Ring Opening of Epoxides with [¹⁸F]FeF Species to Produce [¹⁸F]Fluorohydrin PET Imaging Agents

Stefan Verhoog,^{a,b†} Allen F. Brooks,^{a†} Wade P. Winton,^a Benjamin L. Viglianti,^{a,c} Melanie S. Sanford,^d Peter. J. H. Scott^a

^aDivision of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America

^bCurrent address : Merck & Co., Translational Biomarkers, West Point, Pennsylvania 19486, United States of America

^c Nuclear Medicine Service, Ann Arbor Veterans Administration, Ann Arbor, Michigan 48110, United States of America

^dDepartment of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, United States of America † Authors Contributed equally to this work.

Contents

1.	General Considerations, Methods and Materials	3
2.	Experimental Procedures and Characterisation Data	3
	(3 <i>S</i> , 5 <i>R</i> , 6 <i>R</i> , 8 <i>S</i> , 9 <i>S</i> , 10 <i>R</i> , 13 <i>R</i> , 14 <i>S</i> , 17 <i>R</i>)-5-fluoro-10,13-dimethyl-17-((<i>R</i>)-6-methylheptan-2-yl)hexadecahydro-1 <i>H</i> -cyclopenta[a]phenanthrene-3,6-diol (1a)	3
	(E)-4-(3-fluoro-2-hydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-one (2a)	5
	2-(4-chlorophenethyl)-2-fluoro-3,3-dimethylbutan-1-ol (3a)	5
	6-fluoro-6,10,10-trimethyl-2-methylenebicyclo[7.2.0]undecan-5-ol (4a)	6
3.	Radiochemistry	6
	3.1 General Experimental Information	6
	3.2 Elution Experiments	6
	3.2.1 Preparation of aqueous Fluorine-18 for elution studies	6
	3.2.2 General Elution Procedure using solutions of acid in H ₂ O.	7
	3.2.3 General Elution Procedure using solutions of acid in organic solvent.	7
	3.2.4 Elution Study Results using MeSO ₃ H in H ₂ O	7
	3.2.5 Elution Study Results using acids of different strengths	8
	3.2.6 Elution results using solutions of MeSO ₃ H in various organic solvents	10
	3.3 ¹⁸ F-Fluorination/ring opening of epoxides	11
	3.3.1 ¹⁸ F-Production Curve	11
	3.3.2 Reaction Optimization General Procedure	12
	3.3.3 Isolation Procedures	13
	3.4 Calibration curves for determination of Molar Activity (A _m)	24
	3.4.1 Molar activity of (<i>E</i>)-4-(3-[¹⁸ F]-fluoro-2-hydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-one [¹⁸ F]2a	e, 24
	3.4.2 Molar Activity of (1 <i>S</i> ,9 <i>R</i>)-6-[¹⁸ F]-fluoro-6,10,10-trimethyl-2- methylenebicyclo[7.2.0]undecan-5-ol, [¹⁸ F]4a	25
	3.5 Attempted synthesis of [18F]2a using [18F]KF/K _{2.2.2}	25
4.	In vivo imaging experiments with 5-[18F]fluoro-6-hydroxy-cholesterol ([18F]1a)	26
5.	NMR Spectra	29

1. General Considerations, Methods and Materials

¹H NMR spectra were obtained on a Varian 400 MHz MR NMR (399.7 MHz for 1H, 100.5 MHz for ¹³C and 376.1 MHz for 19F) and Varian 500 MHz VNMRS (499.5 MHz for 1H, 125.6 MHz for ¹³C) spectrometers. Chemical shifts are reported in parts per million (ppm) and referenced to tetramethylsilane as in internal standard (¹H: $\delta = 0.00$) or residual solvent peak (CDCl₃: 1H: $\delta = 7.26$ ppm, ¹³C: δ = 77.16 ppm). ¹⁹F NMR spectra are referenced to an external standard trichlorofluoromethane (CFCl₃: $\delta = 0.00$ ppm for ¹⁹F). NMR spectra were recorded at room temperature. The abbreviations for ¹H and ¹⁹F multiplicities are reported as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of doublets of doublets (ddd), doublet of triplets (dt), triplet of doublets (td), and multiplet (m). Broad signals are indicated by "br". Coupling constants (J) are reported in hertz (Hz). High-resolution mass spectra were recorded on a Micromass AutoSpec Ultima Magnetic Sector mass spectrometer. Thin layer chromatography (TLC) was performed on Merck KGaA. pre-coated TLC Silica gel 60 F254 plates. Flash column chromatography was conducted using a Biotage Isolera Prime system with SNAP KP-Sil column cartridges (10 g, 25 g, 100 g). Glass backed thin layer chromatography (TLC) plates coated with silica gel 60F254 were used for normal- and radio-TLC analysis and were purchased from EMD-Millipore. Normal TLC plates were visualized with KMnO₄ or anisaldehyde stain.

Reagents were purchased from Sigma Aldrich, Alfa Aesar, Oakwood, Fisher Scientific, EMD Millipore Corporation and Acros Organics. Ultrapure water was obtained from a Millipore MilliQ Gradient A10 system. Sterile vials were purchased from Hollister-Stier.

<u>Safety and hazards</u>: All hazardous laboratory chemicals were used by trained personnel under the supervision of Environmental Health and Safety at the University of Michigan.

<u>Caution!</u> Proper precautions must be used when handling anhydrous HF and its complexes such as pyridinium poly(hydrogen fluoride). Hydrogen fluoride and its complexes are extremely corrosive to human tissue, and contact with skin will result in painful, slow-healing burns. Laboratory work with HF and its complexes should be conducted only in an efficient hood, with the operator wearing a full-face shield and suitable protective clothing. See G. A. Olah and M. Watkins, *Org. Synth.*, **1978**, *58*, 75 and C. M. Sharts and W. A. Sheppard, *Org. React.*, **1974**, *21*(192), 220-223.

