Electronic Supplementary Information (ESI)

Catalytic transformation of 2,5-furandicarboxylic acid to adipic acid over

niobic acid-supported Pt nanoparticles

Longfu Wei, Junxian Zhang, Weiping Deng,* Shunji Xie, Qinghong Zhang* and Ye Wang*

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

*Corresponding authors: dengwp@xmu.edu.cn; zhangqh@xmu.edu.cn; wangye@xmu.edu.cn

Experimental details

1. Materials and catalyst preparation

Al₂O₃, SiO₂, CeO₂, MgO, ZrO₂, NbCl₅, NH₃·H₂O, H₂PtCl₆·6H₂O, RuCl₃·3H₂O, RhCl₃·3H₂O, IrCl₃·3H₂O, NaBH₄, dimethyl sulfoxide (DMSO), ethanol and ethylene glycol were purchased from Sinopharm Chemical Reagent Co., Ltd. TiO₂ was obtained from Degussa, and HZSM-5 was purchased from Nankai University Catalyst Co. 2,5-furandicarboxylic acid (FDCA) was purchased from Aladdin. Tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) was purchased from Jiangsu Aikang Biomedical Research and Development Co., Ltd. 2-hydroxyadipic acid (HAA) was purchased from Shanghai Shaoyuan Co. Ltd. Adipic acid (AA) was purchased from Alfa Aesar (China) Chemicals Co., Ltd. Nb₂O₅·xH₂O was synthesized by a simple hydrothermal method.¹ Typically, 1.0 g NbCl₅ was dissolved in 10 mL ethanol under continuous stirring to obtain a settled solution. Then, a 4 wt% NH₃·H₂O aqueous solution (50 mL) was added to the above solution with stirring for 2 h. After filtration and washing, the solid was dispersed in 50 mL ultrapure water and the pH of mixture was adjusted to 6 by NH₃·H₂O aqueous solution. Nb₂O₅·xH₂O was finally obtained after hydrothermal reaction at 513 K for 24 h, followed by filtration, washing and drying at 333 K under vacuum for 12 h.

Supported Pt or other noble metal catalysts were prepared by a chemical reduction method using NaBH₄ as a reductant. As an example, the preparation of Pt/Nb₂O₅·*x*H₂O was described as follows. 0.30 g Nb₂O₅·*x*H₂O was dispersed into 30 mL ultra-pure water. After stirring for 30 min, an aqueous solution of H₂PtCl₆ (1.2 mL) with a concentration of 12.55 mg mL⁻¹ was added into the above suspension under stirring. The mixture was further stirred for another 30 min. Then, a fresh NaBH₄ (0.150 mol L⁻¹) aqueous solution (5 mL) was added into the above mixture at 298 K. After stirring for 4 h, the solid catalyst was recovered by filtration, followed by washing and drying. The Pt/Nb₂O₅·*x*H₂O catalyst thus obtained has a mean Pt particle size of 4.2 nm.

The series of Pt/Nb₂O₅·xH₂O catalysts with different mean sizes of Pt NPs (denoted as Ptd/Nb₂O₅·xH₂O, where d was the mean Pt particle size in nm) were prepared by choosing different reductants and different reduction conditions (temperatures and reduction times). For the preparation of catalysts with mean Pt sizes of 4.2, 7.2 and 9.3 nm, the Pt precursor (H₂PtCl₆ aqueous solution) was mixed with Nb₂O₅·xH₂O and then underwent reduction by NaBH₄ at temperatures of 298, 323 and 348 K for 4 h, respectively. For the preparation of catalyst with a mean Pt size of 5.2 nm, the reduction temperature was 273 K and reduction time 8 h. The catalyst with a mean Pt size of 3.8 nm was obtained by reduction of H₂PtCl₆·6H₂O at 433 K for 4 h using ethylene glycol as a reductant. The catalyst with a mean Pt size of 1.8 nm was prepared by calcination of Nb₂O₅·*x*H₂O-impregnated Pt precursor (H₂PtCl₆) at 773 K for 4 h in air, followed by reduction at 673 K for 4 h under 5% H₂/N₂ gas flow(flow rate, 60 mL min⁻¹).

