Bicyclization reaction with two molecular allenyl ketones and isocyanides: asynthesis of lactone-containing azaspirocycle derivativeHongdong Yuan, ${ }^{\text {a }}$ Chongrong Tang, ${ }^{a}$ Shikuan Su, ${ }^{\text {a }}$ Lei Cui, ${ }^{a}$ Xueshun Jia, ${ }^{*, \mathrm{ab}}$ Chunju Li, ${ }^{\text {c }}$ and Jian$\mathrm{Li}^{*}{ }^{\mathrm{a}}$${ }^{\text {a }}$ Department of Chemistry, Innovative Drug Research Center, College of Sciences \& Institute of SustainableEnergy, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
${ }^{\mathrm{b}}$ State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
${ }^{c}$ Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin KeyLaboratory of Structureand Performance for Functional Molecules, College of Chemistry, Tianjin NormalUniversity, Tianjin 300387, P. R. ChinaE-mail: xsjia@mail.shu.edu.cn; lijian@shu.edu.cn
Supporting Information
Table of Contents
1 Genral Information S2
2 General Procedure S2
General Procedure for the Formation of Product 3-4 S2
3 Characterization Data S4
Spectroscopic Data of All Compounds S4
4 Controlled Experiment and Mechanistic Study S17
$5{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of All Compounds S21

1 General Information

The NMR spectra were recorded on Bruker AC-500 spectrometer (500 MHz for ${ }^{1} \mathrm{H}$ NMR and 125 MHz for ${ }^{13} \mathrm{C}$ NMR) with CDCl_{3} as the solvent and TMS as internal reference. ${ }^{1} \mathrm{H}$ NMR spectral data were reported as follows: chemical shift (δ, ppm), multiplicity, integration, and coupling constant (Hz). ${ }^{13} \mathrm{C}$ NMR spectral data were reported in terms of the chemical shift. The following abbreviations were used to indicate multiplicities: $\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quartet; m $=$ multiplet. Low-resolution mass spectra were obtained on a Shimadzu LCMS-2010EV spectrometer in ESI mode and reported as m / z. High-resolution mass spectra (HRMS) were recorded on a Bruker Daltonics, Inc. APEXIII 7.0 TESLA FTMS instrument. Melting points were obtained on a X-4 digital melting point apparatus without correction. Purification of products was accomplished by column chromatography packed with silica gel. Unless otherwise stated, all reagents were commercially purchased and used without further purification.

2 General Procedure

2.1 General procedure for the synthesis of product

Under air atmosphere, a sealable reaction tube with a Teflon-coated screw cap equipped with a magnetic stir bar was charged with allenyl ketone $\mathbf{1}(0.5 \mathrm{mmol})$, isocyanide $\mathbf{2}(1.0 \mathrm{mmol})$, in toluene $(5.0 \mathrm{~mL})$ at room temperature. Then capped it with a septum and stirred at $100^{\circ} \mathrm{C}$ for 12 h . After the reaction was completed, it was cooled to room temperature and monitored by TLC. And the reaction mixture was concentrated under vacuum. The residue was purified by flash chromatography on silica gel (eluant: petroleum ether/ethyl acetate $=8: 1$) to give the desired product 3 or 4 .

2.2 Representative procedure for the preparation of substituted Allenyl ketone .

General Procedure 1: To a stirred suspension of the corresponding aldehyde (1 equiv.), propargyl bromide (2.0 equiv.; 80% in toluene) and zinc dust (5.0 equiv.) in THF at $0{ }^{\circ} \mathrm{C}$ was added to a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution dropwise. The mixture was allowed to warm up to room temperature and was stirred until full conversion was detected by TLC. The mixture was filtered over celite and the filter cake rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrates were washed with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and distilled water. After drying over MgSO_{4}, filtration and evaporation of the solvent in vacuo gave the crude product which was purified by flash column chromatography.

General Procedure 2. The Dess-Martin periodinane reagent (1.5 equiv.) as a solid was added to a solution of the corresponding homopropargyl alcohol dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$. The solution was warmed up to room temperature and the reaction monitored by TLC (usually a fast reaction with reaction times $<1 \mathrm{~h}$). Upon full conversion the solvent was partially removed under reduced pressure at low temperature and the crude material directly purified by flash column chromatography.