2. Experimental Procedures and Characterisation Data

(3*S*, 5*R*, 6*R*, 8*S*, 9*S*, 10*R*, 13*R*, 14*S*, 17*R*)-5-fluoro-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)hexadecahydro-1*H*-cyclopenta[a]phenanthrene-3,6-diol (1a)

A 15 mL falcon tube was charged with 5,6-epoxycholesterol¹ (201 mg, 0.50 mmol; $(5\alpha,6\alpha)$: $(5\beta,6\beta) = 11:89$) and DCM (1.5 mL) was added. The resulting solution was cooled in an ice-bath and HF/pyridine 65-70 %w/w (140 µL, 5 mmol) was added in one portion after which the cloudy mixture was vigorously stirred at 0 °C for 60 min. The crude reaction mixture was carefully poured into a mixture of ice and sat. NaHCO₃ solution (25 mL) and extracted with DCM (3 x 15 mL). The organic layers were washed with brine (25 mL), dried over Na₂SO₄, and concentrated in vacuo. Automated silica gel column chromatography (KP-Sil 10g column, eluent DCM/MeOH 97:3) gave the title compound as a white solid (81 mg, 38%). (¹H, 400 MHz, CDCl₃) δ 4.08 – 3.95 (m, 1H), 3.73 (br. s, 1H), 2.20 – 1.96 (m, 2H), 1.85 (tt, *J* = 13.8, 4.6 Hz, 3H), 1.76 – 1.44 (m, 11H), 1.44 – 1.20 (m, 5H), 1.19 – 1.03 (m, 10H), 0.90

(d, J = 6.4 Hz, 3H), 0.86 (dd, J = 6.6, 2.4 Hz, 6H), 0.68 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 99.1 (d, J = 166.7 Hz), 73.2 (d, J = 35.5 Hz), 67.4 (d, J = 4.3 Hz), 56.2, 55.7, 45.9, 42.7, 39.8, 39.5, 39.2 (d, J = 20.7 Hz), 38.3, 38.2, 36.1, 35.8, 34.9, 32.3, 30.6, 29.7, 28.1 (d, J = 23.2 Hz), 24.1, 23.8, 22.8, 22.5, 20.9, 18.7, 16.6 (d, J = 7.0 Hz), 12.1; ¹⁹F NMR, 376 MHz, CDCl₃) δ -159.8 (br. d, J = 43.3 Hz). IR (neat) v 3558, 3425, 2936, 2865, 1042 ; HRMS (ESI) for C₂₇H₄₇FNaO₂ [M+Na]⁺ requires 445.3452 found 445.4351; Mp: 177-178°C (dec.).

The trans opening of the epoxide was confirmed by treatment of **1a** with KOtBu, described by Henbest and Wrigley,² as follows :

To a vial under argon charged with (3*S*, 5*R*, 6*R*, 8*S*, 9*S*, 10*R*, 13*R*, 14*S*, 17*R*)-5-fluoro-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)hexadecahydro-1*H*-cyclopenta[a]phenanthrene-3,6-diol **1a** (20 mg, 0.047 mmol) and KOtBu (45 mg, 0.40 mmol) was added tBuOH (0.40 mL) and the resulting yellow mixture was stirred overnight (16 hrs) at room temperature. The reaction was quenched with sat. NH₄Cl solution (10 mL) and extracted with Et₂O (3 x 10 mL). The organic layers were washed with H₂O (10 mL), dried (Na₂SO₄), filtered and evaporated to give a colorless oil (18 mg). The ¹H NMR showed 5β,6β-epoxycholesterol as the main product, with the characteristic signal from the 6α-hydrogen at 3.05 ppm (d, J = 2.6 Hz).^{1b} Only a very small signal (approx. 1%) was found for the 6β-hydrogen of 5α,6α-epoxycholesterol at 2.89 ppm (d, J = 4.4 Hz).^{1b} The formation of 5β,6β-epoxycholesterol confirms the proposed structure of **1a**.

¹ a) Syamala, S.M.; Das, J.; Baskaran, S.; Chandrasekaran, S. *J. Org. Chem.* **1992**, *57*, 1928-1930; b) Bisogno, F.R.; Orden, A.A.; Pranzoni, C.A.; Cifuente, D.A.; Giordano, O.S.; Sanz, M. K. *Steroids*, **2007**, *72*, 643-652.

² Henbest, H.B.; Wrigley, T.I. J. Chem. Soc. 1957, 4756-4758.

(E)-4-(3-fluoro-2-hydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-one (2a)

To a solution of 4-(1,3,3-trimethyl-7-oxabicyclo[4.1.0]hept-2-yl)-3-buten-2-one (technical grade, 104 mg, 0.50 mmol) in CHCl₃ (3.8 mL) in a 15 mL falcon tube was added Fe(acac)₃ (177 mg, 0.50 mmol) giving a dark-red solution. HF/pyridine (65-70 %w/w, 83.8 µl, 3.0 mmol) was added in one portion, upon which the solution turned dark brown followed by a gradual change to a pale brown light suspension. The mixture was stirred for 75 min at room temperature, after which it was quenched with a solution of 0.1M (NH₄)₂EDTA in H₂O and extracted with DCM (3 x 15 mL). The organic layers were washed with sat. NaHCO₃ (25 mL), brine (25 mL), dried over Na₂SO₄ and dry-loaded onto Celite[®]. Automated silica gel column chromatography (KP-Sil 10g column, eluent : gradient EtOAc/hexane 9:1 to 8:2) provided the title compound as a white solid (66 mg, 0.28 mmol, 58% yield). (1H, 500 MHz, **CDCl**₃) δ 6.94 (dd, J = 16.1, 10.6, 1H), 6.11 (d, J = 16.1 Hz, 1H), 4.31 (ddd, J = 47.4, 3.6, 1.8 Hz, 1H), 2.30 (s, 3H), 2.14 (dtdd, J = 46.7, 14.7, 4.2, 2.0 Hz, 1H), 2.05 (dd, J = 10.5, 2.2 Hz, 1H), 1.83 (ddq, J = 10.5, 2.2 Hz, 1H), 1.8 14.4, 10.4, 3.4 Hz, 1H), 1.61 (td, J = 14.0, 3.8 Hz, 2H), 1.36 – 1.23 (m, 2H), 1.19 (d, J = 2.9 Hz, 3H), 1.06 (s, 3H), 0.83 (s, 3H); (¹³C, 125 MHz, CDCl₃) δ 198.3, 145.3, 135.1, 94.2 (d, J = 176.2 Hz), 71.7 (d, J = 22.7 Hz), 53.5 (d, J = 1.6 Hz), 33.72 (d, J = 2.0 Hz), 33.67, 32.1, 27.7 (d, J = 2.3 Hz), 27.2, 23.1 (d, J = 20.7 Hz), 21.8; (¹⁹F NMR, 376 MHz, CDCl₃) δ -188.2 (ttt, J = 47.1, 11.5, 2.7 Hz, 1F); IR (neat) v 3467, 2958, 2923, 1660, 1630, 1257, 955; HRMS (ESI) for C₁₃H₂₁FNaO₂ [M+Na]⁺ requires 251.1418 found 251.1423; Mp: 101 - 103 °C.

