Viral Capsid-like Titania for Selective Enrichment of Phosphorylated Peptides

Panpan Cheng ^a, Jianjian Lin ^b, Xiaoyan Qiu ^c, Wanna Zhang ^a, Juan Cheng ^c, Yong Wang ^a, Nan Li ^a, Jingying Yang^a, Haizhou Yu ^{*a} Correspondence should be addressed to H. Z. Yu

(ias_hzyu@njtech.edu.cn)

- a. Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Nanjing Tech University, Nanjing 211816, P.R.China. E-mail: ias_hzyu@njtech.edu.cn
- b. Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R.China.
- c. Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Institution Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211800, P.R.China.

Experimental

Materials. Poly(styrene-*b*-acrylic acid) (PS_{144} -*b*-PAA₂₂) was supplied by Polymer Source. Toluene (purity≥99.5%), hydrochloric acid (HCl, 37%), acetonitrile (ACN) (purity ≥ 99.0%) and trifluoroacetic acid (TFA) (purity≥99.0%) were obtained from Shanghai Ling Feng. Methanol (purity≥99.9%), titanium butoxide (Ti(OC₄H₉)₄) (purity≥99.0%) and ammonium bicarbonate (NH₄HCO₃) (putity≥99.995%) were purchased from Aladdin. Trypsin from bovine, β-casein from bovine milk and 2,5dihydroxybenzoicacid (DHB) were obtained from Sigma-Aldrich (St Louis, MO, USA). 5% ammonia (AR). Water used in experiments was purified using a Milli-Qsystem.

Synthesis of Self-assembled PS₁₄₄-b-PAA₂₂ Microsparticles and VCL-TiO₂. To synthesize the PS_{144} -*b*-PAA₂₂ microparticles, 20 mg polymer was dissolved in a mixture of 0.6 ml toluene and 1.8 ml methanol. The mixture was magnetically stirred (ca. 800 r.p.m) at room temperature for 10 h. Then, 5 times volume of methanol was added to guench the structure. The as-prepared PS₁₄₄-*b*-PAA₂₂ microparticles were redispersed in methanol (10 ml), followed by the slow addition of 400 μ l tetrabutyl titanate with stirring. After one hour, 200 µl of 37% HCl was injected and aged for 2 days. The resulting product was collected by centrifugation, and washed with methanol. The final micro-sized VCL-TiO₂ were obtained after calcinating the white powder at 500°C.

Characterization of VCL-TiO₂. Scanning electron microscope (SEM, QUANTA FEG 250) was used to observe morphology of the VCL-TiO₂ with the accelerating voltage of 10 kV. Transmission electron microscopy (TEM) images were obtained by using a TALOS L120C transmission electron microscope (TALOS, Czech Republic). TEM operated at 120 kV was used to investigate the interior structure of the VCL-TiO₂. Highresolution transmission electron microscopy (HRTEM, JEM-2100F) was used to observe the lattice structure of VCL-TiO₂. Field emission scanning electron microscopy (FESEM) images were obtained by using S-4800 field emission scanning electron microscope (Hitachi, Japan). Powder Xray diffraction (PXRD) patterns were collected on aBruker D8 Advance Xray diffractometer using CuK α radiation under 0.154 nmk value, and operated at 40 kV and 40 mA. Nitrogen adsorption-desorption isotherms were obtained on an Autosorb-iQ apparatus (Micromeritics, USA). The specific surface area, pore size distribution and porevolume were determined by Brunauer-Emmett-Teller (BET) method and Barrett–Joyner–Halenda (BJH) model. Fourier transform infrared (FTIR) spectra were recorded on a Thermo Fisher Scientific Nicolet iS10 Spectrometer using spectroscopic grade KBr.

Selective Enrichment of Phosphorylated Peptides using VCL-TiO₂. 5 mg β -casein in 5 ml NH₄HCO₃ (50 mM) and 5 mg trypsin in 5 ml of HCl (1 mM) solution were mixed at a ratio of 50:1 (vol : vol) and digested at 37°C for

12 hours. The obtained peptide solution was placed at -20°C before use. The VCL-TiO₂ was suspended in the resulting peptide solution for the enrichment. The phosphopeptide-enriched VCL-TiO₂ was separated from the mixed solution by centrifugation, and then washed three times with 1 ml of loading buffer (50% ACN containing 1% TFA) to remove nonspecifically adsorbed peptides. The captured phosphopeptide was eluted with 1 ml of a 5% aqueous ammonia solution for 15 min. The supernatant was collected and stored at -20°C. MALDI-TOF-MS analysis was performed at Autoflex speed. The eluted supernatant (1.0 µl) was dropped on a MALDI target, air-dried at room temperature, and then dropped into a 1.0 µl of DHB matrix solution (50% methanol, 50% acetonitrile). A positive ion reflector mode was performed, and the spectrum of each spot was obtained by accumulating 2000 laser irradiations.

Supporting Results

Figure S1. Molecular formula of block copolymer PS_{144} -*b*-PAA₂₂.

Figure S2. (a, b, c) SEM, TEM and cross-sectional images of selfassembled PS_{144} -*b*-PAA₂₂ microparticles. (d, e) SEM and TEM images of PS_{144} -*b*-PAA₂₂/TiO₂ hybrid before calcination. (f) SEM image of VCL-TiO₂ at low magnification.

Figure S3. FT-IR spectra of (a) PS_{144} -*b*-PAA₂₂ microparticles, (b) PS_{144} -*b*-PAA₂₂/TiO₂ hybrid and (c) VCL-TiO₂.

Figure S4. Histogram shows the diameter and distribution of the VCL- $\ensuremath{\text{TiO}_2}\xspace$.

Figure S6. FESEM images of some fascinating intermediate structures of

 TiO_2 . The scale bar represents 100 nm.

Figure S7. MALDI-TOF-MS spectra of the tryptic digest of β -casein. After enrichment by the VCL-TiO₂ particles with different enrichment time (a) 0 h, (b) 0.5 h, (c) 1 h. The peaks of phosphopeptides are marked with "*".