3 Characterization Data

(3a): $187 \mathrm{mg}, 60 \%$ yield. white solid: m.p. $148-149{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.00-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.48(\mathrm{~m}, 1 \mathrm{H})$, 7.42-7.40 (m, 6H), 7.34-7.33 (m, 3H), $7.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$
$(\mathrm{s}, 1 \mathrm{H}), 3.69-3.66(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.51(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H})$,
$1.14(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=195.7,163.3,158.2,153.8,150.6,148.4$, $141.9,136.4,136.3,135.9,134.3,132.9,130.2,129.0,128.7,128.5,128.1,125.9,125.8,125.5$, 123.3, 103.7, 71.1, 34.6, 34.5, 34.4, 31.6, 31.3, 25.3. HRMS (ESI): calcd for $\mathrm{C}_{42} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 623.3268, Found: 623.3274 .

(3b): $153 \mathrm{mg}, 57 \%$ yield. white solid: m.p. $118-119{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.02-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.23(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 4 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H})$, $5.78(\mathrm{~s}, 1 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.61(\mathrm{~m}, 1 \mathrm{H})$, 2.54-2.52 (m, 1H), $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=195.5,163.1$, $158.0,153.5,141.9,137.6,136.2,136.1,135.6,134.8,134.1,132.6,129.9,129.4,129.3,128.9$, 128.8, 128.5, 128.2, 127.8, 125.2, 123.3, 103.3, 70.8, 34.1, 25.2, 21.0, 20.9. HRMS (ESI): calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 539.2329$, Found: 539.2339.

(3c): $147 \mathrm{mg}, 51 \%$ yield. white solid: m.p. 112-113 ${ }^{\circ} \mathrm{C}$. 1 H NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.98-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 1 \mathrm{H})$, 7.43-7.35 (m, 9H), $7.14(\mathrm{t}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.56(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 3.62-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.84(\mathrm{~m}, 1 \mathrm{H})$, 2.63-2.61 (m, 1H), 2.53-2.51 (m, 1H) . ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $(\mathrm{ppm})=195.4,163.3,159.1,154.1,143.1,137.4,136.7,136.3,134.1,133.7,133.1,131.0,130.8$, 130.6, 129.3, 129.1, 128.9, 128.6, 127.4, 125.4, 124.7, 103.1, 71.3, 34.3, 25.5. HRMS (ESI): calcd for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$579.1237, Found: 579.1237.

(3d): 130 mg , 39% yield. white solid: m.p. $129-130{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.98-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 3 \mathrm{H})$, 7.43-7.30 (m, 9H), $7.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.56(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 3.62-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.84(\mathrm{~m}, 1 \mathrm{H})$, 2.65-2.59 (m, 1H), 2.54-2.48 (m, 1H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=195.4,163.2,159.1$, $154.1,143.6,137.9,136.7,136.3,133.7,133.1,132.2,132.1,131.3,130.7,128.8,128.6,127.4$, $125.4,125.0,122.4,118.7,103.1,71.2,34.3,25.4$. HRMS (ESI): calcd for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 667.0226, Found: 667.0225.

(3e): $193 \mathrm{mg}, 59 \%$ yield. white solid: m.p. $103-104{ }^{\circ} \mathrm{C} .1 \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.97-7.96(\mathrm{~m}, 2 \mathrm{H})$, $7.88(\mathrm{~m}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 2 \mathrm{H})$, 7.34-7.33 (m, 5H), 7.19-7.17 (m, 2H), 7.15-7.13 (m, 2H), $6.58(\mathrm{~s}, 1 \mathrm{H})$, $5.81(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.66-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.86(\mathrm{~m}$, $1 \mathrm{H}), 2.64-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.56(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=195.4,166.4,165.9,163.1,159.8,154.1,149.1,143.1,136.9$, $136.3,133.6,133.1,130.7,130.6,130.4,130.3,129.6,128.9,128.8,128.6,127.3,127.2,125.4$, $122.5,103.2,71.1,61.2,61.1,34.4,25.3,14.5,14.3$. HRMS (ESI): calcd for $\mathrm{C}_{40} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$ 655.2439, Found: 655.2432.

(3f): 153 mg , 53% yield. white solid: m.p. $103-104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.99-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 1 \mathrm{H})$, 7.43-7.32 (m, 8H), 7.19-7.12 (m, 5H), 7.06-7.04 (m, 1H), 6.99-6.97 (m, 1H), $6.57(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 3.62-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.87(\mathrm{~m}$, $1 \mathrm{H}), 2.63-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.50(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=195.5,163.2$, $159.6,154.2,145.9,139.9,136.9,136.2,134.6,134.4,133.6,133.2,130.7,130.3,130.1,129.9$, 128.9, 128.8, 128.7, 128.6, 127.8, 127.4, 125.5, 125.4, 123.2, 121.2, 103.2, 71.2, 34.2, 25.4. HRMS (ESI): calcd for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 579.1237$, Found: 579.1245.
(3g): $110 \mathrm{mg}, 33 \%$ yield. white solid: m.p. $78-79{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500