2-(4-chlorophenethyl)-2-fluoro-3,3-dimethylbutan-1-ol (3a)

To a solution of 2-*tert*-butyl-2-[2-(4-chlorophenyl)ethyl]oxirane (0.24g, 1.0 mmol) in CHCl₃ (7.5 mL) in a 45 mL falcon tube was added Fe(acac)₃ (353 mg, 1.0 mmol) giving a dark-red solution. HF/pyridine (65-70 %w/w, 168 µl, 6.0 mmol) was added in one portion, upon which the solution turned dark brown followed by a gradual change to a pale yellow light suspension. The mixture was stirred for 90 min at room temperature, after which it was quenched with a solution of 0.1M (NH₄)₂EDTA in H₂O and extracted with DCM (3 x 15 mL). The organic layers were washed with sat. NaHCO₃ (25 mL), brine (25 mL), dried over Na₂SO₄ and evaporated *in vacuo* to give a yellow oil. Automated silica gel column chromatography (KP-Sil 10g column, eluent : gradient EtOAc/hexane 9:1 to 8:2) provided the title compound as a colorless oil (40 mg, 15% yield). (¹H, **500 MHz, CDCl**₃) δ 7.20 – 7.16 (m, 2H), 7.10 – 7.05 (m, 2H), 3.85 (td, *J* = 11.9, 4.3 Hz, 1H), 3.78 – 3.68 (m, 1H), 2.78 – 2.63 (m, 2H), 2.05 – 1.85 (m, 2H), 1.52 – 1.57(m, OH), 0.95 (d, *J* = 1.1 Hz, 9H); (¹³C, **126 MHz, CDCl**₃) δ 141.1, 131.6, 129.7, 128.5, 100.4 (d, *J* = 177.2 Hz), 63.5 (d, *J* = 28.6 Hz), 37.3 (d, *J* = 21.5 Hz), 33.8 (d, *J* = 22.8 Hz), 30.0 (d, *J* = 8.7 Hz), 25.5 (d, *J* = 5.2 Hz); (¹⁹F NMR, 376 MHz, CDCl₃) δ -173.5 – -173.8 (m, 1F). IR (neat) v 3405, 2965, 2876, 1491, 1092, 1041, 1014, 806; HRMS (ESI) for C₁₃H₂₁FNaO₂ [M+Na]⁺ requires 281.1079 found 281.082.

6-fluoro-6,10,10-trimethyl-2-methylenebicyclo[7.2.0]undecan-5-ol (4a)

To a solution of (-)-caryophyllene oxide (0.22 g, 1.0 mmol) in CHCl₃ (7.5 mL) in a 45 mL falcon tube was added Fe(acac)₃ (353 mg, 1.0 mmol) giving a dark-red solution. HF/pyridine (65-70 %w/w, 168 µl, 6.0 mmol) was added in one portion, upon which the solution turned dark brown followed by a gradual change to a pale yellow light suspension. The mixture was stirred for 60 min at room temperature, after which it was quenched with a solution of 0.1M (NH₄)₂EDTA in H₂O and extracted with DCM (3 x 15 mL). The organic layers were washed with sat. NaHCO₃ (25 mL), brine (25 mL), dried over Na₂SO₄ and dry-loaded onto Celite[®]. Automated silica gel column chromatography (KP-Sil 25g column, eluent : gradient EtOAc/hexane 95:5 to 9:1) provided the title compound as a colorless oil (24 mg, 10% yield). (¹H, **500 MHz, CDCl₃**) δ 4.94 (br. d, J = 7.2 Hz, 2H), 3.87 – 3.81 (m, 1H), 2.49 – 2.40 (dtd, J = 14.0, 7.0, 6.6, 2.2 Hz, 1H), 2.40 – 2.31 (m, 1H), 2.20 (br. d, J = 5.8 Hz, 1H), 2.08 – 1.91 (m, 2H), 1.83 – 1.56 (m, 8H), 1.38 – 1.23 (m, 5H), 0.99 (dd, J = 15.2, 2.4 Hz, 6H); (¹³C, **125 MHz, CDCl₃**) δ 151.5, 110.8, 100.5 (d, J = 164.6 Hz), 72.0 (d, J = 20.1 Hz), 56.6, 42.1, 38.5 (d, J = 23.8 Hz), 36.2, 34.3, 34.1, 31.4 (d, J = 5.8 Hz), 30.0, 22.7 (d, J = 9.0 Hz), 22.0, 18.9, 18.7; (¹⁹F NMR, 470 MHz, CDCl₃) δ -141.2 – 141.7 (m, 1F). **IR (neat)** v 3452, 2929, 2862, 1634, 1082, 884; HRMS (ESI) for C₁₃H₂₁FNaO₂ [M+Na]⁺ requires 263.1782 found 263.1786.

3. Radiochemistry

3.1 General Experimental Information

Unless otherwise stated, reagents and solvents were commercially available and used without further purification: sodium chloride, 0.9% USP, and sterile water for injection, USP, were purchased from Hospira; ethanol was purchased from American Regent; HPLC grade acetonitrile was purchased from Fisher Scientific. Other synthesis components were obtained as follows: sterile filters were obtained from Millipore; sterile product vials were purchased from Hollister-Stier; QMA-light and Alumina Sep-Paks were purchased from Waters Corporation. QMA-light Carb Sep-Paks were prepared by flushing with 10 mL of water. Alumnia neutral Sep-Paks were flushed with 10 mL of CH₃CN prior to use. Analytical HPLC was performed using a Shimadzu LC-2010A HT system equipped with a Bioscan B-FC-1000 radiation detector and a UV detector.

3.2 Elution Experiments

3.2.1 Preparation of aqueous Fluorine-18 for elution studies

All loading operations were conducted under an ambient atmosphere and argon was used a pressurizing gas during automated sample transfer. Fluorine-18 was produced by the ¹⁸O(p, n)¹⁸F nuclear reaction using a GE PETTrace cyclotron (a 55 μ A beam for 15 sec generated approx. 30 mCi (1.1 GBq) of fluorine-18) and delivered to a GE TRACERLab FX_{FN} automated radiochemist synthesis module in a 2.5 mL bolus of [¹⁸O]H₂O which was collected in a 10 mL sterile vial. Aqueous fluorine-18 produced this way was diluted with Milli-Q water to ca. 1 – 3 mCi/mL (37 – 110 MBq/mL) prior to use in fluorine-18 elution studies.

3.2.2 General Elution Procedure using solutions of acid in H₂O.

Aqueous fluorine-18 (0.5 mL, approx. 0.5 - 1.5 mCi (18.5 - 55.5 MBq)) was passed through a Waters QMA SepPak Light Carb cartridge (Waters, order# WAT023525; activated with 10 mL H₂O) followed by H₂O (2 mL) and air (2 mL), and the activity on the QMA was determined using a Capintec[®] dose calibrator. [¹⁸F]HF was then eluted from the QMA into a 4 mL vial with a solution of acid in H₂O (1 mL) followed by air (5 mL). The activity of the 4 mL vial (eluate) and the QMA (residual QMA activity, [¹⁸F]F⁻) were measured using a Capintec[®] dose calibrator.