2. Catalyst characterization

The transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) measurements were performed using a Tecnai F20 electron microscope operated at an acceleration voltage of 200 kV. The N₂ physisorption was performed on a Micromeritics Tristar 3020 surface area to measure the specific surface area, pore volume and pore size of the catalysts. X-ray photoelectron spectroscopy (XPS) measurements were performed on an ESCALAB 250Xi using Al-K α radiation. The binding energy was calibrated using the C 1s photoelectron peak at 284.6 eV as a reference. Inductively coupled plasma (ICP) optical emission spectrometry was performed by using an Agilent 700 ICP-OES instrument to measure the actual loading amounts of Pt. The diffuse reflectance Fourier-transform infrared (FT-IR) spectroscopy was carried out with a Nicolet 6700 spectrometer. For the CO-adsorbed FT-IR, the catalyst sample was loaded into an IR cell and calcined at 473 K for 1 h with Ar flow. After cooling to 303 K in Ar, a spectrum was collected as the background. Subsequently, CO was introduced into the IR cell and the adsorption of CO was conducted at 303 K for 30 min, and then another spectrum was recorded after fluxing the IR cell with Ar flow. The spectrum of CO adsorbed on the surface of catalysts was obtained by subtracting these spectra.

3. Catalytic reaction

The catalytic transformation of FDCA to AA was performed in a batch-type Teflon-lined stainless-steel autoclave (30 mL). The temperature of the reactor was controlled by an oil bath with a magnetic stirring. Typically, the catalyst (0.020 g) and 0.10 mmol FDCA (0.0156 g) were added into the reactor that was precharged with ultrapure water (5 mL). Then the reactor was sealed and purged ten times with H_2 at a fixed pressure (typically 3 MPa). The reaction was

started by vigorous stirring when the temperature reached 433 K. After a fixed reaction time, the reactor was quickly cooled by ice water to room temperature to terminate the reaction. For the recycling uses, the catalyst was recovered by centrifugation, washing with deionized water and drying at 333 K for 12 h. Then, the recovered catalyst was used for the next reaction. After reaction, gaseous products were collected in a gas bag. The gaseous products were analysed by a gas chromatograph (GC 2060) equipped with an RT-Plot-Q capillary column, and a thermal conductivity detector (TCD) and a flame ionization detector (FID) to detect CO_2 and alkanes. Possible furan chemicals in the gas phase were also identified by the GC-MS (GC-2010 SHIMADZU, GCMS-QP2010 Plus) equipped with total ions chromatograph (TIC). Liquid products were analysed by electrospray ionization mass spectrometry (ESI-MS) (AmaZon SL, Bruker Daltonics Inc.) and quantified by a high-performance liquid chromatography (HPLC) with an instrument (Shimazu LC-20A) equipped with a refractive index (RI) detector and a Shodex SUGARSH-1011 column (8 mm \times 300 mm) using a dilute H₂SO₄ aqueous solution as a mobile phase. FDCA was analysed by the nuclear magnetic resonance (NMR) (Ascend III 500), in which 0.6 mL solution was mixed with 0.1 mL D₂O and 0.1 mL DMSO (diluted to 100 ppm by ultrapure water) as an internal standard. The one-dimensional ¹H spectrum was measured by the water suppression method.²

The conversion of FDCA was calculated by the following equation.³

Conversion (%) = $(C_{i,0} - C_{i,final}) / C_{i,0} \times 100\%$

The yield, selectivity and carbon balance (denoted as C balance) were calculated on a molar carbon basis by the following equations:

Yield (%) = (Number of carbon atom in product $j \times C_{j,\text{final}}$) /(Number of carbon atom in $i \times C_{i,0}$) × 100%

Selectivity (%) = (Number of carbon atom in product $j \times C_{j,\text{final}}$) /(Number of carbon atom in $i \times (C_{i,0}-C_{i,\text{final}})) \times 100\%$

C balance (%) = \sum (Number of carbon atom in product $j \times C_{j,\text{final}}$) /(Number of carbon atom in $i \times (C_{i,0}$ - $C_{i,\text{final}})$) × 100%

 $C_{i,0}$ was the initial concentration of the substrate (FDCA, 20 mmol/L). $C_{i,\text{final}}$ was the final concentration of the substrate (FDCA). $C_{j,\text{final}}$ was the final concentration of liquid product (e.g., THFDCA, HAA and AA).