$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.99-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 1 \mathrm{H})$, 7.44-7.41 (m, 2H), 7.38-7.24 (m, 10H), 7.09-7.02 (m, 3H), $6.57(\mathrm{~s}, 1 \mathrm{H})$,
$5.78(\mathrm{~s}, 1 \mathrm{H}), 3.64-3.58(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 1 \mathrm{H})$, 2.55-2.49 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=195.4,163.1,159.7,154.2,146.1$, $139.9,136.9,136.2,133.6,133.2,131.6,130.7,130.4,130.2,128.9,128.8,128.6,128.3,127.4$, 126.1, 125.5, 122.6, 122.3, 121.6, 103.1, 71.2, 34.2, 25.4. HRMS (ESI): calcd for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$667.0226, Found: 667.0223

(3h): $140 \mathrm{mg}, 52 \%$ yield. white solid: m.p. $104-105{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.01-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 1 \mathrm{H})$, 7.43-7.32 (m, 8H), 7.06-7.05 (m, 1H), 7.02-6.95 (m, 6H), $6.52(\mathrm{~s}, 1 \mathrm{H})$, $5.76(\mathrm{~s}, 1 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.61(\mathrm{~m}, 1 \mathrm{H})$, 2.55-2.49 (m, 1H), $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=195.6,163.2$,
$158.6,153.8,144.9,138.7,138.6,136.4,135.9,134.2,132.8,130.4,130.2,128.9,128.7,128.6$, $128.5,127.8,126.3,125.9,125.4,123.8,119.8,103.5,70.9,34.2,25.4,21.6,21.3$. HRMS (ESI): calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$539.2329, Found: 539.2327.

(3i): $131 \mathrm{mg}, 46 \%$ yield. white solid: m.p. $107-108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.01-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.47(\mathrm{~m}$, $1 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 1 \mathrm{H})$, 6.82-6.79 (m, 1H), 6.77-6.75 (m, 2H), 6.69-6.67(m, 3H), 6.53-6.52(m, 1H), $5.78(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.86(\mathrm{~m}, 1 \mathrm{H})$, 2.63-2.61 (m, 1H), 2.54-2.52 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=195.4,162.9,159.9$, 159.7, 158.7, 153.7, 145.8, 139.7, 136.2, 136.0, 133.9, 132.8, 130.1, 129.5, 129.4, 128.8, 128.6, $128.3,127.6,125.2,121.5,115.3,114.6,114.3,111.1,108.5,103.3,70.9,55.2,55.0,34.1,25.2$. HRMS (ESI): calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$571.2227, Found: 571.2227.

(3j): $156 \mathrm{mg}, 50 \%$ yield. white solid: m.p. $104-105^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.02-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 6 \mathrm{H})$, 7.32-7.29 (m, 4H), 7.23-7.21 (m, 2H), 7.12-7.01 (m, 3H), 6.93-6.92(m, 1H), $6.53(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 3.67-3.63(\mathrm{~m}, 1 \mathrm{H})$, 2.91-2.87 (m, 1H), 2.69-2.67 (m, 1H), 2.55-2.50(m, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ 195.7, 162.9, 158.4, 153.8, 151.9, 151.7, 144.4, 138.5, 136.4, 135.8, 134.5, 132.9, 130.2, 128.9, $128.7,128.5,128.4,127.9,127.0,125.8,125.2,125.0,122.3,120.9,120.5,103.4,71.2,34.8,34.5$, 34.2, 31.5, 31.2, 25.7. HRMS (ESI): calcd forC $4_{42} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$623.3268, Found: 623.3273 .

(3k): $139 \mathrm{mg}, 49 \%$ yield. white solid: m.p. $101-102{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.99-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 1 \mathrm{H})$, 7.42-7.32 (m, 7H), $6.83(\mathrm{~s}, 1 \mathrm{H}), 6.77-6.74(\mathrm{~m}, 5 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.75$ $(\mathrm{s}, 1 \mathrm{H}), 3.65-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.61(\mathrm{~m}, 1 \mathrm{H})$, 2.53-2.49 (m, 1H), $2.35(\mathrm{~s}, 6 \mathrm{H}), 2.12(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=195.5,162.9,158.4,153.6,144.9,138.3,138.1,136.3,135.7,134.1,132.7$, $130.0,129.8,128.9,128.5,128.3,127.9,127.2,126.5,125.2,120.2,103.4,70.7,33.9,25.4,21.3$, 21.0. HRMS (ESI): calcd for $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$567.2642, Found: 567.2647.