3.2.3 General Elution Procedure using solutions of acid in organic solvent.

Aqueous fluorine-18 (0.5 mL, approx. 0.5 - 1.5 mCi (18.5 - 55.5 MBq)) was passed through a Waters QMA SepPak Light Carb cartridge (Waters, order# WAT023525; activated with 10 mL H₂O) followed by H₂O (2 mL), air (2 mL) and organic solvent (3 mL), and the activity on the QMA was determined using a Capintec[®] dose calibrator (Initial QMA activity). [¹⁸F]HF was then eluted from the QMA into a 4 mL vial with a solution of acid in organic solvent (1 mL) followed by air (5 mL). The activity of the 4 mL vial (eluate activity, [¹⁸F]HF) and the QMA (residual QMA activity, [¹⁸F]F⁻) were measured using Capintec[®] dose calibrator.

Activity data from these elution procedures was used to calculate the percentage of $[^{18}F]HF$ recovery as follows :

 $%[^{18}F]HF$ recovery = $\frac{Eluate\ activity}{(Eluate\ activity\ +\ Residual\ QMA\ activity)}$

[¹⁸F]HF recovery is equal to elution efficiency.

3.2.4 Elution Study Results using MeSO $_3$ H in H $_2$ O

Figure S2. [18 F]HF recovery from elution of [18 F]F⁻ with MeSO₃H in H₂O

[MeSO ₃ H] in H ₂ O	рН	QMA	initial	QMA r	esidual	Elu	late	[¹⁸ F]HF recovery
(mol/l)		μCi	MBq	μCi	MBq	μCi	MBq	
0.01	2.00	687	25.4	685	25.3	0	0	0%
0.025	1.60	1040	38.5	578	21.4	413	15.3	42%
0.05	1.30	1120	41.4	199	7.4	880	32.6	82%
0.10	1.00	1120	41.4	157	5.8	900	33.3	85%
0.50	0.30	1140	42.2	84	3.1	1037	38.4	93%
1.00	0.00	1040	38.5	118	4.4	895	33.1	88%

Table S1. Determination of [¹⁸F]HF recovery from elution of [¹⁸F]F⁻ with MeSO₃H in H₂O.

3.2.5 Elution Study Results using acids of different strengths

Eluent	nKa	QMA	initial	QMA r	esidual	Elu	ıate	[¹⁸ F]HF recovery
in H ₂ O)	pixa	μCi	MBq	μCi	MBq	μCi	MBq	recovery
MeSO ₃ H	-2.60	1140	42.2	84	3.1	1037	38.4	93%
p-TosOH	-0.51	1280	47.4	113	4.2	1080	40.0	91%
CF ₃ CO ₂ H	-0.25	788	29.2	73	2.7	670	24.8	90%
CCl ₃ CO ₂ H	0.65	1270	47.0	235	8.7	1010	37.4	81%
$(CO_2H)_2$	1.23	690	25.5	109	4.0	571	21.1	83%
CHCl ₂ CO ₂ H	1.29	1650	61.1	423	15.7	1170	43.3	71%
KHSO ₄	1.99	1260	46.6	162	6.0	990	36.6	79%
(NH ₄) ₂ EDTA	2.00	1270	47.0	92	3.4	1130	41.8	89%
H ₃ PO ₄	2.12	785	29.0	93	3.4	676	25.0	86%
CH ₂ ClCO ₂ H	2.86	1320	48.8	540	20.0	741	27.4	56%
Citric acid	3.13	1230	45.5	758	28.0	439	16.2	36%
2-OH-isobutyric	3.86	1294	47.9	1193	44.1	78	2.9	6%
acid								
Ascorbic acid	4.17	1190	44.0	1040	38.5	136	5.0	11%
CH ₃ COOH ^a	4.86	654	24.2	628	23.2	0	0	0%

^aNeat AcOH (0.5 mL) was used to elute the QMA

Table S2. Determination of [¹⁸F]HF recovery from elution of [¹⁸F]F⁻ with a 0.5M solution of acids of various strength in H₂O (**Blue** = monoprotic acids; **Red** = diprotic acids; **Green** = Triprotic Acids; **Yellow** = Tetraprotic acids)

Figure S3. Elution efficiency ([¹⁸F]HF recovery) results using 0.5M solutions in H₂O of acids of various strength.

Figure S4. Elution efficiency ([¹⁸F]HF recovery) results using solutions of different concentrations of acids.

[MeSO ₃ H] in DMA	QMA	initial	QMA r	esidual	Elu	ate	[¹⁸ F]HF recovery
(mol/l)	μCi	MBq	μCi	MBq	μCi	MBq	
0.01	1040	37.5	1030	38.1	0	0	0%
0.025	1020	37.4	870	32.2	131	4.8	13%
0.05	1070	38.5	465	17.2	551	20.4	54%
0.10	876	32.4	273	10.1	569	21.1	68%
0.50	890	32.9	106	3.9	766	28.3	88%
1.00	860	31.8	117	4.3	720	26.6	86%

3.2.6 Elution results using solutions of MeSO₃H in various organic solvents

Table S3. Determination of [¹⁸F]HF recovery from elution of [¹⁸F]F⁻ with MeSO₃H in DMA.

[MeSO ₃ H] in DMF	QMA	initial	QMA r	esidual	Elu	ate	[¹⁸ F]HF recovery
(mol/l)	μCi	MBq	μCi	MBq	μCi	MBq	
0.01	1170	43.3	1160	42.9	0	0	0%
0.025	1217	45.0	589	21.8	575	21.3	49%
0.05	1340	49.6	418	15.5	885	32.7	68%
0.10	1220	45.1	371	13.7	751	27.8	67%
0.50	1370	50.7	168	6.2	1153	42.7	87%
1.00	1270	47.0	202	7.5	980	36.3	83%

Table S4. Determination of [¹⁸F]HF recovery from elution of [¹⁸F]F⁻ with MeSO₃H in DMF.

[MeSO ₃ H] in EtOH	QMA	initial	QMA r	esidual	Elu	iate	[¹⁸ F]HF recovery
(mol/l)	μCi	MBq	μCi	MBq	μCi	MBq	
0.01	1060	39.2	1050	38.9	0	0	0%
0.025	1110	41.1	960	35.5	113	4.2	11%
0.05	1180	43.7	472	17.5	684	25.3	59%
0.10	942	34.9	291	10.8	612	22.6	68%
0.50	1200	44.4	309	11.4	853	31.6	73%
1.00	960	35.5	137	5.1	751	27.8	85%

Table S5. Determination of [18F]HF recovery from elution of [18F]F- with MeSO₃H in EtOH.