The site time yield for the formation of AA was calculated by the following equation:

Site time yield = Molar amount of AA formed/(Molar amount of Pt in the catalyst \times Pt dispersion \times reaction time)

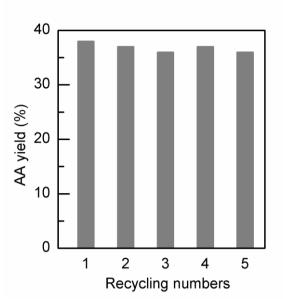
The Pt dispersion was calculated by the following equation:⁴

Pt dispersion = 1.13/d (diameter, unit: nm)

In the above equation, d was the mean diameter of Pt NPs.

Supplementary Tables and Figures

Catalyst	Conversion	Selectivity (%)			AA yield	C balance
	(%)	AA	THFDCA	HAA	(%)	(%)
Pt/HZSM-5	96	8	7	76	7.4	91
Pt/HZSM-5 ^a	98	10	8	26	10	44
Pt/CeO ₂	71	12	58	14	8.5	84
Pt/CeO_2^a	98	2	42	8	1.6	52


Table S1 Conversion of FDCA over Pt/HZSM-5 and Pt/CeO₂ catalysts.

Reaction conditions: FDCA 0.10 mmol, catalyst (Pt loadings 5 wt%) 0.020 g, H₂O 5 mL, H₂ 3 MPa, 473 K, 4 h. ^{*a*} 10 h. FDCA, AA, THFDCA and HAA denote 2,5-furandicarboxylic acid, adipic acid, tetrahydrofuran-2,5-dicarboxylic acid and 2-hydroxyadipic acid, respectively.

Table S2 Conversion of FDCA over Pt-MoO_x/TiO₂ catalyst.

Reaction cycle	Conversion	Selectivity (%)			AA yield	C balance
	(%)	AA	THFDCA	HAA	(%)	(%)
1 st use	>99	22	1	9	22	32
2 nd use	>99	18	1	7	18	26

Reaction conditions: FDCA 0.10 mmol, catalyst 0.020 g, H₂O 5 mL, H₂ 3 MPa, 473 K, 8 h. FDCA, AA, THFDCA and HAA denote 2,5-furandicarboxylic acid, adipic acid, tetrahydrofuran-2,5-dicarboxylic acid and 2-hydroxyadipic acid, respectively.

Fig. S1 Recycling uses of Pt/Nb₂O₅·*x*H₂O catalyst. Reaction conditions: FDCA 0.10 mmol, catalyst (Pt loadings 5 wt%) 0.020 g, H₂O 5 mL, H₂ 3 MPa, 473 K, 8 h.

Catalyst	Conversion	Selectivity (%)			AA Yield	C balance
	(%)	AA	THFDCA	HAA	(%)	(%)
Pt/Nb ₂ O ₅ ·xH ₂ O	>99	38	7	1	38	46
Pd/Nb ₂ O ₅ · <i>x</i> H ₂ O	>99	2	77	3	2.2	82
$Ru/Nb_2O_5 \cdot xH_2O$	>99	5	0.3	0.4	5.2	5.7
Rh/Nb ₂ O ₅ ·xH ₂ O	>99	4	0.4	1	3.6	5.4
Ir/Nb ₂ O ₅ ·xH ₂ O	>99	4	3	0.5	4.2	7.5

Table S3 Conversion of FDCA over $Nb_2O_5 \cdot xH_2O$ -supported noble metal catalysts.