(31): 134 mg , 37% yield. white solid: m.p. $145-146{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.97(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.49(\mathrm{~m}$, $1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 7 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 3.57-3.53(\mathrm{~m}, 1 \mathrm{H})$, 3.10-3.07 (m, 1H), 2.81-2.78 (m, 1H), 2.57-2.55 (m, 1H), $2.18(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=195.1,162.9,157.1,153.7,142.3,140.9,138.3,137.6$, 137.0, 136.4, 133.6, 133.1, 131.6, 130.7, 130.6, 128.9, 128.8, 128.7, 128.5, 127.4, 125.4, 122.1, 116.9, 102.7, 70.4, 36.8, 24.9, 19.9, 19.8, 18.1. HRMS (ESI): calcd for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 723.0852, Found: 723.0853 .

(3m): $106 \mathrm{mg}, 45 \%$ yield. yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $(\mathrm{ppm})=8.00-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H})$, 7.45-7.42 (m, 5H), $6.32(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$,
3.37-3.32 (m, 1H), 3.18-3.12 (m, 1H), 3.01-2.95 (m, 1H), 2.63-2.58 (m, 1H), 2.31-2.19 (m, $2 H)$, $1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.06-1.02(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) \cdot{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=196.0,162.9,158.5,153.8,136.7,134.9,134.2$, $132.8,130.3,128.9,128.5,128.4,125.4,103.2,68.6,47.7,45.5,34.4,32.7,30.6,25.1,20.7,20.4$, 14.0, 13.8 . HRMS (ESI):calcd forC $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 471.2642$, Found: 471.2658 .

(3n): $137 \mathrm{mg}, 51 \%$ yield. white solid: m.p. $70-71{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.05-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H})$, 7.51-7.49 (m, 2H), 7.45-7.42 (m, 5H), 7.37-7.36 (m, 4H), 7.29-7.27 (m, $1 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.96-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.44-6.43(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{~s}$, $1 \mathrm{H}), 4.77(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.22(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=195.9,163.6,159.5,153.4,139.8,138.3,136.8,135.1,134.7,132.8,130.3$, $128.8,128.7,128.5,128.4,128.3,128.1,128.0,127.5,126.9,126.8,125.4,103.9,68.3,51.4,47.8$, 34.0, 24.5 . HRMS (ESI): calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 539.2329$, Found: 539.2325
(30): $114 \mathrm{mg}, 43 \%$ yield. yellow oil . ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta(\mathrm{ppm})$

$=7.98-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}$, $5 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H})$, $4.22(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.46-3.39(\mathrm{~m}, 1 \mathrm{H})$, $3.36(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=195.6,169.5,169.0,163.1,162.6,153.9$,
$136.4,135.5,133.6,132.9,130.6,128.9,128.8,128.6,127.8,125.4,103.5,69.3,61.2,61.1,49.9$, 46.0, 33.8, 25.0, 14.3, 14.1. HRMS (ESI):calcd forC $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 531.2126$, Found: 531.2129.

(4a): $221 \mathrm{mg}, 68 \%$ yield. white solid: m.p. $116-117{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.88(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=8.5 \mathrm{~Hz}$, 2H), 7.19-7.14 (m, 8H), 7.00 (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.49-6.48 (m, 1H), 5.66 (s, 1H), 3.66-3.63 (m, 1H), 2.84-2.79 (m, 1H), 2.59-2.57 (m, 1H), 2.52-2.49 (m, 1H), $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H})$, $1.15(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=195.2,163.1,158.2,153.7,150.3,148.1$, 143.4, 141.9, 140.3, 136.3, 135.9, 133.9, 133.8, 129.2, 129.1, 128.9, 128.6, 125.7, 125.6, 125.3, 125.2, 123.2, 102.7, 70.9, 34.5, 34.4, 34.3, 31.4, 31.1, 25.3, 21.7, 21.4. HRMS (ESI): calcd forC $\mathrm{C}_{4} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$651.3581, Found: 651.3588 .

(4b): $230 \mathrm{mg}, 65 \%$ yield. white solid: m.p. $152-153{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=7.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.26 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 6 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 3.70-3.64(\mathrm{~m}$, $1 \mathrm{H}), 2.96-2.79(\mathrm{~m}, 3 \mathrm{H}), 2.61-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.47(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $12 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=195.4,163.3,158.4,154.3,153.9$, $151.4,150.5,148.2,142.1,136.5,136.2,134.3,134.0,129.3,128.7,126.8,126.6,125.9,125.8$
125.6, 123.3, 103.0, 71.1, 34.6, 34.5, 34.4, 34.2, 31.6, 31.3, 25.4, 23.9, 23.8. HRMS (ESI): calcd for $\mathrm{C}_{48} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 707.4207$, Found: 707.4202.