[MeSO ₃ H] in CH ₃ CN	QMA	initial	QMA r	esidual	Elu	ate	[¹⁸ F]HF recovery
(mol/l)	μCi	MBq	μCi	MBq	μCi	MBq	
0.01	850	31.5	850	31.5	0	0	0%
0.025	940	34.8	930	34.4	0	0	0%
0.05	940	34.8	910	33.7	20	0.7	2%
0.10	970	35.9	730	27.0	201	7.4	22%
0.50	1060	39.2	722	26.7	310	11.5	30%
1.00	950	35.2	734	27.2	189	7.0	20%

Table S6. Determination of [¹⁸F]HF recovery from elution of [¹⁸F]F⁻ with MeSO₃H in CH₃CN.

Figure S5: Elution efficiency versus molarity of methanesulfonic acid for five commonly used radiofluorination solvents.

3.3 ¹⁸F-Fluorination/ring opening of epoxides

[¹⁸F]1a, [¹⁸F]2a, [¹⁸F]3a and [¹⁸F]4a were prepared using a TRACERLab FX_{FN} automated radiochemistry synthesis module (General Electric, GE) in standard configuration using a glassy carbon reactor.

3.3.1 ¹⁸F-Production Curve

Data for F-18 Target @ 55 µA (May 2018)

3.3.2 Reaction Optimization General Procedure

Fluorine-18 was produced by the ${}^{18}O(p, n){}^{18}F$ nuclear reaction using a GE PETTrace cyclotron (a 55 μ A beam for 1 minute generated approx. 104 mCi (3.8 GBg) of fluorine-18) and delivered to a GE TRACERLab FX_{EN} automated radiochemistry synthesis module in a 2.5 mL bolus of $[^{18}O]H_2O$ followed by trapping on a Waters QMA SepPak Light Carb cartridge (Waters, order# WAT023525 ; activated with 10 mL H₂O) as $[^{18}F]F^{-}$ to remove $[^{18}O]H_2O$ and other impurities. This was followed by elution (as ^{[18}F]HF) with a solution of acid in CH₃CN/H₂O 4:1 (500 µL) from vial 1 into the reactor, which had been charged with Fe(acac)₃ (0.04 mmol, 14 mg). The reactor was then pressurized with argon to approx. 200 kPa (by opening valve 20 for 3 s) and heated at 80 °C for 10 min to allow capture of [¹⁸F]HF by Fe(acac)₃. The resulting mixture was azeotropically dried at 100 °C under vacuum for 5 min, followed by heating with vacuum and argon flow for another 5 min. The reactor was then cooled to 60 °C using compressed air, and a solution of epoxide (0.04 mmol) in dioxane (500 μ L) was added from vial 3 using argon push gas. The reactor was heated to the desired reaction temperature and stirred for 20 min under autogenous pressure. After cooling to 50 °C using compressed air, a solution of EtOH:H₂O (4:1, 3.5 mL) for [18F]1a or 50% CH₃CN/10mM NH₄OAc (3.5 mL) containing (NH₄)₂EDTA (28 mg, 0.08 mmol) for [¹⁸F]2a was added to the reactor from vial 6 using push gas. The content of the reactor was then pushed with argon through a Waters Al₂O₃ N SepPak Light (activated with 4 mL EtOH or 4 mL CH₃CN) into a 20 mL vial for analysis. The activity in the collected fraction was measured using a Capintec® dose calibrator and an aliquot of the collected fraction was analyzed by radio-HPLC to determine product identity and calculate radiochemical conversion. Radiochemical conversion (RCC) was calculated by dividing the activity in the collected fraction by the starting activity (104 mCi) and multiplying with the percentage of radiochemical purity, and was non decay corrected.

Note : analysis with radioTLC was attempted but found to be unreliable, as a blank reaction (no epoxide added) showed nonbaseline radioactive peaks (eluent DCM/MeOH 9/1 or EtOAc/Hexane 50/50) that would interfere with RCC measurement.

 $5\alpha, 6\alpha/5\beta, 6\beta = 11:89$

[¹⁸F]1a

Entry	Solvent	Acid	Temp.	RCC
				[¹⁸ F]1a ^{a,b}
1	dioxane	TFA (0.50 M)	100 °C	5 %
2	dioxane	TFA (0.12 M)	100 °C	0.2 %
3	DMF	TFA (0.50 M)	100 °C	0 %
4	dioxane	TFA (0.50 M)	80 °C	1 %
5	dioxane	TFA (0.50 M)	120 °C	22 %
6	dioxane	TFA (0.50 M)	140 °C	<0.1%

a) Calculated from the HPLC radiotrace as described in the general procedure ; b) Phenomenex Luna C18(2) 250x4.6mm 5µ, eluent = 100% CH₃CN for 10 min followed by 50% CH₃CN/H₂O for 10 min and equilibration back to 100% CH₃CN for 10 min, flowrate = 2 ml/min.

Table S7. Reaction optimization using [18F]1a

Entry	Additive	Acid	Solvent	Temp.	RCC [¹⁸ F]2a ^{a,b}
1	Fe(acac) ₃	TFA (0.50 M)	dioxane	120 °C	4 %
2	$Fe(acac)_3$	TFA (0.40 M)	dioxane	120 °C	2.8 %
3	$Fe(acac)_3$	TFA (0.30 M)	dioxane	120 °C	1.8 %
4	Fe(acac) ₃	TFA (0.50 M)	CH ₃ CN	120 °C	<0.1 %
5	Fe(acac) ₃	TFA (0.50 M)	DME	120 °C	0.5 %
6	$Fe(acac)_3$	TFA (0.50 M)	Sulfolane/	120 °C	1 %
			dioxane 9:1		

a) Calculated from the HPLC radiotrace as described in the general procedure ; b) Phenomenex Synergi Hydro RP 250x4.6mm, eluent = 50% CH₃CN/10mM NH₄OAc, flowrate = 1 ml/min.

Table S8. Reaction optimization using [¹⁸F]2a

3.3.3 Isolation Procedures

^{a)} Cyclotron produced fluorine-18 (approx.. 66.6 Gbq, 1.8 Ci), elution solution = TFA in CH₃CN/H₂O 4:1 (0.5M, 1.0 mL), substrate (0.04 mmol), Fe(acac)₃ (0.08 mmol) in dioxane (0.5 mL) stirred at 120°C for 20 min.