Reaction conditions: FDCA 0.10 mmol, catalyst (metal loadings 5 wt%) 0.020 g, H₂O 5 mL, H₂ 3 MPa, 473 K, 8 h. FDCA, AA, THFDCA and HAA denote 2,5-furandicarboxylic acid, adipic acid, tetrahydrofuran-2,5-dicarboxylic acid and 2-hydroxyadipic acid, respectively.

Pt loadings	Conversion	Selectivity (%)			AA yield	C balance
(wt%)	(%)	AA	THFDCA	HAA	(%)	(%)
0	1.0	0	0	0	0	0
1	34	17	17	37	5.7	71
2.5	76	23	22	50	18	95
5	>99	30	21	32	30	83

Table S4 Effect of Pt loading amounts on catalytic behaviours of $Pt/Nb_2O_5 \cdot xH_2O$ catalyst for the conversion of FDCA.

Reaction conditions: FDCA 0.10 mmol, Pt/Nb₂O₅·*x*H₂O 0.030 g, H₂O 5 mL, H₂ 3 MPa, 433 K, 8 h. FDCA, AA, THFDCA and HAA denote 2,5-furandicarboxylic acid, adipic acid, tetrahydrofuran-2,5-dicarboxylic acid and 2-hydroxyadipic acid, respectively.

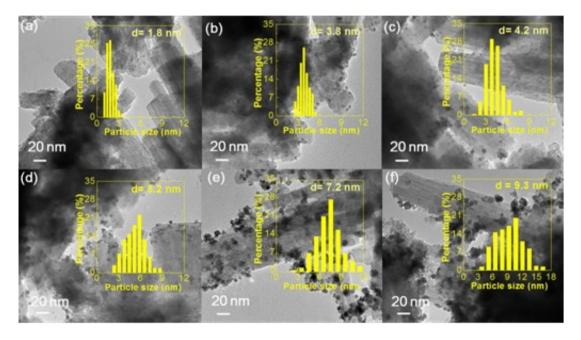

Catalyst	Temperature (K)	HAA conversion (%)	AA selectivity (%)	AA yield (%)
Pt/Nb ₂ O ₅ ·xH ₂ O	433	57	61	35
	453	79	43	34
	473	>99	24	24
Pt/SiO ₂	433	16	22	3.4

Table S5 Conversion of HAA over the Pt/Nb₂O₅·*x*H₂O and Pt/SiO₂.

Reaction conditions: HAA 0.10 mmol, catalyst (Pt loading 5 wt%) 0.030 g, H₂O 5 mL, 8 h. HAA and AA denote 2-hydroxyadipic acid andadipic acid, respectively.

Catalyst	Reductant	Reduction temperature (K)	Reduction time (h)
Pt-1.8/Nb ₂ O ₅ · <i>x</i> H ₂ O	H_2	673	4
Pt-3.8/Nb ₂ O ₅ · x H ₂ O	Ethylene glycol	433	4
Pt-4.2/Nb ₂ O ₅ · x H ₂ O	NaBH ₄	298	4
Pt-5.2/Nb ₂ O ₅ · x H ₂ O	NaBH ₄	273	8
Pt-7.2/Nb ₂ O ₅ · x H ₂ O	NaBH ₄	323	4
$Pt-9.3/Nb_2O_5 \cdot xH_2O$	NaBH ₄	348	4

Table S6 Synthetic conditions for the $Pt-d/Nb_2O_5 \cdot xH_2O$ catalysts with different mean sizes of Pt particles.

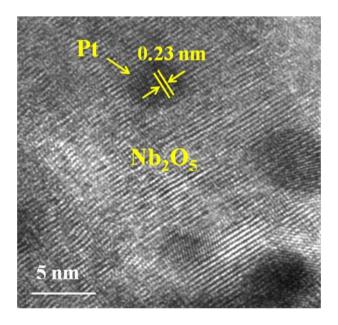


Fig. S2 TEM images and the corresponding Pt particle size distributions for $Pt-d/Nb_2O_5 \cdot xH_2O$. Mean size of Pt particles: (a) 1.8 nm, (b) 3.8 nm, (c) 4.2 nm, (d) 5.2 nm, (e) 7.2 nm and (f) 9.3 nm.