(4c): $166 \mathrm{mg}, 48 \%$ yield. white solid: m.p. $120-121^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.92(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 2H), 7.33-7.29 (m, 4H), 7.19-7.17 (m, 4H), $6.97(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.46-6.45(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 3.73-3.66$ $(\mathrm{m}, 1 \mathrm{H}), 2.85-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.48(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=194.4,163.2,157.8,152.8,150.8,148.6,141.8,139.2,136.2$, $135.4,134.9,134.6,130.3,129.0,128.8,128.5,126.8,126.5,126.0,125.9,123.2,104.1,71.0,34.7$, 34.6, 34.1, 31.5, 31.3, 25.1. HRMS (ESI): calcd for $\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$691.2489, Found: 691.2493.

(4d): $215 \mathrm{mg}, 55 \%$ yield. white solid: m.p. $124-125^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.85(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 4 \mathrm{H})$, 7.25-7.23 (m, 2H), 7.19-7.16 (m, 4H), $6.97(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 1 \mathrm{H})$, 2.85-2.79 (m, 1H), 2.60-2.55 (m, 1H), 2.53-2.47(m, 1H), $1.37(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=194.6,163.2,157.8,152.9,150.8,148.6,141.7,136.2,135.4,135.3,134.6$, 34.1, 31.5, 31.3, 25.1. HRMS (ESI): calcd for $\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$781.1458, Found: 781.1457.

(4e): $182 \mathrm{mg}, 56 \%$ yield. white solid: m.p. $123-124{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.84-7.80(\mathrm{~m}, 2 \mathrm{H})$, $7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.22-7.18 (m, 8H), 7.02 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.51$ (s, 1H), $5.73(\mathrm{~s}, 1 \mathrm{H}), 3.70-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.81(\mathrm{~m}, 1 \mathrm{H})$, 2.62-2.58 (m, 1H), 2.54-2.48 (m, 1H), $2.38(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=195.8,163.3,158.2,153.9,150.5,148.3,141.9,138.4,138.2$, $136.4,136.3,136.1,134.2,133.8,130.9,129.3,128.7,128.5,128.3,128.0,126.4,125.9,125.8$, 123.3, 122.7, 103.6, 71.4, 34.6, 34.5, 34.4, 31.5, 31.3, 25.3, 21.5, 21.4. HRMS (ESI): calcd forC $4_{44} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$651.3581, Found: 651.3578 .

(4f): $197 \mathrm{mg}, 57 \%$ yield. white solid: m.p. $115-116{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.96-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.86$ $(\mathrm{m}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.26(\mathrm{~m}$, 2H), 7.21-7.19 (m, 4H), 6.99-6.98 (m, 2H), 6.47-6.46 (m, $1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}),, 3.74-3.67(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.81(\mathrm{~m}, 1 \mathrm{H})$, 2.61-2.60 (m, 1H), 2.49-2.48(m, 1H), 1.37(s, 9H), 1.16(s,9H). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $(\mathrm{ppm})=194.2,163.2,157.5,152.6,150.9,148.6,141.6,138.0,136.2,135.2,134.9,134.8,134.7$, $132.8,130.3,130.0,129.9,129.8,129.7,128.9,128.5,127.0,126.1,125.9,125.5,123.6,123.4$,
$104.9,70.9,34.7,34.6,34.1,31.5,31.3$, 25.1. HRMS (ESI): calcd for $\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 691.2489, Found: 691.2499.

(4g): $176 \mathrm{mg}, 45 \%$ yield. white solid: m.p. $126-127{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.10-8.09(\mathrm{~m}, 1 \mathrm{H})$, 7.92-7.90 (m, 1H), 7.62-7.59 (m, 1H), 7.51-7.50 (m, 1H), 7.48-7.46 (m, 1H), 7.43-7.41 (m, 2H), 7.32-7.27 (m, 2H), 7.22-7.19 (m, 5H), 6.99-6.98 (m, 2H), 6.46-6.45 (m, $1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 3.73-3.67(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.48(\mathrm{~m}, 1 \mathrm{H}), 1.36$ $(\mathrm{s}, 9 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=194.1,163.2,157.4,152.5,150.9$, 148.6, 141.6, 138.2, 136.2, 135.7, 135.2, 134.9, 133.2, 131.8, 130.3, 130.2, 130.0, 128.5, 128.4, 127.5, 126.1, 125.9, 124.1, 123.4, 122.8, 104.9, 70.9, 34.7, 34.6, 34.2, 31.5, 31.3, 25.1 . HRMS (ESI): calcd for $\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 781.1458$, Found: 781.1450 .

