5-chloro-1H-indole-2-carboxylate (3q) with 0.6 mmol of NFSI in 2 mL of EtOAc afforded 63% of 4q after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1, v/v) as the effluent. Light yellow solid, m.p. 143-144 °C. ¹H NMR (CDCl₃, **400 MHz**): $\delta = 8.00-7.98$ (m, 5H), 7.69 (t, 2H, J = 7.5 Hz), 7.55-7.51 (m, 4H), 7.31 (dd, 1H, J = 9.0 Hz, 2.1 Hz), 6.74 (d,

169.84, 159.60, 139.06, 135.79, 134.36, 133.59, 130.76, 129.98, 129.21, 128.83, 128.33, 127.00, 120.03, 119.20, 116.21, 62.57, 26.92, 13.71 ppm; **HRMS** m/z (ESI) calcd for $[C_{25}H_{21}ClN_2O_7S_2+Na]^+$ 583.0371, found 583.0364.

1H, J = 1.7 Hz), 3.99 (q, 2H, J = 7.2 Hz), 2.58 (s, 3H), 1.09 (t, 3H, J = 7.2 Hz) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta =$

Ethyl 1-Acetyl-6-chloro-3-(N-(phenylsulfonyl)phenylsulfonamido)-1H-indole-2-carboxylate (4r):

The reaction of 0.3 mmol of ethyl 1-acetyl-6-chloro-1*H*-indole-2-carboxylate (3r) with 1.2 mmol of NFSI in 2 mL of EtOAc afforded 76% of 4r after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1, ν/ν) as the effluent. White solid, m.p. 167-168 °C. ¹H NMR (CDCl₃, 400

MHz): $\delta = 8.13$ (d, 1H, J = 1.6 Hz), 8.00-7.98 (m, 4H), 7.68 (t, 2H, J = 7.5 Hz), 7.54-7.50 (m, 4H), 7.06 (dd, 1H, J = 8.5 Hz, 1.6 Hz), 6.82 (d, 1H, J = 8.5 Hz), 3.96 (q, 2H, J = 7.2 Hz), 2.57 (s, 3H), 1.08 (t, 3H, J = 7.2 Hz) ppm; ¹³C NMR (CDCl₃, **100** MHz): $\delta = 169.97, 159.63, 139.18, 135.80, 135.60, 134.25, 129.99, 129.17, 128.87, 124.97, 124.40, 121.62, 120.05, 120.$

115.15, 62.52, 27.01, 13.71 ppm; **HRMS** m/z (ESI) calcd for $[C_{25}H_{21}CIN_2O_7S_2+Na]^+$ 583.0371, found 583.0370.

N-(4-Oxo-2-phenyl-4H-chromen-3-yl)-N-(phenylsulfonyl)benzenesulfonamide (4s):

afforded 58% of 4s after flash chromatography on silica gel using petroleum ether and ethyl acetate (6:1 4s to 3:1, v/v) as the effluent. Colorless solid, m.p. 205-206 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.14$ (dd, 1H, J = 7.9 Hz, 1.3 Hz), 7.91-7.89 (m, 2H), 7.84-7.81 (m, 4H), 7.74-7.70 (m, 1H), 7.55-7.51 (m, 3H), 7.43 (t, 2H, J = 7.5 Hz), 7.37-7.32 (m, 6H) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 174.53$, 168.24, 155.54, 139.18, 134.41, 133.74, 131.37, 130.85, 129.58, 129.02, 128.33, 128.23, 126.37, 125.81, 123.47, 119.25, 118.05 ppm; **HRMS** m/z (ESI) calcd for [C₂₇H₁₉NO₆S₂+Na]⁺ 540.0546, found 540.0548.

The reaction of 0.3 mmol of 2-phenyl-4H-chromen-4-one (3s) with 0.6 mmol of NFSI in 2 mL of DCE

N-Mesityl-*N*-(phenylsulfonyl)benzenesulfonamide (4t):

SO₂Ph The reaction of 0.3 mmol of mesitylene (3t) with 0.6 mmol of NFSI in 2 mL of EtOAc afforded 41% of SO₂Ph Me 4t after flash chromatography on silica gel using petroleum ether and ethyl acetate (10:1, v/v) as the 4t effluent. White solid, m.p. 165-166 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.05-8.03$ (m, 4H), 7.68-7.65 (m, 2H), 7.56-7.52 (m, 4H), 6.87 (s, 2H), 2.28 (s, 3H), 1.81 (s, 6H) ppm; ¹³C NMR (CDCl₃, 100 MHz): $\delta = 140.38$, 139.81, 139.74, 133.98, 130.00, 129.29, 128.84, 128.11, 126.62, 21.04, 19.04 ppm; HRMS m/z (ESI) calcd for [C₂₁H₂₁NO₄S₂+Na]⁺ 438.0804, found 438.0808.

Competition Experiments between Electron-rich/deficient Arenes

Scheme S1. Competitive experiments

Typical Procedure: To a reaction tube charged with NFSI (126 mg, 0.4 mmol) was added a solution of oxazole **1b** (0.25 mmol) and **1d** (0.25 mmol) in EtOAc (1 mL) under argon (1 atm). The reaction mixture was stirred at 25 °C, and then a solution of TEMPO (11.7 mg, 0.075 mmol, 15 mol%) in EtOAc (1 mL) was added. After stirring at 25 °C for 24 hours, the electron-rich product **2b** was generated predominantly, while only trace **2d** was observed on TLC. Then the mixture was concentrated *in vacuo* to give dark residue, which was purified by flash chromatography using petroleum ether and ethyl acetate as the effluent (6:1 to 3:1, v/v) on silica gel to afford 109.7 mg of aminated oxazole **2b** (0.208 mmol, 83.2%), and its structure was proved by ¹H NMR, ¹³C NMR and HRMS.