(3S,5R,6R,8S,9S,10R,13R,14S,17R)-5-[¹⁸F]-fluoro-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthrene-3,6-diol ([¹⁸F]1a)

Fluorine-18 was produced by the ¹⁸O(p, n)¹⁸F nuclear reaction using a GE PETTrace cyclotron (a 55 µA beam for 30 minutes generated approx. 1.8 Ci (66.6 GBq) of fluorine-18) and delivered to a GE TRACERLab FX_{FN} automated radiochemistry synthesis module in a 2.5 mL bolus of $[^{18}O]H_2O$ followed by trapping on a Waters QMA SepPak Light Carb cartridge (Waters, order# WAT023525 ; activated with 10 mL H₂O) as $[^{18}F]F^{-}$ to remove $[^{18}O]H_2O$ and other impurities. This was followed by elution (as ^{[18}F]HF) with a solution of TFA in CH₃CN/H₂O 4:1 (0.5 M, 500 µL) from vial 1 into the reactor, which had been charged with Fe(acac)₃ (0.04 mmol, 14 mg). The reactor was then pressurized with argon to approx. 200 kPa (by opening valve 20 for 3 s) and heated at 80 °C for 10 min to allow capture of [18F]HF by Fe(acac)₃. The resulting mixture was azeotropically dried at 100 °C under vacuum for 5 min, followed by heating with vacuum and argon flow for another 5 min. The reactor was then cooled to 60 °C using compressed air, and a solution of $(5\beta,6\beta)$ -epoxycholesterol (1)¹ (0.04 mmol, 18 mg; ratio $(5\alpha,6\alpha)$: $(5\beta,6\beta) = 11:89$ in dioxane (500 µL) was added from vial 3 using argon push gas. The reactor was heated to 120 °C and stirred for 20 min under autogenous pressure. After cooling to 50 °C using compressed air, a solution of EtOH:H₂O (4:1, 3.5 mL) was added to the reactor from vial 6 using push gas. The content of the reactor was then pushed with argon through a Waters Al₂O₃ N SepPak Light (activated with 4 mL EtOH) into the intermediate vial and loaded onto a semi-prep HPLC column (Agilent Eclipse XDB 250x9.4mm 5μ , eluent = 80% EtOH/H₂O, flowrate = 3 mL/min) for purification. The fraction at Rt = 24.1 - 26.4 min was collected to give [¹⁸F]1a. An aliquot of the collected fraction was analyzed by radio-HPLC (Phenomenex Luna C18(2) 250x4.6mm 5 μ , eluent = 100% CH₃CN, flowrate = 2 ml/min) to determine radiochemical identity and purity.

Run	Isolated [¹⁸ F	activity]]1a	Radiochemical purity
	mCi	GBq	
1	189.6	7.01	99%
2	251	9.28	99%
3	202	7.47	99%
4	205	7.58	99%
5	211	7.81	99%

Table S9. Isolated activities of [18F]1a.

Figure S7. Crude prep HPLC radiotrace (top) and UV trace (254 nm, bottom) of [18F]1a

Figure S8. HPLC radiotrace of collected fraction of [18F]1a

Figure S9. HPLC UV trace (212 nm) of collected fraction of [18F]1a

Figure S10. HPLC UV trace (254 nm) of collected fraction of $[^{18}F]_{1a}$ spiked with 1a (Rt = 7.34 min)

(E)-4-(3-[¹⁸F]-fluoro-2-hydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-one ([¹⁸F]2a)

Fluorine-18 was produced by the ¹⁸O(p, n)¹⁸F nuclear reaction using a GE PETTrace cyclotron (a 55 μ A beam for 30 minutes generated approx. 1.8 Ci (66.6 GBq) of fluorine-18) and delivered to a GE TRACERLab FX_{FN} automated radiochemistry synthesis module in a 2.5 mL bolus of [¹⁸O]H₂O followed by trapping on a Waters QMA SepPak Light Carb cartridge (Waters, order# WAT023525 ; activated with 10 mL H₂O) as [¹⁸F]F⁻ to remove [¹⁸O]H₂O and other impurities. This was followed by elution (as [¹⁸F]HF) with a solution of TFA in CH₃CN/H₂O 4:1 (0.5 M, 500 μ L) from vial 1 into the reactor, which had been charged with Fe(acac)₃ (0.04 mmol, 14 mg). The reactor was then pressurized with argon to approx. 200 kPa (by opening valve 20 for 3 s) and heated at 80 °C for 10 min to allow capture of [¹⁸F]HF by Fe(acac)₃. The resulting mixture was azeotropically dried at 100 °C under vacuum for 5 min, followed

S16

by heating with vacuum and argon flow for another 5 min. The reactor was then cooled to 60 °C using compressed air, and a solution of 4-(1,3,3-trimethyl-7-oxabicyclo[4.1.0]hept-2-yl)-3-buten-2-one (**2**) (technical grade, 8 mg, 0.04 mmol) in dioxane (500 μ L) was added from vial 3 using argon push gas. The reactor was heated to 120 °C and stirred for 20 min under autogenous pressure. After cooling to 50 °C using compressed air, a solution of 40% CH₃CN/10mM NH4OAc (3.5 mL) containing (NH₄)₂EDTA (28 mg, 0.08 mmol) was added to the reactor from vial 6 using push gas. The content of the reactor was then loaded onto a semi-prep HPLC column (Agilent Eclipse XDB 250x9.4mm 5 μ , eluent = 40% CH₃CN/10mM NH4OAc, flowrate = 4 mL/min) for purification. The fraction at Rt = 17.5 – 20.1 min was collected to give [¹⁸F]**2a**. An aliquot of the collected fraction was analyzed by radio-HPLC (Phenomenex Synergi Hydro RP 250x4.6mm, eluent = 50% CH₃CN/10mM NH₄OAc, flowrate = 1 ml/min) to determine radiochemical identity and purity.

Run	Isolated [¹⁸ F	activity]2a	Radiochemical purity
	mCi	GBq	
1	104.8	3.88	96%
2	89.1	3.30	99%

Table S10. Isolated activities of [¹⁸F]2a

Figure S11. Crude prep HPLC radiotrace (top) and UV trace (254 nm, bottom) of [18F]2a

Figure S12. HPLC radiotrace of collected fraction of [18F]2a

Figure S13. HPLC UV trace (254 nm) of collected fraction of [18F]2a

Figure S14. HPLC UV trace (254 nm) of collected fraction of $[^{18}F]2a$ spiked with 2a (Rt = 7.82 min)

2-(4-chlorophenethyl)-2-[¹⁸F]-fluoro-3,3-dimethylbutan-1-ol ([¹⁸F]3a)