(4h): $176 \mathrm{mg}, 52 \%$ yield. white solid: m.p. $122-123{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.77(\mathrm{~d}, J=1.5$
$\mathrm{Hz}, 1 \mathrm{H}), 7.73-7.71(\mathrm{~m}, ~ 1 \mathrm{H}), 7.41-7.40(\mathrm{~m}, ~ 2 \mathrm{H})$, 7.19-7.08 (m, 8H), 7.01-6.99 (m, 2H), $6.49(\mathrm{~s}, 1 \mathrm{H})$, 5.67 (s, 1H), 3.65-3.62 (m, 1H), 2.84-2.79 (m, 1H), 2.61-2.57 (m, 1H), 2.51-2.48 (m, 1H), 2.27-2.24 (m, $12 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=195.7,163.3,158.5,154.0$, $150.4,148.2,142.4,142.1,139.2,136.9,136.8,136.5,136.2,134.3,133.9,129.9,129.8,129.7$,
$128.8,126.9,126.5,125.9,125.8,125.7,123.4,123.1,102.8,71.1,34.6,34.5,31.6,31.3,25.5,20.2$, 19.9, 19.8. HRMS (ESI): calcd forC $\mathrm{C}_{46} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$679.3894, Found: 679.3891 .

(4i): $187 \mathrm{mg}, 53 \%$ yield. white solid: m.p. $124-125^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.35-7.33(\mathrm{~m}$, $2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.04$
(d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.83$ (s, 2H), 6.78(s, 2H), 6.42 (d, J $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 3.91-3.83(\mathrm{~m}, 1 \mathrm{H})$, 2.59-2.53 (m, 3H), $2.42(\mathrm{~s}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 6 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=199.1,163.4,159.4,152.7,150.7,148.2,142.0,139.7$, 139.3, 137.7, 137.2, 137.2, 136.8, 136.6, 136.2, 129.4, 129.2, 128.5, 128.3, 126.3, 125.7, 125.6, 123.5, 122.7, 110.3, 70.7, 35.5, 34.6, 34.5, 31.5, 31.4, 26.8, 21.2, 21.1, 19.7. HRMS (ESI): calcd for $\mathrm{C}_{48} \mathrm{H}_{55} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 707.4207$, Found: 707.4217.
 (4j): $188 \mathrm{mg}, 63 \%$ yield. white solid: m.p. $119-120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.98(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 10 \mathrm{H})$, $6.98(\mathrm{~s}, 4 \mathrm{H}), 6.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 4 \mathrm{H}), 2.85(\mathrm{~s}$, $1 \mathrm{H}), 2.57(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 1 \mathrm{H}), 2.06-1.86(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=199.4,165.1,158.5,157.3,147.9,146.1,137.9$, $135.2,132.4,132.2,129.3,129.1,128.8,128.5,128.4,127.0,125.6,114.1,113.9,112.0,72.0,55.5$, 55.2, 30.9, 20.4, 17.9, 9.9. HRMS (ESI): calcd for $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$599.2540, Found: 599.2548.

(4k): $187 \mathrm{mg}, 66 \%$ yield. white solid: m.p. $118-119{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.97(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 12 \mathrm{H})$, $6.95(\mathrm{~s}, 4 \mathrm{H}), 3.69-6.63(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 1 \mathrm{H})$, 2.41-2.36(m, 4H), $2.18(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.85(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=199.4,164.9,159.1,147.8,146.2,142.4,137.3$, $136.8,135.2,134.8,132.4,129.5,129.4,129.2,129.1,128.8,128.5,128.4,127.8,127.0,126.3$, 123.7, 112.2, 71.8, 30.9, 21.1, 21.0, 20.4, 17.9, 9.9 . HRMS (ESI): calcd for $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 567.2642, Found: 567.2640
(4I): $185 \mathrm{mg}, 57 \%$ yield. white solid: m.p. $123-124{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz ,
 $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.28(\mathrm{~m}, 12 \mathrm{H}), 7.18(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 2 \mathrm{H}),, 3.71-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.61(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H})$, $1.19(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): $\delta(\mathrm{ppm})=197.7,159.3$, $149.8,147.1,142.1,132.3,129.4,128.6,128.5,128.4,127.8,126.7,125.6,125.1,122.7,112.4$, 56.0, 54.9, 34.1, 31.2, 31.0, 30.9, 19.8, 17.5, 9.3. HRMS (ESI): calcd for $\mathrm{C}_{44} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 651.3581, Found: 651.3585.

($\mathbf{4 m}$): $146 \mathrm{mg}, 49 \%$ yield. white solid: m.p. $150-151^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.52-7.33 (m, 8H), 7.14-6.93 (m, 6H), 3.67 (s, 1H), $3.03(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 1 \mathrm{H}), 2.25-2.09(\mathrm{~m}$,
$15 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=198.9,163.9,148.4,147.8,143.7$, $138.9,136.6,132.3,129.5,128.7,128.6,128.5,128.4,127.9,127.7,127.4,125.3,123.7,112.3$, 70.4, 34.2, 21.3, 19.8, 18.6, 18.0, 10.4. HRMS (ESI): calcd for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 595.2955$, Found: 595.2943.