To a reaction tube charged with NFSI (126 mg, 0.4 mmol) was added a solution of thiophene **3f** (0.25 mmol) and **3h** (0.25 mmol) in EtOAc (1 mL) under argon (1 atm). The reaction mixture was stirred at 25 °C, and then a solution of TEMPO (11.7 mg, 0.075 mmol, 15 mol%) in EtOAc (1 mL) was added. After stirring at 25 °C for 24 hours, the electron-rich product **4f** was generated predominantly, while only trace **4h** was observed on TLC. Then the mixture was concentrated *in vacuo* to give dark residue, which was purified by flash chromatography using petroleum ether and ethyl acetate as the effluent (15:1 to 3:1, v/v) on silica gel to afford 84.4 mg of aminated thiophene **4f** (0.215 mmol, 86.0%) and 5.9 mg of aminated thiphene **4h** (0.014 mmol, 5.6%). Their structures were proved by ¹H NMR, ¹³C NMR and HRMS.

Deuterium Exchange Experiment

Scheme S2. Deuterium exchange experiment on oxazole 1a

Typical Procedure: To a reaction tube charged with NFSI (378 mg, 1.2 mmol) was added a solution of oxazole **1a** (0.3 mmol) and deuterated water D_2O (60 mg, 3 mmol) in EtOAc (1 mL) under argon (1 atm). The reaction mixture was stirred at 25 °C, and then a solution of TEMPO (7.0mg, 0.045 mmol, 15 mol%) in EtOAc (1 mL) was added. After stirring at 25 °C for 6 hours, the mixture was concentrated *in vacuo* to give dark residue, which was purified by flash chromatography using petroleum ether and ethyl acetate as the effluent (6:1 to 3:1, v/v) on silica gel to afford 58.5 mg of aminated oxazole **2a** (0.117 mmol, 39.2%), and its structure was proved by ¹H NMR, ¹³C NMR and HRMS. Meanwhile, 34.4 mg of unreacted oxazole **1a** (0.169 mmol, 56.5%) was recovered, and its ¹H NMR spectrum suggested that no H/D exchange occurred.

Independent Kinetic Isotope Effect (KIE) Experiments

Scheme S3. Parallel KIE experiments between benzofuran 3a and C2-deuterated benzofuran 3a-d

Typical Procedure: To a reaction tube charged with NFSI (378 mg, 1.2 mmol) was added a solution of benzofuran **3a** or *C2*-deuterated benzofuran **3a**-*d* (0.3 mmol) in EtOAc (1 mL) under argon (1 atm). The reaction mixture was stirred at 25 °C, and then a solution of TEMPO (7.0mg, 0.045 mmol, 15 mol%) in EtOAc (1 mL) was added. After stirring at 25 °C for indicate time as shown in Table S1, the mixture was concentrated *in vacuo* to give dark residue, which was analyzed with ¹H NMR in CDCl₃ to determine the yields of aminated benzofuran **4a** for each reaction, using CH₂Br₂ as an internal standard. Thus, the corresponding slope, intercept and R² were calculated as shown in Table S2. Accordingly, the equations for these two reactions were acquired, and the KIE were determined to be 1.92.

Table 52. Results of parallel KIE experiments									
Time (min)	30	60	90	120	150	180	Slope	Intercept	RSQ
Yield of 4a from 3a (%)	13.23	20.19	26.06	32.10	41.03	46.50	0.2237	6.3607	0.9964
Yield of 4a from 3a - <i>d</i> (%)	7.38	11.92	14.34	18.84	21.87	25.02	0.1167	4.3067	0.9947
Equation for 4a from 3a : y = 0.2237x+6.3607		$R^2 = 0.9964$		y = yield (%)					
Equation for [D]-4a from 3a-d :		y = 0.1167x+4.3067			$R^2 = 0.9947$		x = time (min)		

Table S2. Results of parallel KIE experiments

 $k_{\rm H}/k_{\rm D} = 0.2237 / 0.1167 = 1.9169$

Deprotection Experiment

Scheme S4. Deprotection experiment of 2a

Typical Procedure: To a reaction tube charged with a solution of aminated oxazole **2a** (149.4 mg, 0.3 mmol) in DCE (1 mL) was slowly added a solution of TfOH (4.5 mmol) in DCE (1 mL) at room temperature. The reaction mixture was stirred at 90 °C for 8 hours, the mixture was cooled to room temperature, quenched with saturated NaHCO₃ (aq.), and concentrated *in vacuo* to give dark residue, which was purified by flash chromatography using petroleum ether and ethyl acetate as the effluent (3:1, v/v) on silica gel to afford 51.2 mg of 5-amino oxazole **5a** (0.235 mmol, 78.3%).

Methyl 5-amino-2-phenyloxazole-4-carboxylate (5a):

White solid, m.p. 185-186 °C. ¹H NMR (DMSO, 400 MHz): $\delta = 7.81-7.79$ (m, 2H), 7.52-7.43 (m, 5H), ^{NH2} ^{Sa} 3.75 (s, 3H) ppm; ¹³C NMR (DMSO, 100 MHz): $\delta = 163.23$, 161.07, 149.05, 130.02, 129.51, 127.10, 125.28, 103.80, 50.94 ppm; HRMS m/z (ESI) calcd for [C₁₁H₁₀N₂O₃+H]⁺ 219.0764, found 219.0766.