Fluorine-18 was produced by the ${}^{18}O(p, n){}^{18}F$ nuclear reaction using a GE PETTrace cyclotron (a 55 μ A beam for 30 minutes generated approx. 1.8 Ci (66.6 GBq) of fluorine-18) and delivered to a GE TRACERLab FX_{EN} automated radiochemistry synthesis module in a 2.5 mL bolus of $[^{18}O]H_2O$ followed by trapping on a Waters QMA SepPak Light Carb cartridge (Waters, order# WAT023525; activated with 10 mL H₂O) as [¹⁸F]F⁻ to remove [¹⁸O]H₂O and other impurities. This was followed by elution (as ^{[18}F]HF) with a solution of TFA in CH₃CN/H₂O 4:1 (0.5 M, 500 µL) from vial 1 into the reactor, which had been charged with $Fe(acac)_3$ (0.04 mmol, 14 mg). The reactor was then pressurized with argon to approx. 200 kPa (by opening valve 20 for 3 s) and heated at 80 °C for 10 min to allow capture of [18F]HF by Fe(acac)₃. The resulting mixture was azeotropically dried at 100 °C under vacuum for 5 min, followed by heating with vacuum and argon flow for another 5 min. The reactor was then cooled to 60 °C using compressed air, and a solution of 2-tert-butyl-2-[2-(4-chlorophenyl)ethyl]oxirane (3) (9 mg, 0.04 mmol) in dioxane (500 μ L) was added from vial 3 using argon push gas. The reactor was heated to 120 °C and stirred for 20 min under autogenous pressure. After cooling to 50 °C using compressed air, a solution of 60% CH₃CN/10mM NH4OAc (3.5 mL) containing (NH₄)₂EDTA (28 mg, 0.08 mmol) was added to the reactor from vial 6 using push gas. The content of the reactor was then loaded onto a semi-prep HPLC column (Agilent Eclipse XDB 250x9.4mm 5 μ , eluent = 60% CH₃CN/10mM NH4OAc, flowrate = 4 mL/min) for purification. The fraction at Rt = 24.1 - 26.4 min was collected to give [¹⁸F]3a. An aliquot of the collected fraction was analyzed by radio-HPLC (Phenomenex Synergi Hydro RP 250x4.6mm, eluent = 65% CH₃CN/10mM NH4OAc, flowrate = 1 ml/min) to determine radiochemical identity and purity.

Run	Isolated activity [¹⁸ F]3a		Radiochemical purity
	mCi	GBq	
1	7.6	0.28	89%
2	16.6	0.61	94%
3	19.6	0.73	94%

Table S11. Isolated activities of [¹⁸F]3a.

Figure S15. Crude prep HPLC radiotrace (top) and UV trace (254 nm, bottom) of [18F]3a

Figure S16. HPLC radiotrace of collected fraction of [18F]3a

Figure S17. HPLC UV trace (220 nm) of collected fraction of [18F]3a

Figure S18. HPLC UV trace (220 nm) of collected fraction of $[^{18}F]_{3a}$ spiked with 3a (Rt = 9.77 min)

6-[¹⁸F]-fluoro-6,10,10-trimethyl-2-methylenebicyclo[7.2.0]undecan-5-ol, [¹⁸F]4a

Fluorine-18 was produced by the ¹⁸O(p, n)¹⁸F nuclear reaction using a GE PETTrace cyclotron (a 55 μ A beam for 30 minutes generated approx. 1.8 Ci (66.6 GBq) of fluorine-18) and delivered to a GE TRACERLab FX_{FN} automated radiochemistry synthesis module in a 2.5 mL bolus of [¹⁸O]H₂O followed by trapping on a Waters QMA SepPak Light Carb cartridge (Waters, order# WAT023525 ; activated with 10 mL H₂O) as [¹⁸F]F⁻ to remove [¹⁸O]H₂O and other impurities. This was followed by elution (as [¹⁸F]HF) with a solution of TFA in CH₃CN/H₂O 4:1 (0.5 M, 500 μ L) from vial 1 into the reactor, which had been charged with Fe(acac)₃ (0.04 mmol, 14 mg). The reactor was then pressurized with argon to approx. 200 kPa (by opening valve 20 for 3 s) and heated at 80 °C for 10 min to allow capture of [¹⁸F]HF by Fe(acac)₃. The resulting mixture was azeotropically dried at 100 °C under vacuum for 5 min, followed

by heating with vacuum and argon flow for another 5 min. The reactor was then cooled to 60 °C using compressed air, and a solution of (-)-caryophyllene oxide (4) (9 mg, 0.04 mmol) in dioxane (500 μ L) was added from vial 3 using argon push gas. The reactor was heated to 120 °C and stirred for 20 min under autogenous pressure. After cooling to 50 °C using compressed air, a solution of 50% CH₃CN/10mM NH4OAc (3.5 mL) containing (NH₄)₂EDTA (28 mg, 0.08 mmol) was added to the reactor from vial 6 using push gas. The content of the reactor was then loaded onto a semi-prep HPLC column (Agilent Eclipse XDB 250x9.4mm 5 μ , eluent = 55% CH₃CN/H₂O, flowrate = 4 mL/min) for purification. The fraction at Rt = 20.3 – 22.2 min was collected to give [¹⁸F]4a. An aliquot of the collected fraction was analyzed by radio-HPLC (Phenomenex Synergi Hydro RP 250x4.6mm, eluent = 60% CH₃CN/H₂O, flowrate = 1 ml/min) to determine radiochemical identity and purity.

Run	Isolated activity [¹⁸ F]4a		Radiochemical purity		
	mCi	GBq			
1	25.5	0.94	99%		
2	20.8	0.80	99%		
3	26.3	0.97	91%		

Table S12. Isolated activities of [¹⁸F]4a.

Figure S19. Crude prep HPLC radiotrace (top) and UV trace (254 nm, bottom) of [18F]4a

Figure S20. HPLC radiotrace of collected fraction of [¹⁸F]4a.

Figure S21. HPLC UV trace (210 nm) of collected fraction of [18F]4a

Figure S22. HPLC UV trace (210 nm) of collected fraction of [¹⁸F]4a spiked with 4a (Rt = 10.27 min)

3.4 Calibration curves for determination of Molar Activity (A_m)

3.4.1 Molar activity of (*E*)-4-(3-[¹⁸F]-fluoro-2-hydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-one, [¹⁸F]2a

2a (mg/ml)	HPLC UV detector	Mean response		
0.0001	2485	2384	2434.5	
0.001	20247	20191	20219	
0.01	170969	170748	170858.5	
0.1	1278260	1298653	1288456.5	
1.0	9794765	9792904	9793834.5	

Equation : y = 5312443.9x $r^2 = 0.9988$ (y =detector response, x = conc. of **2a** in mg/ml)

Calculation :

Detector response	Conc. mg/ml	Aliquot volume (mL)	2a (µmol)	Activity (mCi)	Activity (GBq)	RCP	A _m (GBq/ μmol)	A _m (Ci/ mmol)
6709	0.00126	0.5	0.00277	4.3	159.5	98%	56.5	1523