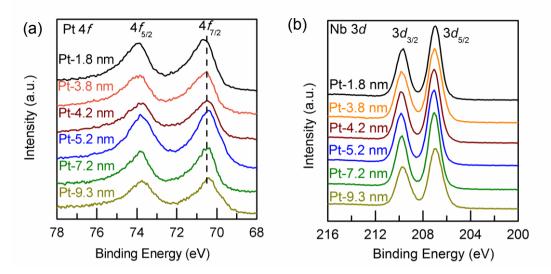

Catalyst	Pt loadings	Surface area	Pore volume	Pore size	Pt dispersion
	(wt%) ^a	$(m^2 g^{-1})$	$(cm^3 g^{-1})^b$	$(nm)^b$	(%) ^c
Pt-1.8/Nb ₂ O ₅ · x H ₂ O	4.9	60	0.12	10	63
Pt-3.8/Nb ₂ O ₅ · x H ₂ O	4.6	62	0.12	9.3	30
Pt-4.2/Nb ₂ O ₅ · x H ₂ O	4.6	61	0.12	11	27
Pt-5.2/Nb ₂ O ₅ · x H ₂ O	4.6	58	0.13	11	22
Pt-7.2/Nb ₂ O ₅ · x H ₂ O	4.7	54	0.13	10	16
Pt-9.3/Nb ₂ O ₅ · x H ₂ O	4.8	53	0.11	11	12

Table S7 Physical properties for $Pt-d/Nb_2O_5 \cdot xH_2O$ catalysts with different mean sizes of Pt particles.

^{*a*} Measured by ICP measurement. ^{*b*} Measured by N₂ physical adsorption; ^{*c*} Calculated by using the equation: Pt dispersion = 1.13/d, where *d* is the mean size of Pt nanoparticles.⁴

Fig. S3 High-resolution TEM image for the Pt-3.8/Nb₂O₅·*x*H₂O catalyst.

Fig. S4 XPS spectra for $Pt-d/Nb_2O_5 \cdot xH_2O$ catalysts with different mean sizes of Pt particles. (a) Pt 4f. (b) Nb 3d.

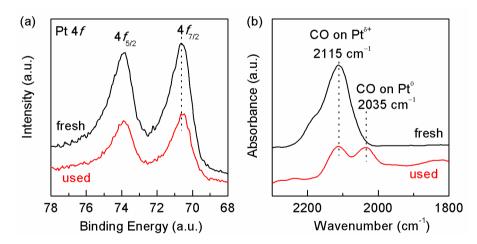


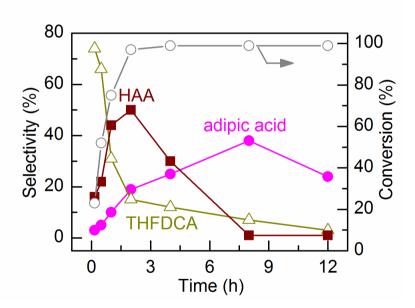
Fig. S5 (a) XPS spectra and (b) CO-adsorption IR spectra for Pt-1.8/Nb₂O₅·*x*H₂O catalysts.

Catalytic phase	Conversion	Selectivity (%)			AA yield	C balance
	(%)	AA	THFDCA	HAA	(%)	(%)
Liquid	28	0	2.0	0	0	2.0
Solid ^b	>99	37	6	1	37	44

Table S8 Conversion of FDCA with the liquid and solid phases separated from the thermal treatment media for Pt-3.8/Nb₂O₅·xH₂O via hot filtration.^a

^a Reaction conditions: FDCA 0.10 mmol, H₂ 3 MPa, 473 K, 8 h. FDCA, AA, THFDCA and HAA denote 2,5-furandicarboxylic acid, adipic acid, tetrahydrofuran-2,5-dicarboxylic acid and 2-hydroxyadipic acid, respectively. Pt-3.8/Nb₂O₅·*x*H₂O was treated under the standard reaction conditions (H₂O 5 mL, H₂ 3 MPa, 473 K, 8 h) and then the mix was separated into liquid and solid phases via hot filtration. ^b H₂O 5 mL.