(4n): $219 \mathrm{mg}, 64 \%$ yield. white solid: m.p. $133-134{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.22-8.17(\mathrm{~m}$, $4 \mathrm{H}), 8.07(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.12(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 3 \mathrm{H})$, $6.91(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=20.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.89-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 15 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=196.4,164.2,157.0,149.8,147.8,147.0,146.6,143.2,140.3,138.5,137.4$, $136.3,134.5,129.2,128.9,128.8,128.3,128.2,128.1,126.4,124.2,123.8,123.7,116.0,70.4,33.7$, 20.9, 19.8, 19.6, 18.7, 17.7, 10.6. HRMS (ESI): calcd for $\mathrm{C}_{40} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$685.2657, Found: 685.2655

(4o): $176 \mathrm{mg}, 54 \%$ yield. yellow oil . ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $(\mathrm{ppm})=7.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 11 \mathrm{H}), 7.18(\mathrm{~d}, J=$ 7.0 Hz, 1H), 7.13-7.05 (m, 3H), $6.95(\mathrm{~s}, 1 \mathrm{H}), 3.74-3.68(\mathrm{~m}, 1 \mathrm{H})$, $2.87(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$, $1.85(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}\right): \delta(\mathrm{ppm})=198.2,159.9$, $151.9,151.4,147.1,145.0,132.8,129.8,129.1,128.9,128.4,126.8,126.5,124.6,122.4,120.8$,
$120.4,113.0,56.5,55.4,34.9,34.6,31.6,31.3,20.4,17.9,9.9$. HRMS (ESI): calcd for $\mathrm{C}_{44} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$651.3581, Found: 651.3590.

($\mathbf{4 p}$): $159 \mathrm{mg}, 47 \%$ yield. white solid: m.p. $119-120{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.99(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.31(\mathrm{~m}, 10 \mathrm{H})$, 7.24-7.14 (m, 4H), 6.98-6.97(m, 2H), 3.81-3.74 (m, 1H), 2.85-2.82 (m, $1 \mathrm{H}), 2.58-2.18(\mathrm{~m}, 6 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.16-1.10(\mathrm{~m}, 12 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=198.8,165.1,159.3,151.1$, $150.2,148.6,148.2,142.4,136.9,136.1,132.3,129.5,129.3,128.9,128.5,128.4,128.1,127.4$, $127.2,126.5,126.4,126.1,125.9,125.7,123.6,118.3,72.4,34.6,34.5,31.6,31.3,31.2,24.8,19.8$, 17.3, 13.5, 11.7. HRMS (ESI): calcd for $\mathrm{C}_{46} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$679.3894, Found: 679.3890。

4 Control Experiment and Mechanistic Study

1) Experiment with γ-substituted allenyl ketone

Under air atmosphere, a sealable reaction tube with a Teflon-coated screw cap equipped with a magnetic stir bar was charged with γ-substituted allenyl ketone $\mathbf{5}$ (0.5 mmol), isocyanide 2a (1.0 $\mathrm{mmol})$, in toluene $(5.0 \mathrm{~mL})$ at room temperature. Then capped it with a septum and stirred at $100^{\circ} \mathrm{C}$ for 12 h . After the reaction was completed, it was cooled to room temperature and monitored by

TLC. And the reaction mixture was concentrated under vacuum. No formation of desired product was observed.

2) Experiment under nitrogen atmosphere

Under nitrogen atmosphere, a screw cap vial was charged with allenyl ketone $\mathbf{1 a}(0.5 \mathrm{mmol})$, isocyanide $\mathbf{2 a}(1.0 \mathrm{mmol})$ in toluene $(5.0 \mathrm{~mL})$ at room temperature. Then the vial was purged with nitrogen atmosphere and this mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After the reaction was completed, it was cooled to room temperature and monitored by TLC. And the reaction mixture was concentrated under vacuum. The residue was purified by flash chromatography on silica gel (eluant: petroleum ether/ethyl acetate $=8: 1$) to give product 3a.