3.4.2 Molar Activity of (1*S*,9*R*)-6-[¹⁸F]-fluoro-6,10,10-trimethyl-2methylenebicyclo[7.2.0]undecan-5-ol, [¹⁸F]4a

4a (mg/ml)	HPLC UV detector response (210 nm)
0.0001	577
0.001	6498
0.01	70202
0.1	746283
1.0	7087595

Equation :

y = 7091302.5x $r^{2} = 0.99997$ (y =detector response, x = conc. of **4a** in mg/ml)

Calculation :

Detector response	Conc. mg/ml	Collected volume (mL)	4a (µmol)	Activity (mCi)	Activity (GBq)	RCP	A _m (GBq/ μmol)	A _m (Ci/ mmol)
3166	0.00045	8	0.0149	25.5	946.05	99%	63.0	1699

3.5 Attempted synthesis of [18F]2a using [18F]KF/K_{2.2.2}

Fluorine-18 was produced by the ${}^{18}O(p, n){}^{18}F$ nuclear reaction using a GE PETTrace cyclotron (a 55 μ A beam for 30 minutes generated approx. 1.8 Ci (66.6 GBq) of fluorine-18) and delivered to a GE TRACERLab FX_{FN} automated radiochemistry synthesis module in 2.5 mL bolus of $[^{18}O]H_2O$ followed by trapping on a Waters QMA SepPak Light Carb cartridge (Waters, order# WAT023525; activated with 10 mL H₂O) as [¹⁸F]F⁻ to remove [¹⁸O]H₂O and other impurities. This was followed by elution (as ^{[18}F]KF) with a solution of Kryptofix K_{2.2.2} (0.040 mmol, 15 mg) and K₂CO₃ (0.22 mmol, 3 mg) in CH_3CN/H_2O (4:1, 1 mL) from vial 1 into the reactor, which had been charged with Fe(acac)₃ (0.04 mmol, 14 mg). The resulting mixture was azeotropically dried at 100 °C under vacuum for 5 min, followed by heating with vacuum and argon flow for another 5 min. The reactor was then cooled to 60 °C using compressed air, and a solution of 4-(1,3,3-trimethyl-7-oxabicyclo[4.1.0]hept-2-yl)-3-buten-2one (2) (technical grade, 8 mg, 0.04 mmol) in dioxane (500 µL) was added from vial 3 using argon push gas. The reactor was heated to 120 °C and stirred for 20 min under autogenous pressure. After cooling to 50 °C using compressed air, a solution of 40% CH₃CN/10mM NH₄OAc (3.5 mL) containing (NH₄)₂EDTA (28 mg, 0.08 mmol) was added to the reactor from vial 6 using push gas. The content of the reactor was then loaded onto a semi-prep HPLC column (Agilent Eclipse XDB 250x9.4mm 5µ, eluent = 40% CH₃CN/10mM NH₄OAc, flowrate = 4 mL/min) for purification. Monitoring of the radioactive trace showed that the only radioactive fraction eluted with the solvent front, and no $[^{18}F]^2a$ was detected.

4. In vivo imaging experiments with 5-[¹⁸F]fluoro-6-hydroxycholesterol ([¹⁸F]1a)

General considerations

All animal PET imaging experiments were conducted under the supervision of the University of Michigan and its Institutional Animal Care and Use Committee (IACUC) according to approved protocols and all applicable federal, state, local and institutional laws or guidelines governing animal research. Imaging studies were conducted using a Concorde Microsystems P4 PET scanner as described below.

Rodent PET Imaging

Anesthesia was induced in a healthy female Sprague-Dawley rat (300 g) using isoflurane/O2, and anesthesia was maintained with 2-4% isoflurane/O2 throughout the imaging studies. Body temperature was maintained by a heating pad. Following a transmission scan for attenuation correction, the animals were injected (i.v. via intravenous tail vein; 19.9 MBq (0.537 mCi) in 24 μ L) with [¹⁸F]**1a** as a bolus over 1 min. Upon completion of the PET scans, emission data were corrected for decay, dead time and random coincidences before reconstruction using an iterative ordered subset expectation maximization-maximum a posteriori (MAP) method to generate reconstructed images.

Adrenal Glands

Coronal Projection

Transverse Planes

Sagittal Planes

Rodent Biodistribution Studies

Female Sprague-Dawley rats were injected (i.v. via intravenous tail vein) with [¹⁸F]**1a** as a bolus. At given time points (10, 30, 60, 120, and 360 min) the animals were placed under anesthesia and sacrificed. The organs were removed, weighed and counted with a gamma counter to determine percent injected dose per gram of each organ of interest (%ID/gram organ).

Organ	%id/gram							
	10 min	30 min	60 min	120 min	360 min			
ADRENAL	1.743	2.006	2.266	2.390	1.924			
SPLEEN	0.797	1.409	2.193	2.325	1.684			
LUNG	0.519	0.670	1.224	1.289	1.973			
HEART	0.302	0.395	0.415	0.420	0.429			
LIVER	0.205	0.151	0.450	0.734	0.931			
THYROID	0.199	0.267	0.340	0.302	0.361			
KIDNEY	0.177	0.274	0.334	0.362	0.477			
OVARY	0.151	0.176	0.248	0.231	0.249			
ANTERIOR	0.147	0.197	0.255	0.281	0.300			
PITUITARY								
PANCREAS	0.111	0.170	0.193	0.184	0.269			

Table S13. Biodistribution in %id/organ of [18F]1a over various organs at multiple timepoints

Figure S23: Biodistribution of $[1^8F]1a$ in Sprague-Dawley female rats at 10, 30, 60, 120, and 360 minutes. For each time point animals (n=2) were treated with $[1^8F]1a$ i.v., sacrificed, and organs were separated to determine distribution by gamma counting.

Biodistribution studies were conducted in female Sprague-Dawley rats with two animals for each of the six time points: 10, 30, 60, 120, and 360 min The biodistribution data shows the percent injected dose per gram (%ID/g) for each organ of interest. It is seen that adrenal uptake is very high compared to most other organs. The peak uptake of [18F]1a of 3.3 % injected dose per gram (%ID/g) at 120 minutes with an adrenal to liver ratio of 3.3 at that time represented good signal to noise; since, the right adrenal is located just underneath the liver having a good adrenal to liver ratio is important for image analysis.

5. NMR Spectra

(3*S*, 5*R*, 6*R*, 8*S*, 9*S*, 10*R*, 13*R*, 14*S*, 17*R*)-5-fluoro-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)hexadecahydro-1*H*-cyclopenta[a]phenanthrene-3,6-diol (1a)

(E)-4-(3-fluoro-2-hydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-one (2a)

2-(4-chlorophenethyl)-2-fluoro-3,3-dimethylbutan-1-ol (3a)

6-Fluoro-6,10,10-trimethyl-2-methylenebicyclo[7.2.0]undecan-5-ol (4a)

