Fabrication of Protonated g-C₃N₄ Nanosheets as Promising Proton Conductive Materials

Table of contents

1.	Material and methods2
2.	PXRD patterns of $g-C_3N_4$ and protonated $g-C_3N_4$ nano-sheets2
3.	TEM images of protonated g-C $_3N_4$ nanosheets3
4.	FT-IR spectra of g-C $_3N_4$ and protonated g-C $_3N_4$ 3
5.	High resolution XPS spectra4
6.	Geometry optimization results4
7.	The TG curves5
8.	Nyquist plots of g-C $_3N_4$ at room temperature and 98% RH5
9.	Activation energies (Ea)6

1. Material and methods

All chemicals were obtained from commercial sources and used as received without further purification. The g-C₃N₄ used in this work was prepared by the literature method of "*Adv. Funct. Mater.*, 2017, **27**, 1605785". Powder X-ray diffraction data were collected using Rigaku D/MAX-rA diffractometer with Cu K α radiation ($\lambda =$ 1.5418 Å). IR spectra (KBr pellets) were conducted on a Nicolet Impact 410 FTIR spectrometer in the range of 400-4000 cm⁻¹. Themo-gravimetric analysis with heating from room temperature to 800 °C was performed using a Netzsch STA 449c analyzer in a flow of N₂ with a heating rate of 10 °C min⁻¹. Elemental analysis (C, H, and N) was measured with a Euro EA3000 analyzer. The gas adsorption measurements were performed on ASAP 2020 apparatuses, after the sample was degassed for 4 h at 180 °C.

2. PXRD patterns of $g-C_3N_4$ and protonated $g-C_3N_4$ nano-sheets

Figure S1. The PXRD patterns of $g-C_3N_4$ and protonated $g-C_3N_4$ nanosheets.

3. TEM images of protonated $g-C_3N_4$ nanosheets

Figure S2. (a)&(b) TEM images of protonated $\mathrm{g-C_3N_4}$ nanosheet.

4. FT-IR spectra of $g-C_3N_4$ and protonated $g-C_3N_4$

Figure S3. FT-IR spectra of $g{-}C_3N_4$ and protonated $g{-}C_3N_4.$

5. High resolution XPS spectra

Figure S4. (a) & (b) the high resolution XPS C1s and N1s spectra of $g-C_3N_4$ and protonated $g-C_3N_4$ nanosheet, respectively.

6. Geometry optimization results

Figure S5. Geometry optimization results of protonated C_3N_4 when the protonated N was at A site(a) and B site(b).

7. The TG curves

Figure S6. The TG curves of $g\text{-}C_3N_4$ and protonated $g\text{-}C_3N_4$ nanosheet.

8. Nyquist plots of $g-C_3N_4$ at room temperature and 98% RH

Figure S7. Nyquist plots of $g-C_3N_4$ under 98 % relative humidity and room temperature.

9. Activation energies (Ea)

Figure S8. (a) & (b) the activation energies of $g-C_3N_4$ and protonated $g-C_3N_4$ under 98% RH from 25 to 80 °C.