3) Isotope experiment with ${ }^{18} \mathrm{O}_{2}$ atmosphere

A screw cap vial was charged with allenyl ketone $\mathbf{1 a}(0.5 \mathrm{mmol})$, isocyanide $\mathbf{2 a}(1.0 \mathrm{mmol})$ in toluene $(5.0 \mathrm{~mL})$ at room temperature. Then the vial was purged with ${ }^{18} \mathrm{O}_{2}$ atmosphere and this mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After the reaction was completed, it was cooled to room temperature and monitored by TLC. And the reaction mixture was concentrated under vacuum. The
residue was purified by flash chromatography on silica gel (eluant: petroleum ether/ethyl acetate $=$ 8:1) to give product $\left[{ }^{18} \mathrm{O}\right]-\mathbf{3 a}$.

$$
\text { Chemical Formula: } \mathrm{C}_{42} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{18} \mathrm{O}
$$

Calcd: 625.3311
Found: 625.3327

4) Isotope experiment with ${ }^{18} \mathrm{O}_{2}$ atmosphere

$\left[{ }^{18} \mathrm{O}\right]-4 \mathrm{j}, 59 \%$ yield OMe

A screw cap vial was charged with allenyl ketone $\mathbf{1 k}(0.5 \mathrm{mmol})$, isocyanide $\mathbf{2 q}(1.0 \mathrm{mmol})$ in toluene $(5.0 \mathrm{~mL})$ at room temperature. Then the vial was purged with ${ }^{18} \mathrm{O}_{2}$ atmosphere and this
mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After the reaction was completed, it was cooled to room temperature and monitored by TLC. And the reaction mixture was concentrated under vacuum. The residue was purified by flash chromatography on silica gel (eluant: petroleum ether/ethyl acetate $=$ $8: 1)$ to give product $\left[{ }^{18} \mathrm{O}\right]-\mathbf{4} \mathbf{j}$.

Chemical Formula: $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{18} \mathrm{O}$
Calcd: 601.2583
Found: 601.2593

5) Isotope experiment with $\mathrm{H}_{2} \mathrm{O}^{18}$ atmosphere

Under air atmosphere, a screw cap vial was charged with allenyl ketone $\mathbf{1 k}(0.5 \mathrm{mmol})$, isocyanide $2 \mathbf{2 q}(1.0 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}^{18}$ (6 equiv.) in toluene (5.0 mL) at room temperature. Then capped it with a septum and stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After the reaction was completed, it was cooled to room temperature and monitored by TLC. And the reaction mixture was concentrated under vacuum. The residue was purified by flash chromatography on silica gel (eluant: petroleum ether/ethyl acetate $=8: 1$) to give product $\mathbf{4 j}$.

6) Isotope experiment with $\mathrm{D}_{2} \mathrm{O}$ atmosphere

Under air atmosphere, a screw cap vial was charged with allenyl ketone $\mathbf{1 k}(0.5 \mathrm{mmol})$, isocyanide $\mathbf{2 q}$ (1.0 mmol), $\mathrm{D}_{2} \mathrm{O}$ (6 equiv.) in toluene (5.0 mL) at room temperature. Then capped it with a septum and stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After the reaction was completed, it was cooled to room temperature and monitored by TLC. And the reaction mixture was concentrated under vacuum. The residue was purified by flash chromatography on silica gel (eluant: petroleum ether/ethyl acetate $=8: 1$) to give product $\mathbf{4} \mathbf{j}$.

$5 \quad{ }^{1} \mathrm{H}$ MR and ${ }^{13} \mathrm{C}$ NMR Spectra of All Compounds

Compound 3a

Compound 3b

Compound 3c

Compound 3d

Compound $\mathbf{3 e}$

Compound $\mathbf{3 f}$

$\underbrace{\text { Q }}$
$\stackrel{\infty}{\text { © }} \stackrel{\text { en }}{\text { し }}$

Compound $\mathbf{3 g}$

Compound 3h

Compound 3i

Compound 3j

Compound 3k

Compound 31

 ৷.

Compound 3m

Compound 3n

Compound 30

Compound 4a

No

Compound 4b

\mid

Compound 4c

.

200	180	160	140	120	100	80	60	40	20	0	ppm

Compound 4d

 1

1	1	1	,	,	,	1	1	1	1	
200	180	160	140	120	100	80	60	40	20	0 ppm

Compound $\mathbf{4 e}$

管
-71.04

1	1	1	1	1	1	1	1	1	1

Compound $\mathbf{4 f}$

Compound $\mathbf{4 g}$

 فे
@ ƠN

1	1	1	1	1	1	1	1	1	1	
200	180	160	140	120	100	80	60	40	20	0 ppm

Compound 4h

 NV/L

Compound 4i

Compound $\mathbf{4} \mathbf{j}$

Compound $\mathbf{4 k}$

へNへNへNへNへNへN

Compound $\mathbf{4 1}$

Compound $\mathbf{4 m}$

Compound 4n

Compound $4 \mathbf{o}$

Compound $\mathbf{4 p}$