H ₂ pressure	Conversion	Selectivity (%)			AA yield	C balance
(MPa)	(%)	AA	THFDCA	HAA	(%)	(%)
0.5	99	21	13	28	21	62
1	>99	27	12	20	27	59
2	>99	31	10	8	31	49
3	>99	38	7	1	38	46


Table S9 Conversion of FDCA over the $Pt-3.8/Nb_2O_5 \cdot xH_2O$ catalyst under different H_2 pressures.

Reaction conditions: FDCA 0.10 mmol, Pt/Nb₂O₅·*x*H₂O (Pt loading 5 wt%) 0.020 g, H₂O 5 mL, 473 K, 8 h. FDCA, AA, THFDCA and HAA denote 2,5-furandicarboxylic acid, adipic acid, tetrahydrofuran-2,5-dicarboxylic acid and 2-hydroxyadipic acid, respectively.

Temperature	Conversion	By-products Selectivity (%)					
(K)	(%)	$\rm CO_2$	C ₁ -C ₆ alkanes	HCA	DHHA	1,6-hexanediol	
433	99	3.5	1.1	0.5	0	0	
453	>99	6.5	0.6	2.5	0.2	0.14	
473	>99	12	1.1	3.7	4	0.23	

Table S10 By-products during the conversion of FDCA over Pt- $3.8/Nb_2O_5$ ·*x*H₂O catalyst at different reaction temperatures.

Reaction conditions: FDCA 0.10 mmol,Pt-3.8/Nb₂O₅·*x*H₂O (Pt loading 5 wt%) 0.020 g, H₂O 5 mL, 8 h. FDCA, HCA and DHHA denote 2,5-furandicarboxylic acid, hydroxycaproic acid, and 5,6-dihydroxyhexanoic acid, respectively.

Fig. S6 Time-course result for Pt-3.8/Nb₂O₅·*x*H₂O-catalyzed conversion of FDCA. Reaction conditions: FDCA 0.10 mmol, catalyst 0.020 g, H₂O 5 mL, H₂ 3 MPa, 473 K. THFDCA and HAA denote tetrahydrofuran-2,5-dicarboxylic acid and 2-hydroxyadipic acid, respectively.

Temperatur	e AA conv. (%)	Yield (%)					
(K)	_	CO ₂	C ₁ -C ₆ alkanes	HCA	1,2-hexanediol		
433	6.9	2.4	1.4	2.9	0		
473	35	2.7	10	17.5	4.2		

Table S11 Conversion of AA over Pt-3.8/Nb₂O₅·*x*H₂O catalyst.

Reaction conditions: AA 0.10 mmol,Pt-3.8/Nb₂O₅·*x*H₂O (Pt loading 5 wt%) 0.020 g, H₂O 5 mL, 8 h. AA and HCA denote adipic acid and hydroxycaproic acid, respectively.

References

- 1 W. Fan, Q. Zhang, W. Deng and Y. Wang, *Chem. Mater.*, 2013, 25, 3277-3287.
- 2 S. Gao, X. Jiao, Z. Sun, W. Zhang, Y. Sun, C. Wang, Q. Hu, X. Zu, F. Yang, S. Yang, L. Liang, J. Wu and Y. Xie, *Angew. Chem. Int. Ed.*, 2016, 55, 698-702.
- T. Asano, M. Tamura, Y. Nakagawa and K. Tomishige, *ACS Sustainable Chem. Eng.*, 2016, 4, 6253-6257.
- 4 A. J. Plomp, H. Vuori, A. O. I. Krause, K. P. de Jong and J. H. Bitter, *Appl. Catal. A-Gen.*, 2008, **351**, 9-15.